Abstract
Organisms possess a diversity of colours to promote their survival and reproductive success, using various mechanisms, including pigmentation, bioluminescence and structural colouration. These colouration strategies serve crucial ecological functions, such as crypsis for camouflage, aposematism for predator deterrence and vibrant displays that attract pollinators and potential mates. In particular, the ability to dynamically alter colour in response to environmental stimuli allows organisms to rapidly modify their appearance for communication, predation and defence. Drawing inspiration from these natural phenomena, dynamic colour change systems can be designed for applications in optics, sensors and biomedicine. In this Review, we discuss the biological mechanisms driving natural colouration and dynamic colour change, outlining how these can be recreated in engineered systems using structured materials, such as photonic crystals, liquid crystals, metasurfaces and thin films. We highlight how artificial dynamic colour systems can be designed to respond to different stimuli, such as mechanical, electrical, chemical, thermal and magnetic stimuli, examining their application in various fields, including in biomedical devices, sensing and displays.
Key points
-
Organisms have evolved diverse colouration strategies, using pigments, bioluminescence and structural colouration to enhance survival and reproductive success.
-
Colourations serve crucial functions, such as camouflage, predator deterrence and attraction of pollinators or mates.
-
Dynamic colour change allows the rapid adaptation to environmental stimuli.
-
Artificial dynamic colour change systems can be designed for applications in optics, sensing and biomedicine.
-
Further exploration of the biological mechanisms underlying dynamic colour change will be needed to engineer dynamic colouration for various applications.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24, 425–446 (2008).
Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).
Endler, J. A. & Mappes, J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532–547 (2004).
Duarte, R. C., Flores, A. A. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160342 (2017).
Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R. & Akiyama, T. (eds.) Pigments, Pigment Cells and Pigment Patterns (Springer Singapore, 2021).
Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford Univ. Press, 2019).
Gärtner, M. Historical pigments, dyes and binders. Phys. Sci. Rev. 6, 419–476 (2021).
Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).
Wang, D. et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023).
Feng, L., Wang, F., Luo, H. & Qiu, B. Review of recent advancements in the biomimicry of structural colors. Dye Pigment 210, 111019 (2023).
Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).
Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).
Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006).
Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).
McGraw, K. J. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim. Behav. 69, 757–764 (2005).
Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536 (2017).
Figon, F. & Casas, J. Morphological and physiological colour changes in the animal kingdom. eLS https://doi.org/10.1002/9780470015902.a0028065 (2018).
Cumming, R. T., Zhu, K., Petracca, J. & Wurtzel, E. T. Analysis of plant-derived carotenoids in camouflaging stick and leaf insects (Phasmatodea). Methods Enzymol. 670, 499–524 (2022).
Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179–186 (2007).
Sugimoto, M. Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc. Res. Tech. 58, 496–503 (2002).
Wilson, T. & Hastings, J. W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).
Zimmer, M. Bioluminescence: Nature and Science at Work (Twenty-First Century Books, 2015).
Syed, A. J. & Anderson, J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 50, 5668–5705 (2021).
Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 19, 666–679 (2021).
Parker, A. R. 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2, R15 (2000).
Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl Acad. Sci. USA 100, 12576–12578 (2003).
Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).
Tran-Ly, A. N., Reyes, C., Schwarze, F. W. & Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol. 36, 1–9 (2020).
Caldas, M. et al. Melanin nanoparticles as a promising tool for biomedical applications — a review. Acta Biomater. 105, 26–43 (2020).
Vatankhah-Varnosfaderani, M. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359, 1509–1513 (2018).
Alegbe, E. O. & Uthman, T. O. A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon 10, e33646 (2024).
Xuan, Z. et al. Artificial structural colors and applications. Innovation 2, 100081 (2021).
Fu, Y., Tippets, C. A., Donev, E. U. & Lopez, R. Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016).
El-Naggar, N. E.-A. & Saber, W. I. Natural melanin: current trends, and future approaches, with especial reference to microbial source. Polymers 14, 1339 (2022).
Guo, L. et al. Recent advances and progress on melanin: from source to application. Int. J. Mol. Sci. 24, 4360 (2023).
