Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifunctional bioelectronics for brain–body circuits

Abstract

The brain continuously receives, integrates and responds to an influx of sensory signals emerging from the internal organs. This is mediated not only through direct neuronal connections defined by the peripheral nervous system, but also endocrine, humoral, metabolic and immune pathways. This complex, mostly imperceptible brain–body crosstalk is essential to maintaining physiological homeostasis. It has a critical role in cognitive and behavioural functions as well as in disorders of the nervous system. The functional and anatomical diversity of brain–body pathways means that multifunctional implantable neurotechnologies must be developed to facilitate causal studies during behaviour. Although ubiquitous in studies of brain function, the electrical, optical and chemical interrogation of organ–brain circuits remains a challenge. In this Review, we discuss recent developments in multifunctional implantable neurotechnologies with the goal of enabling long-term studies of brain–body signalling. We highlight the material selection, device architectures, integration challenges and power and data transfer approaches necessary to establish robust bioelectronic interfaces between the brain and the peripheral organs.

Key points

  • The bidirectional crosstalk between the brain and visceral organs is essential to maintaining homeostasis, and is additionally implicated in neurological, metabolic and immune disorders.

  • Discovery of neural pathways underlying brain–organ communication may reveal targets for autonomic neuromodulation therapies and/or enable us to modulate brain function from the viscera.

  • Deciphering brain–body neural circuits is challenging, in part, owing to the lack of neurotechnology to enable multisite, multimodal investigation of brain and organ physiology in awake, behaving model organisms for extended periods of time.

  • Integration of multiple recording or stimulation modalities in a neural probe should not compromise device miniaturization, biocompatibility and mechanical flexibility to ensure reliable long-term function in vivo.

  • Besides the tissue-interfacing front-ends, equal consideration should be devoted to developing complete functional systems that include interconnects, encapsulation, control electronics, data-transfer protocols and power-delivery routes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device design must be guided by mechanical and anatomical features of the brain and organ systems.
Fig. 2: Overview of common neural interface modalities.
Fig. 3: Multifunctional probes for the brain.
Fig. 4: Bioelectronic devices for peripheral organs.

Similar content being viewed by others

References

  1. Berntson, G. G. & Khalsa, S. S. Neural circuits of interoception. Trends Neurosci. 44, 17–28 (2021).

    Article  Google Scholar 

  2. Azzalini, D., Rebollo, I. & Tallon-Baudry, C. Visceral signals shape brain dynamics and cognition. Trends Cogn. Sci. 23, 488–509 (2019).

    Article  Google Scholar 

  3. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    Article  Google Scholar 

  4. Bonaz, B. et al. Diseases, disorders, and comorbidities of interoception. Trends Neurosci. 44, 39–51 (2021).

    Article  Google Scholar 

  5. Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).

    Google Scholar 

  6. Quadt, L., Critchley, H. D. & Garfinkel, S. N. The neurobiology of interoception in health and disease. Ann. NY Acad. Sci. 1428, 112–128 (2018).

    Article  Google Scholar 

  7. Chen, W. G. et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3–16 (2021).

    Article  Google Scholar 

  8. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  Google Scholar 

  9. Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    Article  Google Scholar 

  10. Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).

    Article  Google Scholar 

  11. Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).

    Article  Google Scholar 

  12. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  Google Scholar 

  13. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  Google Scholar 

  14. Hamnett, R. et al. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr. Biol. 32, 4483–4492.e5 (2022).

    Article  Google Scholar 

  15. Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article  Google Scholar 

  16. Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2021).

    Article  Google Scholar 

  17. Muthuswamy, J., Saha, R. & Gilletti, A. Tissue micromotion induced stress around brain implants. In 3rd IEEE/EMBS Special Topic Conf. Microtechnol. Med. Biol. 102–103 (IEEE, 2005).

  18. Bampton, P. A. & Dinning, P. G. High resolution colonic manometry — what have we learnt? — A review of the literature 2012. Curr. Gastroenterol. Rep. 15, 328 (2013).

