Abstract
The brain continuously receives, integrates and responds to an influx of sensory signals emerging from the internal organs. This is mediated not only through direct neuronal connections defined by the peripheral nervous system, but also endocrine, humoral, metabolic and immune pathways. This complex, mostly imperceptible brain–body crosstalk is essential to maintaining physiological homeostasis. It has a critical role in cognitive and behavioural functions as well as in disorders of the nervous system. The functional and anatomical diversity of brain–body pathways means that multifunctional implantable neurotechnologies must be developed to facilitate causal studies during behaviour. Although ubiquitous in studies of brain function, the electrical, optical and chemical interrogation of organ–brain circuits remains a challenge. In this Review, we discuss recent developments in multifunctional implantable neurotechnologies with the goal of enabling long-term studies of brain–body signalling. We highlight the material selection, device architectures, integration challenges and power and data transfer approaches necessary to establish robust bioelectronic interfaces between the brain and the peripheral organs.
Key points
-
The bidirectional crosstalk between the brain and visceral organs is essential to maintaining homeostasis, and is additionally implicated in neurological, metabolic and immune disorders.
-
Discovery of neural pathways underlying brain–organ communication may reveal targets for autonomic neuromodulation therapies and/or enable us to modulate brain function from the viscera.
-
Deciphering brain–body neural circuits is challenging, in part, owing to the lack of neurotechnology to enable multisite, multimodal investigation of brain and organ physiology in awake, behaving model organisms for extended periods of time.
-
Integration of multiple recording or stimulation modalities in a neural probe should not compromise device miniaturization, biocompatibility and mechanical flexibility to ensure reliable long-term function in vivo.
-
Besides the tissue-interfacing front-ends, equal consideration should be devoted to developing complete functional systems that include interconnects, encapsulation, control electronics, data-transfer protocols and power-delivery routes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Berntson, G. G. & Khalsa, S. S. Neural circuits of interoception. Trends Neurosci. 44, 17–28 (2021).
Azzalini, D., Rebollo, I. & Tallon-Baudry, C. Visceral signals shape brain dynamics and cognition. Trends Cogn. Sci. 23, 488–509 (2019).
Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).
Bonaz, B. et al. Diseases, disorders, and comorbidities of interoception. Trends Neurosci. 44, 39–51 (2021).
Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).
Quadt, L., Critchley, H. D. & Garfinkel, S. N. The neurobiology of interoception in health and disease. Ann. NY Acad. Sci. 1428, 112–128 (2018).
Chen, W. G. et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3–16 (2021).
Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).
Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).
Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).
Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).
Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).
Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).
Hamnett, R. et al. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr. Biol. 32, 4483–4492.e5 (2022).
Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).
Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2021).
Muthuswamy, J., Saha, R. & Gilletti, A. Tissue micromotion induced stress around brain implants. In 3rd IEEE/EMBS Special Topic Conf. Microtechnol. Med. Biol. 102–103 (IEEE, 2005).
Bampton, P. A. & Dinning, P. G. High resolution colonic manometry — what have we learnt? — A review of the literature 2012. Curr. Gastroenterol. Rep. 15, 328 (2013).
Chen, J. H. et al. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci. Rep. 7, 41436 (2017).
Carlsson, M. et al. Total heart volume variation throughout the cardiac cycle in humans. Am. J. Physiol. Heart Circ. Physiol. 287, 243–250 (2004).
Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).
Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).
Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).
Woods, G. A., Rommelfanger, N. J. & Hong, G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 3, 1087–1113 (2020).
Jastrzebska-Perfect, P. et al. Translational neuroelectronics. Adv. Funct. Mater. 30, 1909165 (2020).
Nicolelis, M. A. L. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003).
Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).
Ma, L., Wisniewski, D. J., Cea, C., Khodagholy, D. & Gelinas, J. N. High-density, conformable conducting polymer-based implantable neural probes for the developing brain. Adv. Healthc. Mater. 13, e2304164 (2024).
Chen, Z. & Lee, J. B. Biocompatibility of SU-8 and its biomedical device applications. Micromachines 12, 794 (2021).
Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).
Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2023).
Khatib, M. et al. Spiral neurostring: high-density soft bioelectronic fibers for multimodal sensing and stimulation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560482 (2023).