Song, W. et al. Image‐guided photothermal and immune therapy of tumors via melanin‐producing genetically engineered bacteria. Small 20, 2305764 (2024).
Yang, P. et al. Tailoring synthetic melanin nanoparticles for enhanced photothermal therapy. ACS Appl. Mater. Interfaces 11, 42671–42679 (2019).
Yue, Y. & Zhao, X. Melanin-like nanomedicine in photothermal therapy applications. Int. J. Mol. Sci. 22, 399 (2021).
Pakdel, E. et al. Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 (2022).
Wang, Y. et al. A novel UV-shielding and transparent polymer film: when bioinspired dopamine–melanin hollow nanoparticles join polymers. ACS Appl. Mater. Interfaces 9, 36281–36289 (2017).
Guin, T., Cho, J. H., Xiang, F., Ellison, C. J. & Grunlan, J. C. Water-based melanin multilayer thin films with broadband UV absorption. ACS Macro Lett. 4, 335–338 (2015).
Solano, F. Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules 25, 1537 (2020).
Love, A. C. & Prescher, J. A. Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem. Biol. 27, 904–920 (2020).
Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).
Yoon, S. et al. Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater. Res. 26, 57 (2022).
Yeh, H.-W. & Ai, H.-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. 12, 129–150 (2019).
Michielsen, C. M., van Aalen, E. A. & Merkx, M. Ratiometric bioluminescent Zinc sensor proteins to quantify serum and intracellular free Zn2+. ACS Chem. Biol. 17, 1567–1576 (2022).
Vukusic, P., Sambles, J., Lawrence, C. & Wootton, R. Quantified interference and diffraction in single morpho butterfly scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 1403–1411 (1999).
Park, J.-e et al. Multicolor conjugated polymer thin films with tunable responsivity to oxidative and reductive environments. ACS Appl. Mater. Interfaces 15, 51753–51762 (2023).
Chung, K. et al. Flexible, angle‐independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012).
Wang, H., Zheng, Z., Ji, C. & Guo, L. J. Automated multi-layer optical design via deep reinforcement learning. Mach. Learn. Sci. Technol. 2, 025013 (2021).
Akinoglu, E. M. et al. Concealed structural colors uncovered by light scattering. Adv. Opt. Mater. 8, 2001307 (2020).
Cho, D. H., Lee, W. J., Kim, M. E., Shin, B. & Chung, Y. D. Color tuning in Cu(In,Ga)Se2 thin‐film solar cells by controlling optical interference in transparent front layers. Prog. Photovolt. Res. Appl. 28, 798–807 (2020).
Zhang, Q. et al. Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 34, 2201348 (2022).
Zhong, J. et al. Assembly of guanine crystals as a low-polarizing broadband multilayer reflector in a spider, Phoroncidia rubroargentea. ACS Appl. Mater. Interfaces 14, 32982–32993 (2022).
Abdelraouf, O. A. et al. All‐optical switching of structural color with a Fabry–Pérot cavity. Adv. Photon. Res. 4, 2300209 (2023).
Kim, Y.-G., Quan, Y.-J., Kim, M.-S., Cho, Y. & Ahn, S.-H. Lithography-free and Highly angle sensitive structural coloration using Fabry–Perot resonance of tin. Int. J. Precis. Eng. Manuf. Green Technol. 8, 997–1006 (2021).
Zeitner, U. D. et al. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 109, 789–796 (2012).
Sloyan, K. et al. A review of focused ion beam applications in optical fibers. Nanotechnology 32, 472004 (2021).
Buhl, J., Yoo, D., Köpke, M. & Gerken, M. Two-dimensional nanograting fabrication by multistep nanoimprint lithography and ion beam etching. Nanomanufacturing 1, 39–48 (2021).
Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater. 34, 2108128 (2022).
Quan, Y.-J., Kim, Y.-G., Kim, M.-S., Min, S.-H. & Ahn, S.-H. Stretchable biaxial and shear strain sensors using diffractive structural colors. ACS Nano 14, 5392–5399 (2020).
Shin, Y., Zhou, Z., Halder, S., Zhang, X. & Yang, D.-K. Reconfigurable liquid crystal diffraction grating based on flexoelectric effect. J. Mol. Liq. 357, 119150 (2022).