    Article  Google Scholar 

  19. Chen, J. H. et al. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci. Rep. 7, 41436 (2017).

    Article  Google Scholar 

  20. Carlsson, M. et al. Total heart volume variation throughout the cardiac cycle in humans. Am. J. Physiol. Heart Circ. Physiol. 287, 243–250 (2004).

    Article  Google Scholar 

  21. Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  Google Scholar 

  22. Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article  Google Scholar 

  23. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  Google Scholar 

  24. Woods, G. A., Rommelfanger, N. J. & Hong, G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 3, 1087–1113 (2020).

    Article  Google Scholar 

  25. Jastrzebska-Perfect, P. et al. Translational neuroelectronics. Adv. Funct. Mater. 30, 1909165 (2020).

    Article  Google Scholar 

  26. Nicolelis, M. A. L. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003).

    Article  Google Scholar 

  27. Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).

    Article  Google Scholar 

  28. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  Google Scholar 

  29. Ma, L., Wisniewski, D. J., Cea, C., Khodagholy, D. & Gelinas, J. N. High-density, conformable conducting polymer-based implantable neural probes for the developing brain. Adv. Healthc. Mater. 13, e2304164 (2024).

    Article  Google Scholar 

  30. Chen, Z. & Lee, J. B. Biocompatibility of SU-8 and its biomedical device applications. Micromachines 12, 794 (2021).

    Article  Google Scholar 

  31. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  Google Scholar 

  32. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  Google Scholar 

  33. Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2023).

    Article  Google Scholar 

  34. Khatib, M. et al. Spiral neurostring: high-density soft bioelectronic fibers for multimodal sensing and stimulation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560482 (2023).

  35. Baek, C. & Seo, J. M. Investigation of using cyclic olefin copolymer as neural electrode. In Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS) 5129–5132 (IEEE, 2019).

  36. Lu, C. et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3, e1600955 (2017).

    Article  Google Scholar 

  37. Kato, Y. X., Furukawa, S., Samejima, K., Hironaka, N. & Kashino, M. Photosensitive-polyimide based method for fabricating various neural electrode architectures. Front. Neuroeng. 5, 11 (2012).

    Article  Google Scholar 

  38. Ortigoza-Diaz, J. et al. Techniques and considerations in the microfabrication of parylene C microelectromechanical systems. Micromachines 9, 422 (2018).

    Article  Google Scholar 

  39. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  Google Scholar 

  40. Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article  Google Scholar 

  41. Hao, D. et al. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact. Mater. 28, 467–479 (2023).

    Google Scholar 

  42. Gupta, I., Cherwoo, L., Bhatia, R. & Setia, H. Biopolymers: implications and application in the food industry. Biocatal. Agric. Biotechnol. 46, 102534 (2022).

    Article  Google Scholar 

  43. Cho, Y. U., Lim, S. L., Hong, J. H. & Yu, K. J. Transparent neural implantable devices: a comprehensive review of challenges and progress. npj Flexible Electronics 6, 53 (2022).

    Article  Google Scholar 

  44. Tringides, C. M. & Mooney, D. J. Materials for implantable surface electrode arrays: current status and future directions. Adv. Mater. 34, e2107207 (2022).

    Article  Google Scholar 

  45. Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).

    Article  Google Scholar 

  46. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  Google Scholar 

  47. Sridharan, A. & Muthuswamy, J. In Handbook of Neuroengineering (ed. Thakor, N. V.) 1–47 (Springer, 2021).

  48. Trung, T. Q. & Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017).

    Article  Google Scholar 

  49. Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    Article  Google Scholar 

  50. Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317 (2014).

    Article  Google Scholar 

  51. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  Google Scholar 

  52. Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

    Article  Google Scholar 

  53. Won, S. M., Song, E., Reeder, J. T. & Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 181, 115–135 (2020).

    Article  Google Scholar 

  54. Pan, Y., Pan, C., Mao, L. & Yu, P. Neuromodulation with chemicals: opportunities and challenges. Fundam. Res. 5, 55–62 (2024).