Baek, C. & Seo, J. M. Investigation of using cyclic olefin copolymer as neural electrode. In Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS) 5129–5132 (IEEE, 2019).
Lu, C. et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3, e1600955 (2017).
Kato, Y. X., Furukawa, S., Samejima, K., Hironaka, N. & Kashino, M. Photosensitive-polyimide based method for fabricating various neural electrode architectures. Front. Neuroeng. 5, 11 (2012).
Ortigoza-Diaz, J. et al. Techniques and considerations in the microfabrication of parylene C microelectromechanical systems. Micromachines 9, 422 (2018).
Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).
Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).
Hao, D. et al. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact. Mater. 28, 467–479 (2023).
Gupta, I., Cherwoo, L., Bhatia, R. & Setia, H. Biopolymers: implications and application in the food industry. Biocatal. Agric. Biotechnol. 46, 102534 (2022).
Cho, Y. U., Lim, S. L., Hong, J. H. & Yu, K. J. Transparent neural implantable devices: a comprehensive review of challenges and progress. npj Flexible Electronics 6, 53 (2022).
Tringides, C. M. & Mooney, D. J. Materials for implantable surface electrode arrays: current status and future directions. Adv. Mater. 34, e2107207 (2022).
Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).
Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).
Sridharan, A. & Muthuswamy, J. In Handbook of Neuroengineering (ed. Thakor, N. V.) 1–47 (Springer, 2021).
Trung, T. Q. & Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017).
Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).
Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317 (2014).
Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).
Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).
Won, S. M., Song, E., Reeder, J. T. & Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 181, 115–135 (2020).
Pan, Y., Pan, C., Mao, L. & Yu, P. Neuromodulation with chemicals: opportunities and challenges. Fundam. Res. 5, 55–62 (2024).
Sternson, S. M. & Bleakman, D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell Gene Ther. Insights 6, 1079–1094 (2020).
Lewis, O. et al. Chronic, intermittent convection-enhanced delivery devices. J. Neurosci. Meth. 259, 47–56 (2016).
Uguz, I. et al. A microfluidic ion pump for in vivo drug delivery. Adv. Mater. 29, 1701217 (2017).
Wu, Y. et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat. Commun. 13, 5571 (2022).
Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).
Zheng, X. S., Tan, C., Castagnola, E. & Cui, X. T. Electrode materials for chronic electrical microstimulation. Adv. Healthc. Mater. 10, e2100119 (2021).
Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).
Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).
Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).
Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).
Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl Acad. Sci. USA 108, 7595–7600 (2011).
Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).
Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51.e8 (2020).
Kim, K. et al. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 11, 2063 (2020).
Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).
Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).
Katada, Y. et al. Highly sensitive visual restoration and protection via ectopic expression of chimeric rhodopsin in mice. iScience 26, 107716 (2023).
Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).
Adrian, E. D. & Moruzzi, G. Impulses in the pyramidal tract. J. Physiol. 97, 153–199 (1939).
Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574 (1959).
Strumwasser, F. Long-term recording from single neurons in brain of unrestrained mammals. Science 127, 469–470 (1958).
Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).
Driscoll, N. et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018).
Sessolo, M. et al. Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135–2139 (2013).
Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).
Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).
Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).
Uguz, I. et al. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun. 15, 533 (2024).
Lee, W. et al. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 28, 9722–9728 (2016).
Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Meth. 21, 914–921 (2024).
Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Meth. 14, 349–359 (2017).
Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Meth. 17, 1147–1155 (2020).
McClain, J. L., Fried, D. E. & Gulbransen, B. D. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol. Gastroenterol. Hepatol. 1, 631–645 (2015).
Li, Y., Liu, Z., Guo, Q. & Luo, M. Long-term fiber photometry for neuroscience studies. Neurosci. Bull. 35, 425–433 (2019).
Barretto, R. P. J. et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223–229 (2011).
Pollmann, E. H. et al. A subdural CMOS optical device for bidirectional neural interfacing. Nat. Electron. 7, 829–841 (2024).
Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23, 257–274 (2022).
Li, H., Li, C., Yan, Z. Y., Yang, J. & Chen, H. Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J. Neurosci. Meth. 189, 162–168 (2010).
Tan, C., Robbins, E. M., Wu, B. & Cui, X. T. Recent advances in in vivo neurochemical monitoring. Micromachines 12, 208 (2021).