Oscurato, S. L. et al. Large‐scale multiplexed azopolymer gratings with engineered diffraction behavior. Adv. Mater. Interfaces 8, 2101375 (2021).
Choi, J. et al. Hydrocipher: bioinspired dynamic structural color‐based cryptographic surface. Adv. Opt. Mater. 8, 1901259 (2020).
Wu, P., Wang, J. & Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 7, 338–365 (2020).
Zhang, D. et al. Inspiration from butterfly and moth wing scales: characterization, modeling, and fabrication. Prog. Mater. Sci. 68, 67–96 (2015).
Jancik, D., Mašlá, M., Shiojiri, S. & Shiojiri, M. Photonic crystal structure of wing scales in Sasakia charonda butterflies. Mater. Trans. 51, 202–208 (2010).
Kim, J. B., Lee, S. Y., Lee, J. M. & Kim, S.-H. Designing structural-color patterns composed of colloidal arrays. ACS Appl. Mater. Interfaces 11, 14485–14509 (2019).
Kang, D. D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2019).
Cai, Z. et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50, 5898–5951 (2021).
Kim, T. et al. Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. Nano Energy 92, 106688 (2022).
Zhu, K. et al. Recent advances in photonic crystal with unique structural colors: a review. J. Mater. Sci. Technol. 141, 78–99 (2023).
Hu, Y. et al. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. Mater. Horiz. 10, 3895–3928 (2023).
Zhang, P., de Haan, L. T., Debije, M. G. & Schenning, A. P. Liquid crystal-based structural color actuators. Light Sci. Appl. 11, 248 (2022).
Balenko, N., Shibaev, V. & Bobrovsky, A. Mechanosensitive polymer-dispersed cholesteric liquid crystal composites based on various polymer matrices. Polymer 281, 126119 (2023).
Kao, T.-H. et al. Fabrication of polymer/cholesteric liquid crystal films and fibers using the nonsolvent and phase separation method. Langmuir 40, 14166–14172 (2024).
Gardymova, A. P. et al. Polymer dispersed cholesteric liquid crystals with a toroidal director configuration under an electric field. Polymers 13, 732 (2021).
Froyen, A. A., Debije, M. G. & Schenning, A. P. Polymer dispersed cholesteric liquid crystal mixtures for optical time–temperature integrators. Adv. Opt. Mater. 10, 2201648 (2022).
Choi, S. H. et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 23, 834–843 (2024).
Geng, Y., Kizhakidathazhath, R. & Lagerwall, J. P. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 21, 1441–1447 (2022).
Geng, Y. & Lagerwall, J. P. Multiresponsive cylindrically symmetric cholesteric liquid crystal elastomer fibers templated by tubular confinement. Adv. Sci. 10, 2301414 (2023).
Nam, S., Wang, D., Kwon, C., Han, S. H. & Choi, S. S. Biomimetic multicolor‐separating photonic skin using electrically stretchable chiral photonic elastomers. Adv. Mater. 35, 2302456 (2023).
Sol, J. A. et al. Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Adv. Mater. 33, 2103309 (2021).
Choi, J. et al. Direct‐ink‐written cholesteric liquid crystal elastomer with programmable mechanochromic response. Adv. Funct. Mater. 34, 2310658 (2024).
Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photon. 17, 26–35 (2023).
Vilayphone, K. et al. Design rules for structural colors in all-dielectric metasurfaces: from individual resonators to collective resonances and color multiplexing. ACS Photon. 11, 470–483 (2024).
Li, L. et al. Optical metasurfaces for multiplex high-performance grating-type structural colors. Opt. Lett. 48, 1686–1689 (2023).
Baek, K., Kim, Y., Mohd-Noor, S. & Hyun, J. K. Mie resonant structural colors. ACS Appl. Mater. Interfaces 12, 5300–5318 (2020).
Papoff, F. & Hourahine, B. Geometrical Mie theory for resonances in nanoparticles of any shape. Opt. Expr. 19, 21432–21444 (2011).
Liu, T., Xu, R., Yu, P., Wang, Z. & Takahara, J. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 9, 1115–1137 (2020).