    Article  Google Scholar 

  55. Sternson, S. M. & Bleakman, D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell Gene Ther. Insights 6, 1079–1094 (2020).

    Article  Google Scholar 

  56. Lewis, O. et al. Chronic, intermittent convection-enhanced delivery devices. J. Neurosci. Meth. 259, 47–56 (2016).

    Article  Google Scholar 

  57. Uguz, I. et al. A microfluidic ion pump for in vivo drug delivery. Adv. Mater. 29, 1701217 (2017).

    Article  Google Scholar 

  58. Wu, Y. et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat. Commun. 13, 5571 (2022).

    Article  Google Scholar 

  59. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  Google Scholar 

  60. Zheng, X. S., Tan, C., Castagnola, E. & Cui, X. T. Electrode materials for chronic electrical microstimulation. Adv. Healthc. Mater. 10, e2100119 (2021).

    Article  Google Scholar 

  61. Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).

    Article  Google Scholar 

  62. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  Google Scholar 

  63. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  Google Scholar 

  64. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  Google Scholar 

  65. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  Google Scholar 

  66. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  Google Scholar 

  67. Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl Acad. Sci. USA 108, 7595–7600 (2011).

    Article  Google Scholar 

  68. Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).

    Article  Google Scholar 

  69. Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51.e8 (2020).

    Article  Google Scholar 

  70. Kim, K. et al. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 11, 2063 (2020).

    Article  Google Scholar 

  71. Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article  Google Scholar 

  72. Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).

    Article  Google Scholar 

  73. Katada, Y. et al. Highly sensitive visual restoration and protection via ectopic expression of chimeric rhodopsin in mice. iScience 26, 107716 (2023).

    Article  Google Scholar 

  74. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  Google Scholar 

  75. Adrian, E. D. & Moruzzi, G. Impulses in the pyramidal tract. J. Physiol. 97, 153–199 (1939).

    Article  Google Scholar 

  76. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574 (1959).

    Article  Google Scholar 

  77. Strumwasser, F. Long-term recording from single neurons in brain of unrestrained mammals. Science 127, 469–470 (1958).

    Article  Google Scholar 

  78. Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

    Article  Google Scholar 

  79. Driscoll, N. et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018).

    Article  Google Scholar 

  80. Sessolo, M. et al. Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135–2139 (2013).

    Article  Google Scholar 

  81. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    Article  Google Scholar 

  82. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  Google Scholar 

  83. Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  Google Scholar 

  84. Uguz, I. et al. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun. 15, 533 (2024).

    Article  Google Scholar 

  85. Lee, W. et al. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 28, 9722–9728 (2016).

    Article  Google Scholar 

  86. Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Meth. 21, 914–921 (2024).

    Article  Google Scholar 

  87. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Meth. 14, 349–359 (2017).

    Article  Google Scholar 

  88. Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Meth. 17, 1147–1155 (2020).

    Article  Google Scholar 

  89. McClain, J. L., Fried, D. E. & Gulbransen, B. D. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol. Gastroenterol. Hepatol. 1, 631–645 (2015).

    Article  Google Scholar 

  90. Li, Y., Liu, Z., Guo, Q. & Luo, M. Long-term fiber photometry for neuroscience studies. Neurosci. Bull. 35, 425–433 (2019).

    Article  Google Scholar 

  91. Barretto, R. P. J. et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223–229 (2011).

    Article  Google Scholar 

  92. Pollmann, E. H. et al. A subdural CMOS optical device for bidirectional neural interfacing. Nat. Electron. 7, 829–841 (2024).

    Article  Google Scholar 

  93. Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23, 257–274 (2022).

    Article  Google Scholar 

  94. Li, H., Li, C., Yan, Z. Y., Yang, J. & Chen, H. Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J. Neurosci. Meth. 189, 162–168 (2010).

    Article  Google Scholar 

  95. Tan, C., Robbins, E. M., Wu, B. & Cui, X. T. Recent advances in in vivo neurochemical monitoring. Micromachines 12, 208 (2021).

    Article  Google Scholar 

  96. Burns, G., Ali, M. Y. & Howlader, M. M. R. Advanced functional materials for electrochemical dopamine sensors. Trends Anal. Chem. 169, 117367 (2023).