Burns, G., Ali, M. Y. & Howlader, M. M. R. Advanced functional materials for electrochemical dopamine sensors. Trends Anal. Chem. 169, 117367 (2023).
Castagnola, E. et al. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry. Analyst 146, 3955–3970 (2021).
Yang, M., Wang, L., Lu, H. & Dong, Q. Advances in MXene-based electrochemical (bio)sensors for neurotransmitter detection. Micromachines 14, 1088 (2023).
Garwood, I. C. et al. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. Sci. Adv. 9, eadh0974 (2023).
Zhou, A. et al. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat. Biomed. Eng. 3, 15–26 (2019).
Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).
Uguz, I. & Shepard, K. L. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. Sci. Adv. 8, eabq6354 (2022).
Dagdeviren, C. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl Med. 10, eaan2742 (2018).
Proctor, C. M. et al. An electrocorticography device with an integrated microfluidic ion pump for simultaneous neural recording and electrophoretic drug delivery in vivo. Adv. Biosyst. 3, 1800270 (2019).
Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).
Lu, L. Recent progress on transparent microelectrode-based soft bioelectronic devices for neuroscience and cardiac research. ACS Appl. Bio Mater. 6, 1701–1719 (2023).
Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).
Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat. Methods 12, 1157–1162 (2015).
Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2023).
Chaea, U. et al. A neural probe for concurrent real-time measurement of multiple neurochemicals with electrophysiology in multiple brain regions in vivo. Proc. Natl Acad. Sci. USA 120, e2219231120 (2017).
Kim, M. K., Leong, J. C., Jo, Y., Kook, G. & Lee, H. J. Multimodal neural probes with small form factor based on dual-side fabrication. Adv. Mater. Technol. 8, 2200692 (2023).
Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).
Frank, J. A. et al. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem. Neurosci. 11, 3802–3813 (2020).
Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 3, 655–669 (2019).
Jeong, J.-W., Mccall, J. G., Huang, Y., Bruchas, M. R. & Rogers, J. A. Wireless optofluidic systems for programmable in vivo pharmacology optogenetics. Cell 162, 662–674 (2015).
Tchoe, Y. et al. An electroencephalogram microdisplay to visualize neuronal activity on the brain surface. Sci. Transl Med. 16, eadj7257 (2024).
Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).
Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898–908 (2019).
Miele, V. J., Panjabi, M. M. & Benzel, E. C. Anatomy and biomechanics of the spinal column and cord. Handb. Clin. Neurol. 109, 31–43 (2012).
Milekovic, T. et al. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson’s disease. Nat. Med. 29, 2854–2865 (2023).
Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol. 40, 198–208 (2021).
Wu, Y. et al. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Cell Rep. 43, 114199 (2024).
Kelly, M. J., Breathnach, C., Tracey, K. J. & Donnelly, S. C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 3, 100696 (2022).
Wheless, J. W., Gienapp, A. J. & Ryvlin, P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 88S, 2–10 (2018).
Sokal, D. M. et al. Splenic nerve neuromodulation reduces inflammation and promotes resolution in chronically implanted pigs. Front. Immunol. 12, 649786 (2021).
Afra, P., Adamolekun, B., Aydemir, S. & Watson, G. D. R. Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy. Front. Med. Technol. 3, 696543 (2021).
Liu, X. et al. Fatigue-resistant hydrogel optical fiber enables peripheral nerve optogenetics during locomotion. Nat. Meth. 20, 1802 (2023).
Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).
Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).
Kilgore, K. L. & Bhadra, N. Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42, 394–406 (2004).
Lee, G. et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci. Adv. 8, 9169 (2022).
Zaglia, T. & Mongillo, M. Cardiac sympathetic innervation, from a different point of (re)view. J. Physiol. 595, 3919 (2017).
Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure. Circulation 118, 863–871 (2008).
Egido, J. et al. Animal models of cardiovascular diseases. J. Biomed. Biotechnol. 16, 497841 (2011).
Tian, X. L. & Wang, Q. K. Generation of transgenic mice for cardiovascular research. Meth. Mol. Med. 129, 69–81 (2006).
Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).
Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).
Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).
Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 38 (2017).
Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2023).
Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).
Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).
Purves, D. et al. (eds) Autonomic regulation of the bladder. In Neuroscience 2nd edn (Sinauer Associates, 2001).