Shang, G. et al. Photonic glass for high contrast structural color. Sci. Rep. 8, 7804 (2018).
Zhao, Y. et al. Multicolor electrochromic metamaterials based on Mie scatterer nanospheres. Adv. Opt. Mater. 12, 2400838 (2024).
Cheng, T. et al. Dynamic tuning of optical absorbance and structural color of VO2-based metasurface. Nanophotonics 12, 3121–3133 (2023).
Lu, L. et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano 15, 19722–19732 (2021).
Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl. 11, 118 (2022).
Wang, X. et al. Structural colors by synergistic birefringence and surface plasmon resonance. ACS Nano 14, 16832–16839 (2020).
Sharma, M., Hendler, N. & Ellenbogen, T. Electrically switchable color tags based on active liquid‐crystal plasmonic metasurface platform. Adv. Opt. Mater. 8, 1901182 (2020).
Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 1–14 (2016).
Song, M. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023).
Li, R. et al. Dynamic spectral modulation enabled by conductive polymer-integrated plasmonic nanodisk-hole arrays. ACS Appl. Mater. Interfaces 15, 57486–57495 (2023).
Gao, L., Li, X., Liu, D., Wang, L. & Yu, Z. A bidirectional deep neural network for accurate silicon color design. Adv. Mater. 31, 1905467 (2019).
Xiong, B. et al. Realizing colorful holographic mimicry by metasurfaces. Adv. Mater. 33, 2005864 (2021).
Sarkar, S. et al. Enhanced figure of merit via hybridized guided‐mode resonances in 2D‐metallic photonic crystal slabs. Adv. Opt. Mater. 10, 2200954 (2022).
Khaidarov, E. et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci. Rep. 12, 14044 (2022).
Horák, M. et al. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 8, 9640 (2018).
Abasahl, B., Santschi, C., Raziman, T. & Martin, O. J. Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. Nanotechnology 32, 475202 (2021).
Driencourt, L. et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photon. 7, 444–453 (2019).
Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).
Zheng, M., Shen, Y., Zheng, L., She, X. & Jin, C. Transfer-printing hydrogel-based platform for moisture-driven dynamic display and optical anti-counterfeiting. ACS Appl. Mater. Interfaces 15, 45239–45248 (2023).
Chen, Z. et al. Cardiomyocytes‐actuated morpho butterfly wings. Adv. Mater. 31, 1805431 (2019).
Lee, G. H. et al. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11, 11350–11357 (2017).
Li, X., Liu, J. & Zhang, X. Pressure/temperature dual‐responsive cellulose nanocrystal hydrogels for on‐demand schemochrome patterning. Adv. Funct. Mater. 33, 2306208 (2023).
Wu, K. et al. Reversible mechanochromisms via manipulating surface wrinkling. Nano Lett. 22, 2261–2269 (2022).
Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat. Mater. 21, 1014–1018 (2022).
Kim, S.-U. et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21, 41–46 (2022).
Li, C. et al. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13, 3914 (2022).
Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).
Yang, C. et al. 3D‐printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets. Adv. Mater. 33, 2006361 (2021).
Pasparakis, G. & Tsitsilianis, C. LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications. Polymer 211, 123146 (2020).
Jin, Y. et al. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019).
Panák, O., Držková, M. & Kaplanová, M. Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature. Dye Pigment 120, 279–287 (2015).
Tzeng, S.-Y., Chen, C.-N. & Tzeng, Y. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst. 37, 1221–1224 (2010).
Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A. & Asher, S. A. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 14, 1249–1256 (2002).
Ge, J., Hu, Y., Zhang, T., Huynh, T. & Yin, Y. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24, 3671–3680 (2008).
Ge, J. & Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 20, 3485–3491 (2008).
Wang, M., Nie, C., Liu, J. & Wu, S. Organic–inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat. Commun. 14, 1000 (2023).
Zhang, X. et al. Dynamic tuning of optical transmittance of 1D colloidal assemblies of magnetic nanostructures. Adv. Intell. Syst. 1, 1900099 (2019).