    Article  Google Scholar 

  97. Castagnola, E. et al. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry. Analyst 146, 3955–3970 (2021).

    Article  Google Scholar 

  98. Yang, M., Wang, L., Lu, H. & Dong, Q. Advances in MXene-based electrochemical (bio)sensors for neurotransmitter detection. Micromachines 14, 1088 (2023).

    Article  Google Scholar 

  99. Garwood, I. C. et al. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. Sci. Adv. 9, eadh0974 (2023).

    Article  Google Scholar 

  100. Zhou, A. et al. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat. Biomed. Eng. 3, 15–26 (2019).

    Article  Google Scholar 

  101. Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).

    Article  Google Scholar 

  102. Uguz, I. & Shepard, K. L. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. Sci. Adv. 8, eabq6354 (2022).

    Article  Google Scholar 

  103. Dagdeviren, C. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl Med. 10, eaan2742 (2018).

    Article  Google Scholar 

  104. Proctor, C. M. et al. An electrocorticography device with an integrated microfluidic ion pump for simultaneous neural recording and electrophoretic drug delivery in vivo. Adv. Biosyst. 3, 1800270 (2019).

    Article  Google Scholar 

  105. Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    Article  Google Scholar 

  106. Lu, L. Recent progress on transparent microelectrode-based soft bioelectronic devices for neuroscience and cardiac research. ACS Appl. Bio Mater. 6, 1701–1719 (2023).

    Article  Google Scholar 

  107. Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article  Google Scholar 

  108. Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat. Methods 12, 1157–1162 (2015).

    Article  Google Scholar 

  109. Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2023).

    Article  Google Scholar 

  110. Chaea, U. et al. A neural probe for concurrent real-time measurement of multiple neurochemicals with electrophysiology in multiple brain regions in vivo. Proc. Natl Acad. Sci. USA 120, e2219231120 (2017).

    Article  Google Scholar 

  111. Kim, M. K., Leong, J. C., Jo, Y., Kook, G. & Lee, H. J. Multimodal neural probes with small form factor based on dual-side fabrication. Adv. Mater. Technol. 8, 2200692 (2023).

    Article  Google Scholar 

  112. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  113. Frank, J. A. et al. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem. Neurosci. 11, 3802–3813 (2020).

    Article  Google Scholar 

  114. Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 3, 655–669 (2019).

    Article  Google Scholar 

  115. Jeong, J.-W., Mccall, J. G., Huang, Y., Bruchas, M. R. & Rogers, J. A. Wireless optofluidic systems for programmable in vivo pharmacology optogenetics. Cell 162, 662–674 (2015).

    Article  Google Scholar 

  116. Tchoe, Y. et al. An electroencephalogram microdisplay to visualize neuronal activity on the brain surface. Sci. Transl Med. 16, eadj7257 (2024).

    Article  Google Scholar 

  117. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).

    Article  Google Scholar 

  118. Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898–908 (2019).

    Article  Google Scholar 

  119. Miele, V. J., Panjabi, M. M. & Benzel, E. C. Anatomy and biomechanics of the spinal column and cord. Handb. Clin. Neurol. 109, 31–43 (2012).

    Article  Google Scholar 

  120. Milekovic, T. et al. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson’s disease. Nat. Med. 29, 2854–2865 (2023).

    Article  Google Scholar 

  121. Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol. 40, 198–208 (2021).

    Article  Google Scholar 

  122. Wu, Y. et al. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Cell Rep. 43, 114199 (2024).

    Article  Google Scholar 

  123. Kelly, M. J., Breathnach, C., Tracey, K. J. & Donnelly, S. C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 3, 100696 (2022).

    Article  Google Scholar 

  124. Wheless, J. W., Gienapp, A. J. & Ryvlin, P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 88S, 2–10 (2018).

    Article  Google Scholar 

  125. Sokal, D. M. et al. Splenic nerve neuromodulation reduces inflammation and promotes resolution in chronically implanted pigs. Front. Immunol. 12, 649786 (2021).