Latini, J. M. & Giannantoni, A. Pharmacotherapy of overactive bladder: epidemiology and pathophysiology of overactive bladder. Expert Opin. Pharmacother. 12, 1017–1027 (2011).
Redshaw, J. D. et al. Protocol for a randomized clinical trial investigating early sacral nerve stimulation as an adjunct to standard neurogenic bladder management following acute spinal cord injury. BMC Urol. 18, 72 (2018).
Jang, T. M. et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Sci. Adv. 6, 9675–9686 (2020).
Nager, C. W. et al. A randomized trial of urodynamic testing before stress-incontinence surgery. N. Engl. J. Med. 366, 1987–1997 (2012).
Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).
Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).
Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).
Williams, E. K. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).
Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019).
Brierley, S. M., Hibberd, T. J. & Spencer, N. J. Spinal afferent innervation of the colon and rectum. Front. Cell Neurosci. 12, 413546 (2018).
Sorensen, L. et al. Gut analysis toolbox: automating quantitative analysis of enteric neurons. J. Cell Sci. 137, jcs261950 (2024).
Buchanan, K. L. et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25, 191–200 (2022).
Kim, W. S. et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat. Commun. 12, 157 (2021).
Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).
Srinivasan, S. S. et al. An ingestible self-propelling device for intestinal reanimation. Sci. Robot. 9, 8170 (2024).
Mimee, M. et al. An ingestible bacterial–electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).
Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).
Abramson, A. et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat. Biotechnol. 40, 103–109 (2021).
Musk, E. & Neuralink. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).
Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).
Soriano, J. E. et al. Longitudinal interrogation of sympathetic neural circuits and hemodynamics in preclinical models. Nat. Protoc. 18, 340–373 (2022).
Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).
Dong, C. et al. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. Annu. Rev. Neurosci. 45, 273–294 (2022).
Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).
Yarmolinsky, D. A. et al. Selective modification of ascending spinal outputs in acute and neuropathic pain states. Preprint at bioRxiv https://doi.org/10.1101/2024.04.08.588581 (2024).
Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Commun. 3, 1054 (2012).
Huerta, T. S. et al. Calcium imaging and analysis of the jugular-nodose ganglia enables identification of distinct vagal sensory neuron subsets. J. Neural Eng. 20, 026014 (2023).
Grajales-Reyes, J. G. et al. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat. Protoc. 16, 3072–3088 (2021).
Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).
Nunès, A. et al. Measurements and morphometric landmarks of the human spinal cord: a cadaveric study. Clin. Anat. 36, 631–640 (2023).
Coillot, C. et al. Signal modeling of an MRI ribbon solenoid coil dedicated to spinal cord injury investigations. J. Sens. Sens. Syst. 5, 137–145 (2016).
Mohammadi, S. et al. Study of the normal heart size in Northwest part of Iranian population: a cadaveric study. J. Cardiovasc. Thorac. Res. 8, 119–125 (2016).
Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).
Miller, L. & Penta, R. Investigating the effects of microstructural changes induced by myocardial infarction on the elastic parameters of the heart. Biomech. Model. Mechanobiol. 22, 1019–1033 (2023).
Gargiulo, S. et al. PET/CT imaging in mouse models of myocardial ischemia. J. Biomed. Biotechnol. 2012, 541872 (2012).
Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380 (1995).
Lim, Y. J., Deo, D., Singh, T. P., Jones, D. B. & De, S. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg. Endosc. 23, 1298–1307 (2009).
DeSesso, J. M. & Jacobson, C. F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol. 39, 209–228 (2001).
Vdoviaková, K. et al. Surgical anatomy of the gastrointestinal tract and its vasculature in the laboratory rat. Gastroenterol. Res. Pract. 2016, 2632368 (2016).
Treuting, P. M., Dintzis, S. M. & Montine, K. S. Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas 2nd edn (Elsevier, 2017).
Ruetten, H. & Vezina, C. M. Relevance of dog as an animal model for urologic diseases. Prog. Mol. Biol. Transl. Sci. 189, 35–65 (2022).
Wnorowska, U. et al. Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. Sci. Rep. 12, 19164 (2022).