Li, H. et al. Single‐stimulus‐induced modulation of multiple optical properties. Adv. Mater. 31, 1900388 (2019).
Li, Z. et al. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett. 19, 6673–6680 (2019).
Liu, Y. et al. Polyphenol‐mediated synthesis of superparamagnetic magnetite nanoclusters for highly stable magnetically responsive photonic crystals. Adv. Funct. Mater. 33, 2303470 (2023).
Kashiwagi, H., Kashiwagi, A. & Iwasaka, M. Effect of magnetic fields on green color formation in frog skin. AIP Adv. 7, 056426 (2017).
Frka‐Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29, 1701469 (2017).
Lee, S. Y., Choi, J., Jeong, J. R., Shin, J. H. & Kim, S. H. Magnetoresponsive photonic microspheres with structural color gradient. Adv. Mater. 29, 1605450 (2017).
Jiang, S. et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio‐inspired assimilatory coloration. Adv. Mater. 31, 1807507 (2019).
Heikenfeld, J., Drzaic, P., Yeo, J. S. & Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Disp. 19, 129–156 (2011).
Bao, G., Yu, W., Fu, Q. & Ge, J. Low-voltage and wide-tuning-range SiO2/aniline electrically responsive photonic crystal fabricated by solvent assisted charge separation. J. Mater. Chem. C 11, 3513–3520 (2023).
Yan, Z. et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021).
Phillips, A. T., Schlafmann, K. R., Fowler, H. E. & White, T. J. Electrically tunable, fully solid reflective optical elements. Adv. Opt. Mater. 10, 2201457 (2022).
Moscardi, L. et al. Electro-responsivity in electrolyte-free and solution processed Bragg stacks. J. Mater. Chem. C 8, 13019–13024 (2020).
Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).
Rossi, S. et al. Dynamically tuneable reflective structural coloration with electroactive conducting polymer nanocavities. Adv. Mater. 33, 2105004 (2021).
Kim, J. B., Kim, J. W., Kim, M. & Kim, S. H. Dual‐colored Janus microspheres with photonic and plasmonic faces. Small 18, 2201437 (2022).
Yao, Y. et al. WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020).
Li, Y. et al. The green box: selenoviologen-based tetracationic cyclophane for electrochromism, host–guest interactions, and visible-light photocatalysis. J. Am. Chem. Soc. 145, 9118–9128 (2023).
Zhang, M. et al. Theoretical investigation of electrochromic mechanism in D–A conjugated polymers in visible and infrared bands. RSC Adv. 13, 11337–11345 (2023).
Ganter, P., Szendrei, K. & Lotsch, B. V. Towards the nanosheet‐based photonic nose: vapor recognition and trace water sensing with antimony phosphate thin film devices. Adv. Mater. 28, 7436–7442 (2016).
Nguyen, T. D., Peres, B. U., Carvalho, R. M. & MacLachlan, M. J. Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies. Adv. Funct. Mater. 26, 2875–2881 (2016).
Yang, D., Ouyang, C., Zhang, Y., Ma, D. & Huang, S. Rapid fabrication of alcohol responsive photonic prints with changeable color contrasts for anti‐counterfeiting application. Adv. Mater. Interfaces 8, 2001905 (2021).
Potyrailo, R. A. et al. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by morpho butterflies. Nat. Commun. 6, 7959 (2015).
Li, J., Chen, Y., Hu, Y., Duan, H. & Liu, N. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020).
Fei, X. et al. Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl. Mater. Interfaces 8, 27091–27098 (2016).
Alizadeh-Sani, M. et al. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 166, 741–750 (2021).
Ezati, P., Rhim, J.-W., Moradi, M., Tajik, H. & Molaei, R. CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films. Carbohydr. Polym. 246, 116614 (2020).
Ma, Q., Du, L. & Wang, L. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sens. Actuators B Chem. 244, 759–766 (2017).
Nucara, L. et al. Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9, 4818–4827 (2017).
Moirangthem, M., Arts, R., Merkx, M. & Schenning, A. P. An optical sensor based on a photonic polymer film to detect calcium in serum. Adv. Funct. Mater. 26, 1154–1160 (2016).