    Article  Google Scholar 

  126. Afra, P., Adamolekun, B., Aydemir, S. & Watson, G. D. R. Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy. Front. Med. Technol. 3, 696543 (2021).

    Article  Google Scholar 

  127. Liu, X. et al. Fatigue-resistant hydrogel optical fiber enables peripheral nerve optogenetics during locomotion. Nat. Meth. 20, 1802 (2023).

    Article  Google Scholar 

  128. Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article  Google Scholar 

  129. Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article  Google Scholar 

  130. Kilgore, K. L. & Bhadra, N. Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42, 394–406 (2004).

    Article  Google Scholar 

  131. Lee, G. et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci. Adv. 8, 9169 (2022).

    Article  Google Scholar 

  132. Zaglia, T. & Mongillo, M. Cardiac sympathetic innervation, from a different point of (re)view. J. Physiol. 595, 3919 (2017).

    Article  Google Scholar 

  133. Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure. Circulation 118, 863–871 (2008).

    Article  Google Scholar 

  134. Egido, J. et al. Animal models of cardiovascular diseases. J. Biomed. Biotechnol. 16, 497841 (2011).

    Google Scholar 

  135. Tian, X. L. & Wang, Q. K. Generation of transgenic mice for cardiovascular research. Meth. Mol. Med. 129, 69–81 (2006).

    Google Scholar 

  136. Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    Article  Google Scholar 

  137. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  138. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  Google Scholar 

  139. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 38 (2017).

    Article  Google Scholar 

  140. Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2023).

    Article  Google Scholar 

  141. Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article  Google Scholar 

  142. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article  Google Scholar 

  143. Purves, D. et al. (eds) Autonomic regulation of the bladder. In Neuroscience 2nd edn (Sinauer Associates, 2001).

  144. Latini, J. M. & Giannantoni, A. Pharmacotherapy of overactive bladder: epidemiology and pathophysiology of overactive bladder. Expert Opin. Pharmacother. 12, 1017–1027 (2011).

    Article  Google Scholar 

  145. Redshaw, J. D. et al. Protocol for a randomized clinical trial investigating early sacral nerve stimulation as an adjunct to standard neurogenic bladder management following acute spinal cord injury. BMC Urol. 18, 72 (2018).

    Article  Google Scholar 

  146. Jang, T. M. et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Sci. Adv. 6, 9675–9686 (2020).

    Article  Google Scholar 

  147. Nager, C. W. et al. A randomized trial of urodynamic testing before stress-incontinence surgery. N. Engl. J. Med. 366, 1987–1997 (2012).

    Article  Google Scholar 

  148. Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).

    Article  Google Scholar 

  149. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    Article  Google Scholar 

  150. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  Google Scholar 

  151. Williams, E. K. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  Google Scholar 

  152. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019).

    Article  Google Scholar 

  153. Brierley, S. M., Hibberd, T. J. & Spencer, N. J. Spinal afferent innervation of the colon and rectum. Front. Cell Neurosci. 12, 413546 (2018).

    Article  Google Scholar 

  154. Sorensen, L. et al. Gut analysis toolbox: automating quantitative analysis of enteric neurons. J. Cell Sci. 137, jcs261950 (2024).

    Article  Google Scholar 

  155. Buchanan, K. L. et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25, 191–200 (2022).

    Article  Google Scholar 

  156. Kim, W. S. et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat. Commun. 12, 157 (2021).

    Article  Google Scholar 

  157. Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).

    Article  Google Scholar 

  158. Srinivasan, S. S. et al. An ingestible self-propelling device for intestinal reanimation. Sci. Robot. 9, 8170 (2024).

    Article  Google Scholar 

  159. Mimee, M. et al. An ingestible bacterial–electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  Google Scholar 

  160. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  Google Scholar 

  161. Abramson, A. et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat. Biotechnol. 40, 103–109 (2021).

    Article  Google Scholar 

  162. Musk, E. & Neuralink. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  163. Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    Article  Google Scholar 

  164. Soriano, J. E. et al. Longitudinal interrogation of sympathetic neural circuits and hemodynamics in preclinical models. Nat. Protoc. 18, 340–373 (2022).