Gabella, G. & Uvelius, B. Urinary bladder of rat: fine structure of normal and hypertrophic musculature. Cell Tissue Res. 262, 67–79 (1990).
Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).
Park, S. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).
Bilodeau, G. et al. A wireless electro-optic platform for multimodal electrophysiology and optogenetics in freely moving rodents. Front. Neurosci. 15, 718478 (2021).
Wang, Q. et al. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat. Commun. 15, 4017 (2024).
Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).
Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).
Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643.e5 (2020).
Park, J. et al. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Sci. Adv. 9, eadi8918 (2023).
Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).
Cea, C. et al. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023).
Bennion, N. J. et al. In vivo measurement of human brain material properties under quasi-static loading. J. R. Soc. Interface 19, 20220557 (2022).
Beltrán, S. et al. Spinal cord motion and CSF flow in the cervical spine of 70 healthy participants. NMR Biomed. 37, e5013 (2023).
Shechter, G., Ozturk, C., Resar, J. R. & McVeigh, E. R. Respiratory motion of the heart from free breathing coronary angiograms. IEEE Trans. Med. Imaging 23, 1046–1056 (2004).
Liang, B. et al. Quantitative analysis of the impact of respiratory state on the heartbeat-induced movements of the heart and its substructures. Radiat. Oncol. 19, 18 (2024).
Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 4, 308–319 (2021).
Sarna, S. K. Colonic Motility: From Bench Side to Bedside (Morgan & Claypool Life Sciences, 2010).
Haylen, B. T. The empty bladder. Int. Urogynecol. J. 18, 237–239 (2007).
Ozturk, N. K. & Kavakli, A. S. Use of bladder volume measurement assessed with ultrasound to predict postoperative urinary retention. North Clin. Istanb. 3, 209 (2016).
Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021).
Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).
Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).
He, Z. et al. A wireless powered implantable and flexible neural recording and stimulating system based on NFC protocol. In Proc. IEEE Int. Conf. Integr. Circuits Technol. Appl. (ICTA) 100–101 (IEEE, 2018).
Zhang, Y. et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013).
Ji, B. et al. Stretchable parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J. Materiomics 6, 330–338 (2020).
Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).
Birmingham, K. et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399–400 (2014).
Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain–computer interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).
Tanskanen, J. M. A., Ahtiainen, A. & Hyttinen, J. A. K. Toward closed-loop electrical stimulation of neuronal systems: a review. Bioelectricity 2, 328 (2020).
Yvert, B. & Fourneret, E. Neuromorphic brain interfacing and the challenge of human subjectivation. Nat. Rev. Bioeng. 1, 380–381 (2023).
Schalk, G. et al. Translation of neurotechnologies. Nat. Rev. Bioeng. 2, 637–652 (2024).
Acknowledgements
This work was supported in part by the National Institute of Neurological Disorders and Stroke (grant R01-NS115025 to P.A.), the Pioneer Award from the National Institutes of Health and National Institute for Complementary and Integrative Health (grant DP1-AT011991 to P.A.) and the K. Lisa Yang Brain–Body Center at MIT (to P.A.). The authors thank J. Beckham, T. Cannon, P. Maretich and S. Selvaraji at the Massachusetts Institute of Technology for their valuable feedback on all aspects of this manuscript.
Author information
Authors and Affiliations
Contributions
A.S. and C.C. contributed equally to this manuscript.
Corresponding author
Ethics declarations
Competing interests
P.A. is a co-founder of and has a financial interest in NeuroBionics. A.S. and C.C. declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Mark Andermann, who co-reviewed with Crystian Massengil; and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sahasrabudhe, A., Cea, C. & Anikeeva, P. Multifunctional bioelectronics for brain–body circuits. Nat Rev Bioeng 3, 465–484 (2025). https://doi.org/10.1038/s44222-025-00289-3
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44222-025-00289-3
This article is cited by
-
Reliability and stability of Bioelectronic Medicine: a critical and pedagogical perspective
Bioelectronic Medicine (2025)
-
Central and peripheral neural circuits regulating glucose homeostasis
npj Biomedical Innovations (2025)
-
A movable long-term implantable soft microfibre for dynamic bioelectronics
Nature (2025)
-
In vivo multimodal neurochemical interfaces for real-time decoding of brain circuit
Nature Reviews Neuroscience (2025)