Yao, Z. Q. et al. Dynamic full‐color tuning of organic chromophore in a multi‐stimuli‐responsive 2D flexible MOF. Angew. Chem. Int. Ed. 61, e202202073 (2022).
Yang, S.-L. et al. Positive cooperative protonation of a metal–organic framework: pH-responsive fluorescence and proton conduction. J. Am. Chem. Soc. 143, 8838–8848 (2021).
Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).
Lan, R. et al. Humidity‐induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks. Adv. Funct. Mater. 31, 2106419 (2021).
Parton, T. G. et al. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 13, 2657 (2022).
Droguet, B. E. et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater. 21, 352–358 (2022).
Kohri, M. Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci. Technol. Adv. Mater. 21, 833–848 (2020).
Xiao, M., Shawkey, M. D. & Dhinojwala, A. Bioinspired melanin‐based optically active materials. Adv. Opt. Mater. 8, 2000932 (2020).
Belmonte, A. et al. Dual light and temperature responsive micrometer‐sized structural color actuators. Small 16, 1905219 (2020).
Wang, H., Liu, Y., Chen, Z., Sun, L. & Zhao, Y. Anisotropic structural color particles from colloidal phase separation. Sci. Adv. 6, eaay1438 (2020).
Zhang, W. et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 12, 112 (2021).
Lee, C. E. et al. Low‐powered E‐switching block copolymer structural color display with organohydrogel humidity controller. Adv. Mater. Technol. 7, 2200385 (2022).
Wu, Y., Wang, Y., Zhang, S. & Wu, S. Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 15, 15720–15729 (2021).
Prescher, J. A. & Contag, C. H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14, 80–89 (2010).
Su, Y. et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat. Methods 17, 852–860 (2020).
Evans, M. S. et al. A synthetic luciferin improves bioluminescence imaging in live mice. Nat. Methods 11, 393–395 (2014).
Tian, X. et al. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice. Nat. Commun. 13, 3967 (2022).
Chen, W. et al. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138, 5886–5894 (2013).
Li, Q. et al. Imaging cellular forces with photonic crystals. Nat. Commun. 14, 7369 (2023).
Fu, F., Shang, L., Chen, Z., Yu, Y. & Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018).
Kong, B. et al. Structural color medical patch with surface dual‐properties of wet bioadhesion and slipperiness. Adv. Sci. 9, 2203096 (2022).
Chen, C. et al. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact. Mater. 15, 194–202 (2022).
Wang, Y., Zhang, X., Chen, G., Lu, M. & Zhao, Y. Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 6, 1555–1568 (2023).
Chen, F. et al. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci. Adv. 8, eabn5882 (2022).
Zhang, J. et al. The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C 4, 2127–2133 (2016).
Franklin, D. et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 6, 7337 (2015).
Zhu, X., Yan, W., Levy, U., Mortensen, N. A. & Kristensen, A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017).
Su, M. et al. A 3D self‐shaping strategy for nanoresolution multicomponent architectures. Adv. Mater. 30, 1703963 (2018).
Li, W., Wang, Y., Li, M., Garbarini, L. P. & Omenetto, F. G. Inkjet printing of patterned, multispectral, and biocompatible photonic crystals. Adv. Mater. 31, 1901036 (2019).
Duempelmann, L., Luu-Dinh, A., Gallinet, B. & Novotny, L. Four-fold color filter based on plasmonic phase retarder. ACS Photon. 3, 190–196 (2016).
Kang, H. S. et al. Printable and rewritable full block copolymer structural color. Adv. Mater. 29, 1700084 (2017).
Sahu, R. R. et al. Single-step fabrication of liquid gallium nanoparticles via capillary interaction for dynamic structural colours. Nat. Nanotechnol. 19, 766–774 (2024).
Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).
Li, D. et al. Rapid, linear, and highly reliable structural-color switching enabled by thermal regulation of chiral nematic mesophases. Chem. Eng. J. 453, 139835 (2023).
Kim, D. H. et al. Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor. Adv. Funct. Mater. 32, 2200463 (2022).
Zhang, C., Cano, G. G. & Braun, P. V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014).
Xiao, F. et al. Label-free photonic crystal-based β-lactamase biosensor for β-lactam antibiotic and β-lactamase inhibitor. Anal. Chem. 88, 9207–9212 (2016).
Qin, M., Sun, M., Hua, M. & He, X. Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 23, 13–27 (2019).
Qin, M. et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 30, 1800468 (2018).
Kragt, A. J., Hoekstra, D. C., Stallinga, S., Broer, D. J. & Schenning, A. P. 3D helix engineering in chiral photonic materials. Adv. Mater. 31, 1903120 (2019).
Miao, S., Wang, Y., Sun, L. & Zhao, Y. Freeze-derived heterogeneous structural color films. Nat. Commun. 13, 4044 (2022).
Qi, Y. et al. Encoding and decoding of invisible complex information in a dual‐response bilayer photonic crystal with tunable wettability. Adv. Funct. Mater. 29, 1906799 (2019).
Zhong, K. et al. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Adv. Mater. 30, 1707246 (2018).
Liu, Y. & Wu, P. Bioinspired hierarchical liquid‐metacrystal fibers for chiral optics and advanced textiles. Adv. Funct. Mater. 30, 2002193 (2020).
Lee, J. et al. Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 7, 1054–1064 (2022).
Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).
Lee, J. et al. Thermally controlled, active imperceptible artificial skin in visible‐to‐infrared range. Adv. Funct. Mater. 30, 2003328 (2020).
Cui, Y., Gong, H., Wang, Y., Li, D. & Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 30, 1706807 (2018).
Liu, Y., Feng, Z., Xu, C., Chatterjee, A. & Gorodetsky, A. A. Reconfigurable micro- and nano-structured camouflage surfaces inspired by cephalopods. ACS Nano 15, 17299–17309 (2021).
Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl Acad. Sci. USA 117, 14657–14666 (2020).
Shanker, R. et al. Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16, 10156–10162 (2022).
Kumara, N., Lim, A., Lim, C. M., Petra, M. I. & Ekanayake, P. Recent progress and utilization of natural pigments in dye sensitized solar cells: a review. Renew. Sustain. Energy Rev. 78, 301–317 (2017).
Siddique, R. H. et al. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, e1700232 (2017).
Wang, S. et al. Narrow bandpass and efficient semitransparent organic solar cells based on bioinspired spectrally selective electrodes. ACS Nano 14, 5998–6006 (2020).
Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).
Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).
Bae, J. et al. Three-dimensional printing of structural color using a femtoliter meniscus. ACS Nano 17, 13584–13593 (2023).
Li, G. et al. Printable structural colors and their emerging applications. Mater. Today 69, 133–159 (2023).
Lee, Y. et al. Digital laser micropainting for reprogrammable optoelectronic applications. Adv. Funct. Mater. 31, 2006854 (2021).
Wu, P. et al. Dynamic structural color display based on femtosecond laser variable polarization processing. Adv. Mater. Interfaces 8, 2100460 (2021).
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).
Bang, J. et al. Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 1, 597–613 (2024).
Dötterl, S. & Vereecken, N. J. The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can. J. Zool. 88, 668–697 (2010).
Baio, J. E. et al. NEXAFS imaging to characterize the physio-chemical composition of cuticle from African Flower Scarab Eudicella gralli. Nat. Commun. 10, 4758 (2019).
Yan, J., Liu, X., Ma, C., Huang, Y. & Yang, G. All-dielectric materials and related nanophotonic applications. Mater. Sci. Eng. R Rep. 141, 100563 (2020).
Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).
Acknowledgements
This study was supported by the National Research Foundation of Korea (grant numbers RS-2025-00552995, RS-2024-00416938).
Author information
Authors and Affiliations
Contributions
S.H.C., D.K., Y.L. and S.H.K. researched data and wrote the manuscript. All authors contributed to the discussion, reviewing and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Rufan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Choi, S.H., Kim, D., Lee, Y. et al. Bioinspired dynamic colour change. Nat Rev Bioeng 3, 579–595 (2025). https://doi.org/10.1038/s44222-025-00298-2
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44222-025-00298-2
This article is cited by
-
Single-component-based multicolor emissions enabled by symmetry breaking
Nature Communications (2025)