    Article  Google Scholar 

  165. Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

    Article  Google Scholar 

  166. Dong, C. et al. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. Annu. Rev. Neurosci. 45, 273–294 (2022).

    Article  Google Scholar 

  167. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    Article  Google Scholar 

  168. Yarmolinsky, D. A. et al. Selective modification of ascending spinal outputs in acute and neuropathic pain states. Preprint at bioRxiv https://doi.org/10.1101/2024.04.08.588581 (2024).

  169. Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Commun. 3, 1054 (2012).

    Article  Google Scholar 

  170. Huerta, T. S. et al. Calcium imaging and analysis of the jugular-nodose ganglia enables identification of distinct vagal sensory neuron subsets. J. Neural Eng. 20, 026014 (2023).

    Article  Google Scholar 

  171. Grajales-Reyes, J. G. et al. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat. Protoc. 16, 3072–3088 (2021).

    Article  Google Scholar 

  172. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    Article  Google Scholar 

  173. Nunès, A. et al. Measurements and morphometric landmarks of the human spinal cord: a cadaveric study. Clin. Anat. 36, 631–640 (2023).

    Article  Google Scholar 

  174. Coillot, C. et al. Signal modeling of an MRI ribbon solenoid coil dedicated to spinal cord injury investigations. J. Sens. Sens. Syst. 5, 137–145 (2016).

    Article  Google Scholar 

  175. Mohammadi, S. et al. Study of the normal heart size in Northwest part of Iranian population: a cadaveric study. J. Cardiovasc. Thorac. Res. 8, 119–125 (2016).

    Article  Google Scholar 

  176. Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).

    Article  Google Scholar 

  177. Miller, L. & Penta, R. Investigating the effects of microstructural changes induced by myocardial infarction on the elastic parameters of the heart. Biomech. Model. Mechanobiol. 22, 1019–1033 (2023).

    Article  Google Scholar 

  178. Gargiulo, S. et al. PET/CT imaging in mouse models of myocardial ischemia. J. Biomed. Biotechnol. 2012, 541872 (2012).

    Article  Google Scholar 

  179. Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380 (1995).

    Article  Google Scholar 

  180. Lim, Y. J., Deo, D., Singh, T. P., Jones, D. B. & De, S. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg. Endosc. 23, 1298–1307 (2009).

    Article  Google Scholar 

  181. DeSesso, J. M. & Jacobson, C. F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol. 39, 209–228 (2001).

    Article  Google Scholar 

  182. Vdoviaková, K. et al. Surgical anatomy of the gastrointestinal tract and its vasculature in the laboratory rat. Gastroenterol. Res. Pract. 2016, 2632368 (2016).

    Article  Google Scholar 

  183. Treuting, P. M., Dintzis, S. M. & Montine, K. S. Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas 2nd edn (Elsevier, 2017).

  184. Ruetten, H. & Vezina, C. M. Relevance of dog as an animal model for urologic diseases. Prog. Mol. Biol. Transl. Sci. 189, 35–65 (2022).

    Article  Google Scholar 

  185. Wnorowska, U. et al. Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. Sci. Rep. 12, 19164 (2022).

    Article  Google Scholar 

  186. Gabella, G. & Uvelius, B. Urinary bladder of rat: fine structure of normal and hypertrophic musculature. Cell Tissue Res. 262, 67–79 (1990).

    Article  Google Scholar 

  187. Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).

    Article  Google Scholar 

  188. Park, S. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).

    Article  Google Scholar 

  189. Bilodeau, G. et al. A wireless electro-optic platform for multimodal electrophysiology and optogenetics in freely moving rodents. Front. Neurosci. 15, 718478 (2021).

    Article  Google Scholar 

  190. Wang, Q. et al. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat. Commun. 15, 4017 (2024).

    Article  Google Scholar 

  191. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  Google Scholar 

  192. Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).

    Article  Google Scholar 

  193. Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643.e5 (2020).

    Article  Google Scholar 

  194. Park, J. et al. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. Sci. Adv. 9, eadi8918 (2023).

    Article  Google Scholar 

  195. Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).

    Article  Google Scholar 

  196. Cea, C. et al. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023).

    Article  Google Scholar 

  197. Bennion, N. J. et al. In vivo measurement of human brain material properties under quasi-static loading. J. R. Soc. Interface 19, 20220557 (2022).

    Article  Google Scholar 

  198. Beltrán, S. et al. Spinal cord motion and CSF flow in the cervical spine of 70 healthy participants. NMR Biomed. 37, e5013 (2023).

    Article  Google Scholar 

  199. Shechter, G., Ozturk, C., Resar, J. R. & McVeigh, E. R. Respiratory motion of the heart from free breathing coronary angiograms. IEEE Trans. Med. Imaging 23, 1046–1056 (2004).

    Article  Google Scholar 

  200. Liang, B. et al. Quantitative analysis of the impact of respiratory state on the heartbeat-induced movements of the heart and its substructures. Radiat. Oncol. 19, 18 (2024).

    Article  Google Scholar 

  201. Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 4, 308–319 (2021).

    Article  Google Scholar 

  202. Sarna, S. K. Colonic Motility: From Bench Side to Bedside (Morgan & Claypool Life Sciences, 2010).

  203. Haylen, B. T. The empty bladder. Int. Urogynecol. J. 18, 237–239 (2007).

    Article  Google Scholar 

  204. Ozturk, N. K. & Kavakli, A. S. Use of bladder volume measurement assessed with ultrasound to predict postoperative urinary retention. North Clin. Istanb. 3, 209 (2016).

    Google Scholar 

  205. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021).

    Article  Google Scholar 

  206. Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).

    Article  Google Scholar 

  207. Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article  Google Scholar 

  208. He, Z. et al. A wireless powered implantable and flexible neural recording and stimulating system based on NFC protocol. In Proc. IEEE Int. Conf. Integr. Circuits Technol. Appl. (ICTA) 100–101 (IEEE, 2018).

  209. Zhang, Y. et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013).

    Article  Google Scholar 

  210. Ji, B. et al. Stretchable parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J. Materiomics 6, 330–338 (2020).

    Article  Google Scholar 

  211. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  Google Scholar 

  212. Birmingham, K. et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399–400 (2014).

    Article  Google Scholar 

  213. Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain–computer interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).

    Article  Google Scholar 

  214. Tanskanen, J. M. A., Ahtiainen, A. & Hyttinen, J. A. K. Toward closed-loop electrical stimulation of neuronal systems: a review. Bioelectricity 2, 328 (2020).

    Article  Google Scholar 

  215. Yvert, B. & Fourneret, E. Neuromorphic brain interfacing and the challenge of human subjectivation. Nat. Rev. Bioeng. 1, 380–381 (2023).

    Article  Google Scholar 

  216. Schalk, G. et al. Translation of neurotechnologies. Nat. Rev. Bioeng. 2, 637–652 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Neurological Disorders and Stroke (grant R01-NS115025 to P.A.), the Pioneer Award from the National Institutes of Health and National Institute for Complementary and Integrative Health (grant DP1-AT011991 to P.A.) and the K. Lisa Yang Brain–Body Center at MIT (to P.A.). The authors thank J. Beckham, T. Cannon, P. Maretich and S. Selvaraji at the Massachusetts Institute of Technology for their valuable feedback on all aspects of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and C.C. contributed equally to this manuscript.

Corresponding author

Correspondence to Polina Anikeeva.

Ethics declarations

Competing interests

P.A. is a co-founder of and has a financial interest in NeuroBionics. A.S. and C.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Mark Andermann, who co-reviewed with Crystian Massengil; and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahasrabudhe, A., Cea, C. & Anikeeva, P. Multifunctional bioelectronics for brain–body circuits. Nat Rev Bioeng 3, 465–484 (2025). https://doi.org/10.1038/s44222-025-00289-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00289-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing