Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired dynamic colour change

Abstract

Organisms possess a diversity of colours to promote their survival and reproductive success, using various mechanisms, including pigmentation, bioluminescence and structural colouration. These colouration strategies serve crucial ecological functions, such as crypsis for camouflage, aposematism for predator deterrence and vibrant displays that attract pollinators and potential mates. In particular, the ability to dynamically alter colour in response to environmental stimuli allows organisms to rapidly modify their appearance for communication, predation and defence. Drawing inspiration from these natural phenomena, dynamic colour change systems can be designed for applications in optics, sensors and biomedicine. In this Review, we discuss the biological mechanisms driving natural colouration and dynamic colour change, outlining how these can be recreated in engineered systems using structured materials, such as photonic crystals, liquid crystals, metasurfaces and thin films. We highlight how artificial dynamic colour systems can be designed to respond to different stimuli, such as mechanical, electrical, chemical, thermal and magnetic stimuli, examining their application in various fields, including in biomedical devices, sensing and displays.

Key points

  • Organisms have evolved diverse colouration strategies, using pigments, bioluminescence and structural colouration to enhance survival and reproductive success.

  • Colourations serve crucial functions, such as camouflage, predator deterrence and attraction of pollinators or mates.

  • Dynamic colour change allows the rapid adaptation to environmental stimuli.

  • Artificial dynamic colour change systems can be designed for applications in optics, sensing and biomedicine.

  • Further exploration of the biological mechanisms underlying dynamic colour change will be needed to engineer dynamic colouration for various applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colours in nature.
Fig. 2: Mechanisms of colouration.
Fig. 3: Colour change in response to stimuli.
Fig. 4: Applications of bioinspired dynamic colour change.

Similar content being viewed by others

References

  1. Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24, 425–446 (2008).

    Article  Google Scholar 

  2. Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Article  Google Scholar 

  3. Endler, J. A. & Mappes, J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532–547 (2004).

    Article  Google Scholar 

  4. Duarte, R. C., Flores, A. A. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160342 (2017).

    Article  Google Scholar 

  5. Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R. & Akiyama, T. (eds.) Pigments, Pigment Cells and Pigment Patterns (Springer Singapore, 2021).

  6. Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford Univ. Press, 2019).

  7. Gärtner, M. Historical pigments, dyes and binders. Phys. Sci. Rev. 6, 419–476 (2021).

    Google Scholar 

  8. Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).

    Article  Google Scholar 

  9. Wang, D. et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023).

    Article  Google Scholar 

  10. Feng, L., Wang, F., Luo, H. & Qiu, B. Review of recent advancements in the biomimicry of structural colors. Dye Pigment 210, 111019 (2023).

    Article  Google Scholar 

  11. Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).

    Article  Google Scholar 

  12. Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).

    Article  Google Scholar 

  13. Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006).

    Article  Google Scholar 

  14. Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).

    Article  Google Scholar 

  15. McGraw, K. J. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim. Behav. 69, 757–764 (2005).

    Article  Google Scholar 

  16. Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536 (2017).

    Article  Google Scholar 

  17. Figon, F. & Casas, J. Morphological and physiological colour changes in the animal kingdom. eLS https://doi.org/10.1002/9780470015902.a0028065 (2018).

  18. Cumming, R. T., Zhu, K., Petracca, J. & Wurtzel, E. T. Analysis of plant-derived carotenoids in camouflaging stick and leaf insects (Phasmatodea). Methods Enzymol. 670, 499–524 (2022).

    Article  Google Scholar 

  19. Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179–186 (2007).

    Article  Google Scholar 

  20. Sugimoto, M. Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc. Res. Tech. 58, 496–503 (2002).

    Article  Google Scholar 

  21. Wilson, T. & Hastings, J. W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).

    Article  Google Scholar 

  22. Zimmer, M. Bioluminescence: Nature and Science at Work (Twenty-First Century Books, 2015).

  23. Syed, A. J. & Anderson, J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 50, 5668–5705 (2021).

    Article  Google Scholar 

  24. Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 19, 666–679 (2021).

    Article  Google Scholar 

  25. Parker, A. R. 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2, R15 (2000).

    Article  Google Scholar 

  26. Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl Acad. Sci. USA 100, 12576–12578 (2003).

    Article  Google Scholar 

  27. Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

    Article  Google Scholar 

  28. Tran-Ly, A. N., Reyes, C., Schwarze, F. W. & Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol. 36, 1–9 (2020).

    Article  Google Scholar 

  29. Caldas, M. et al. Melanin nanoparticles as a promising tool for biomedical applications — a review. Acta Biomater. 105, 26–43 (2020).

    Article  Google Scholar 

  30. Vatankhah-Varnosfaderani, M. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359, 1509–1513 (2018).

    Article  Google Scholar 

  31. Alegbe, E. O. & Uthman, T. O. A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon 10, e33646 (2024).

    Article  Google Scholar 

  32. Xuan, Z. et al. Artificial structural colors and applications. Innovation 2, 100081 (2021).

    Google Scholar 

  33. Fu, Y., Tippets, C. A., Donev, E. U. & Lopez, R. Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016).

    Article  Google Scholar 

  34. El-Naggar, N. E.-A. & Saber, W. I. Natural melanin: current trends, and future approaches, with especial reference to microbial source. Polymers 14, 1339 (2022).

    Article  Google Scholar 

  35. Guo, L. et al. Recent advances and progress on melanin: from source to application. Int. J. Mol. Sci. 24, 4360 (2023).

    Article  Google Scholar 

  36. Song, W. et al. Image‐guided photothermal and immune therapy of tumors via melanin‐producing genetically engineered bacteria. Small 20, 2305764 (2024).

    Article  Google Scholar 

  37. Yang, P. et al. Tailoring synthetic melanin nanoparticles for enhanced photothermal therapy. ACS Appl. Mater. Interfaces 11, 42671–42679 (2019).

    Article  Google Scholar 

  38. Yue, Y. & Zhao, X. Melanin-like nanomedicine in photothermal therapy applications. Int. J. Mol. Sci. 22, 399 (2021).

    Article  Google Scholar 

  39. Pakdel, E. et al. Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 (2022).

    Article  Google Scholar 

  40. Wang, Y. et al. A novel UV-shielding and transparent polymer film: when bioinspired dopamine–melanin hollow nanoparticles join polymers. ACS Appl. Mater. Interfaces 9, 36281–36289 (2017).

    Article  Google Scholar 

  41. Guin, T., Cho, J. H., Xiang, F., Ellison, C. J. & Grunlan, J. C. Water-based melanin multilayer thin films with broadband UV absorption. ACS Macro Lett. 4, 335–338 (2015).

    Article  Google Scholar 

  42. Solano, F. Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules 25, 1537 (2020).

    Article  Google Scholar 

  43. Love, A. C. & Prescher, J. A. Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem. Biol. 27, 904–920 (2020).

    Article  Google Scholar 

  44. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article  Google Scholar 

  45. Yoon, S. et al. Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater. Res. 26, 57 (2022).

    Article  Google Scholar 

  46. Yeh, H.-W. & Ai, H.-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. 12, 129–150 (2019).

    Article  Google Scholar 

  47. Michielsen, C. M., van Aalen, E. A. & Merkx, M. Ratiometric bioluminescent Zinc sensor proteins to quantify serum and intracellular free Zn2+. ACS Chem. Biol. 17, 1567–1576 (2022).

    Article  Google Scholar 

  48. Vukusic, P., Sambles, J., Lawrence, C. & Wootton, R. Quantified interference and diffraction in single morpho butterfly scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 1403–1411 (1999).

    Article  Google Scholar 

  49. Park, J.-e et al. Multicolor conjugated polymer thin films with tunable responsivity to oxidative and reductive environments. ACS Appl. Mater. Interfaces 15, 51753–51762 (2023).

    Article  Google Scholar 

  50. Chung, K. et al. Flexible, angle‐independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012).

    Article  Google Scholar 

  51. Wang, H., Zheng, Z., Ji, C. & Guo, L. J. Automated multi-layer optical design via deep reinforcement learning. Mach. Learn. Sci. Technol. 2, 025013 (2021).

    Article  Google Scholar 

  52. Akinoglu, E. M. et al. Concealed structural colors uncovered by light scattering. Adv. Opt. Mater. 8, 2001307 (2020).

    Article  Google Scholar 

  53. Cho, D. H., Lee, W. J., Kim, M. E., Shin, B. & Chung, Y. D. Color tuning in Cu(In,Ga)Se2 thin‐film solar cells by controlling optical interference in transparent front layers. Prog. Photovolt. Res. Appl. 28, 798–807 (2020).

    Article  Google Scholar 

  54. Zhang, Q. et al. Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 34, 2201348 (2022).

    Article  Google Scholar 

  55. Zhong, J. et al. Assembly of guanine crystals as a low-polarizing broadband multilayer reflector in a spider, Phoroncidia rubroargentea. ACS Appl. Mater. Interfaces 14, 32982–32993 (2022).

    Article  Google Scholar 

  56. Abdelraouf, O. A. et al. All‐optical switching of structural color with a Fabry–Pérot cavity. Adv. Photon. Res. 4, 2300209 (2023).

    Article  Google Scholar 

  57. Kim, Y.-G., Quan, Y.-J., Kim, M.-S., Cho, Y. & Ahn, S.-H. Lithography-free and Highly angle sensitive structural coloration using Fabry–Perot resonance of tin. Int. J. Precis. Eng. Manuf. Green Technol. 8, 997–1006 (2021).

    Article  Google Scholar 

  58. Zeitner, U. D. et al. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 109, 789–796 (2012).

    Article  Google Scholar 

  59. Sloyan, K. et al. A review of focused ion beam applications in optical fibers. Nanotechnology 32, 472004 (2021).

    Article  Google Scholar 

  60. Buhl, J., Yoo, D., Köpke, M. & Gerken, M. Two-dimensional nanograting fabrication by multistep nanoimprint lithography and ion beam etching. Nanomanufacturing 1, 39–48 (2021).

    Article  Google Scholar 

  61. Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater. 34, 2108128 (2022).

    Article  Google Scholar 

  62. Quan, Y.-J., Kim, Y.-G., Kim, M.-S., Min, S.-H. & Ahn, S.-H. Stretchable biaxial and shear strain sensors using diffractive structural colors. ACS Nano 14, 5392–5399 (2020).

    Article  Google Scholar 

  63. Shin, Y., Zhou, Z., Halder, S., Zhang, X. & Yang, D.-K. Reconfigurable liquid crystal diffraction grating based on flexoelectric effect. J. Mol. Liq. 357, 119150 (2022).

    Article  Google Scholar 

  64. Oscurato, S. L. et al. Large‐scale multiplexed azopolymer gratings with engineered diffraction behavior. Adv. Mater. Interfaces 8, 2101375 (2021).

    Article  Google Scholar 

  65. Choi, J. et al. Hydrocipher: bioinspired dynamic structural color‐based cryptographic surface. Adv. Opt. Mater. 8, 1901259 (2020).

    Article  Google Scholar 

  66. Wu, P., Wang, J. & Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 7, 338–365 (2020).

    Article  Google Scholar 

  67. Zhang, D. et al. Inspiration from butterfly and moth wing scales: characterization, modeling, and fabrication. Prog. Mater. Sci. 68, 67–96 (2015).

    Article  Google Scholar 

  68. Jancik, D., Mašlá, M., Shiojiri, S. & Shiojiri, M. Photonic crystal structure of wing scales in Sasakia charonda butterflies. Mater. Trans. 51, 202–208 (2010).

    Article  Google Scholar 

  69. Kim, J. B., Lee, S. Y., Lee, J. M. & Kim, S.-H. Designing structural-color patterns composed of colloidal arrays. ACS Appl. Mater. Interfaces 11, 14485–14509 (2019).

    Article  Google Scholar 

  70. Kang, D. D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2019).

    Article  Google Scholar 

  71. Cai, Z. et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50, 5898–5951 (2021).

    Article  Google Scholar 

  72. Kim, T. et al. Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. Nano Energy 92, 106688 (2022).

    Article  Google Scholar 

  73. Zhu, K. et al. Recent advances in photonic crystal with unique structural colors: a review. J. Mater. Sci. Technol. 141, 78–99 (2023).

    Article  Google Scholar 

  74. Hu, Y. et al. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. Mater. Horiz. 10, 3895–3928 (2023).

    Article  Google Scholar 

  75. Zhang, P., de Haan, L. T., Debije, M. G. & Schenning, A. P. Liquid crystal-based structural color actuators. Light Sci. Appl. 11, 248 (2022).

    Article  Google Scholar 

  76. Balenko, N., Shibaev, V. & Bobrovsky, A. Mechanosensitive polymer-dispersed cholesteric liquid crystal composites based on various polymer matrices. Polymer 281, 126119 (2023).

    Article  Google Scholar 

  77. Kao, T.-H. et al. Fabrication of polymer/cholesteric liquid crystal films and fibers using the nonsolvent and phase separation method. Langmuir 40, 14166–14172 (2024).

    Article  Google Scholar 

  78. Gardymova, A. P. et al. Polymer dispersed cholesteric liquid crystals with a toroidal director configuration under an electric field. Polymers 13, 732 (2021).

    Article  Google Scholar 

  79. Froyen, A. A., Debije, M. G. & Schenning, A. P. Polymer dispersed cholesteric liquid crystal mixtures for optical time–temperature integrators. Adv. Opt. Mater. 10, 2201648 (2022).

    Article  Google Scholar 

  80. Choi, S. H. et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 23, 834–843 (2024).

    Article  Google Scholar 

  81. Geng, Y., Kizhakidathazhath, R. & Lagerwall, J. P. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 21, 1441–1447 (2022).

    Article  Google Scholar 

  82. Geng, Y. & Lagerwall, J. P. Multiresponsive cylindrically symmetric cholesteric liquid crystal elastomer fibers templated by tubular confinement. Adv. Sci. 10, 2301414 (2023).

    Article  Google Scholar 

  83. Nam, S., Wang, D., Kwon, C., Han, S. H. & Choi, S. S. Biomimetic multicolor‐separating photonic skin using electrically stretchable chiral photonic elastomers. Adv. Mater. 35, 2302456 (2023).

    Article  Google Scholar 

  84. Sol, J. A. et al. Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Adv. Mater. 33, 2103309 (2021).

    Article  Google Scholar 

  85. Choi, J. et al. Direct‐ink‐written cholesteric liquid crystal elastomer with programmable mechanochromic response. Adv. Funct. Mater. 34, 2310658 (2024).

    Article  Google Scholar 

  86. Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photon. 17, 26–35 (2023).

    Article  Google Scholar 

  87. Vilayphone, K. et al. Design rules for structural colors in all-dielectric metasurfaces: from individual resonators to collective resonances and color multiplexing. ACS Photon. 11, 470–483 (2024).

    Article  Google Scholar 

  88. Li, L. et al. Optical metasurfaces for multiplex high-performance grating-type structural colors. Opt. Lett. 48, 1686–1689 (2023).

    Article  Google Scholar 

  89. Baek, K., Kim, Y., Mohd-Noor, S. & Hyun, J. K. Mie resonant structural colors. ACS Appl. Mater. Interfaces 12, 5300–5318 (2020).

    Article  Google Scholar 

  90. Papoff, F. & Hourahine, B. Geometrical Mie theory for resonances in nanoparticles of any shape. Opt. Expr. 19, 21432–21444 (2011).

    Article  Google Scholar 

  91. Liu, T., Xu, R., Yu, P., Wang, Z. & Takahara, J. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 9, 1115–1137 (2020).

    Article  Google Scholar 

  92. Shang, G. et al. Photonic glass for high contrast structural color. Sci. Rep. 8, 7804 (2018).

    Article  Google Scholar 

  93. Zhao, Y. et al. Multicolor electrochromic metamaterials based on Mie scatterer nanospheres. Adv. Opt. Mater. 12, 2400838 (2024).

    Article  Google Scholar 

  94. Cheng, T. et al. Dynamic tuning of optical absorbance and structural color of VO2-based metasurface. Nanophotonics 12, 3121–3133 (2023).

    Article  Google Scholar 

  95. Lu, L. et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano 15, 19722–19732 (2021).

    Article  Google Scholar 

  96. Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl. 11, 118 (2022).

    Article  Google Scholar 

  97. Wang, X. et al. Structural colors by synergistic birefringence and surface plasmon resonance. ACS Nano 14, 16832–16839 (2020).

    Article  Google Scholar 

  98. Sharma, M., Hendler, N. & Ellenbogen, T. Electrically switchable color tags based on active liquid‐crystal plasmonic metasurface platform. Adv. Opt. Mater. 8, 1901182 (2020).

    Article  Google Scholar 

  99. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 1–14 (2016).

    Article  Google Scholar 

  100. Song, M. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023).

    Article  Google Scholar 

  101. Li, R. et al. Dynamic spectral modulation enabled by conductive polymer-integrated plasmonic nanodisk-hole arrays. ACS Appl. Mater. Interfaces 15, 57486–57495 (2023).

    Google Scholar 

  102. Gao, L., Li, X., Liu, D., Wang, L. & Yu, Z. A bidirectional deep neural network for accurate silicon color design. Adv. Mater. 31, 1905467 (2019).

    Article  Google Scholar 

  103. Xiong, B. et al. Realizing colorful holographic mimicry by metasurfaces. Adv. Mater. 33, 2005864 (2021).

    Article  Google Scholar 

  104. Sarkar, S. et al. Enhanced figure of merit via hybridized guided‐mode resonances in 2D‐metallic photonic crystal slabs. Adv. Opt. Mater. 10, 2200954 (2022).

    Article  Google Scholar 

  105. Khaidarov, E. et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci. Rep. 12, 14044 (2022).

    Article  Google Scholar 

  106. Horák, M. et al. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 8, 9640 (2018).

    Article  Google Scholar 

  107. Abasahl, B., Santschi, C., Raziman, T. & Martin, O. J. Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. Nanotechnology 32, 475202 (2021).

    Article  Google Scholar 

  108. Driencourt, L. et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photon. 7, 444–453 (2019).

    Article  Google Scholar 

  109. Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    Article  Google Scholar 

  110. Zheng, M., Shen, Y., Zheng, L., She, X. & Jin, C. Transfer-printing hydrogel-based platform for moisture-driven dynamic display and optical anti-counterfeiting. ACS Appl. Mater. Interfaces 15, 45239–45248 (2023).

    Article  Google Scholar 

  111. Chen, Z. et al. Cardiomyocytes‐actuated morpho butterfly wings. Adv. Mater. 31, 1805431 (2019).

    Article  Google Scholar 

  112. Lee, G. H. et al. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11, 11350–11357 (2017).

    Article  Google Scholar 

  113. Li, X., Liu, J. & Zhang, X. Pressure/temperature dual‐responsive cellulose nanocrystal hydrogels for on‐demand schemochrome patterning. Adv. Funct. Mater. 33, 2306208 (2023).

    Article  Google Scholar 

  114. Wu, K. et al. Reversible mechanochromisms via manipulating surface wrinkling. Nano Lett. 22, 2261–2269 (2022).

    Article  Google Scholar 

  115. Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat. Mater. 21, 1014–1018 (2022).

    Article  Google Scholar 

  116. Kim, S.-U. et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21, 41–46 (2022).

    Article  Google Scholar 

  117. Li, C. et al. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13, 3914 (2022).

    Article  Google Scholar 

  118. Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).

    Article  Google Scholar 

  119. Yang, C. et al. 3D‐printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets. Adv. Mater. 33, 2006361 (2021).

    Article  Google Scholar 

  120. Pasparakis, G. & Tsitsilianis, C. LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications. Polymer 211, 123146 (2020).

    Article  Google Scholar 

  121. Jin, Y. et al. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019).

    Article  Google Scholar 

  122. Panák, O., Držková, M. & Kaplanová, M. Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature. Dye Pigment 120, 279–287 (2015).

    Article  Google Scholar 

  123. Tzeng, S.-Y., Chen, C.-N. & Tzeng, Y. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst. 37, 1221–1224 (2010).

    Article  Google Scholar 

  124. Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A. & Asher, S. A. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 14, 1249–1256 (2002).

    Article  Google Scholar 

  125. Ge, J., Hu, Y., Zhang, T., Huynh, T. & Yin, Y. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24, 3671–3680 (2008).

    Article  Google Scholar 

  126. Ge, J. & Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 20, 3485–3491 (2008).

    Article  Google Scholar 

  127. Wang, M., Nie, C., Liu, J. & Wu, S. Organic–inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat. Commun. 14, 1000 (2023).

    Article  Google Scholar 

  128. Zhang, X. et al. Dynamic tuning of optical transmittance of 1D colloidal assemblies of magnetic nanostructures. Adv. Intell. Syst. 1, 1900099 (2019).

    Article  Google Scholar 

  129. Li, H. et al. Single‐stimulus‐induced modulation of multiple optical properties. Adv. Mater. 31, 1900388 (2019).

    Article  Google Scholar 

  130. Li, Z. et al. Magnetic assembly of nanocubes for orientation-dependent photonic responses. Nano Lett. 19, 6673–6680 (2019).

    Article  Google Scholar 

  131. Liu, Y. et al. Polyphenol‐mediated synthesis of superparamagnetic magnetite nanoclusters for highly stable magnetically responsive photonic crystals. Adv. Funct. Mater. 33, 2303470 (2023).

    Article  Google Scholar 

  132. Kashiwagi, H., Kashiwagi, A. & Iwasaka, M. Effect of magnetic fields on green color formation in frog skin. AIP Adv. 7, 056426 (2017).

    Article  Google Scholar 

  133. Frka‐Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29, 1701469 (2017).

    Article  Google Scholar 

  134. Lee, S. Y., Choi, J., Jeong, J. R., Shin, J. H. & Kim, S. H. Magnetoresponsive photonic microspheres with structural color gradient. Adv. Mater. 29, 1605450 (2017).

    Article  Google Scholar 

  135. Jiang, S. et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio‐inspired assimilatory coloration. Adv. Mater. 31, 1807507 (2019).

    Article  Google Scholar 

  136. Heikenfeld, J., Drzaic, P., Yeo, J. S. & Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Disp. 19, 129–156 (2011).

    Article  Google Scholar 

  137. Bao, G., Yu, W., Fu, Q. & Ge, J. Low-voltage and wide-tuning-range SiO2/aniline electrically responsive photonic crystal fabricated by solvent assisted charge separation. J. Mater. Chem. C 11, 3513–3520 (2023).

    Article  Google Scholar 

  138. Yan, Z. et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021).

    Article  Google Scholar 

  139. Phillips, A. T., Schlafmann, K. R., Fowler, H. E. & White, T. J. Electrically tunable, fully solid reflective optical elements. Adv. Opt. Mater. 10, 2201457 (2022).

    Article  Google Scholar 

  140. Moscardi, L. et al. Electro-responsivity in electrolyte-free and solution processed Bragg stacks. J. Mater. Chem. C 8, 13019–13024 (2020).

    Article  Google Scholar 

  141. Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).

    Article  Google Scholar 

  142. Rossi, S. et al. Dynamically tuneable reflective structural coloration with electroactive conducting polymer nanocavities. Adv. Mater. 33, 2105004 (2021).

    Article  Google Scholar 

  143. Kim, J. B., Kim, J. W., Kim, M. & Kim, S. H. Dual‐colored Janus microspheres with photonic and plasmonic faces. Small 18, 2201437 (2022).

    Article  Google Scholar 

  144. Yao, Y. et al. WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020).

    Article  Google Scholar 

  145. Li, Y. et al. The green box: selenoviologen-based tetracationic cyclophane for electrochromism, host–guest interactions, and visible-light photocatalysis. J. Am. Chem. Soc. 145, 9118–9128 (2023).

    Article  Google Scholar 

  146. Zhang, M. et al. Theoretical investigation of electrochromic mechanism in D–A conjugated polymers in visible and infrared bands. RSC Adv. 13, 11337–11345 (2023).

    Article  Google Scholar 

  147. Ganter, P., Szendrei, K. & Lotsch, B. V. Towards the nanosheet‐based photonic nose: vapor recognition and trace water sensing with antimony phosphate thin film devices. Adv. Mater. 28, 7436–7442 (2016).

    Article  Google Scholar 

  148. Nguyen, T. D., Peres, B. U., Carvalho, R. M. & MacLachlan, M. J. Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies. Adv. Funct. Mater. 26, 2875–2881 (2016).

    Article  Google Scholar 

  149. Yang, D., Ouyang, C., Zhang, Y., Ma, D. & Huang, S. Rapid fabrication of alcohol responsive photonic prints with changeable color contrasts for anti‐counterfeiting application. Adv. Mater. Interfaces 8, 2001905 (2021).

    Article  Google Scholar 

  150. Potyrailo, R. A. et al. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by morpho butterflies. Nat. Commun. 6, 7959 (2015).

    Article  Google Scholar 

  151. Li, J., Chen, Y., Hu, Y., Duan, H. & Liu, N. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020).

    Article  Google Scholar 

  152. Fei, X. et al. Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl. Mater. Interfaces 8, 27091–27098 (2016).

    Article  Google Scholar 

  153. Alizadeh-Sani, M. et al. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 166, 741–750 (2021).

    Article  Google Scholar 

  154. Ezati, P., Rhim, J.-W., Moradi, M., Tajik, H. & Molaei, R. CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films. Carbohydr. Polym. 246, 116614 (2020).

    Article  Google Scholar 

  155. Ma, Q., Du, L. & Wang, L. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sens. Actuators B Chem. 244, 759–766 (2017).

    Article  Google Scholar 

  156. Nucara, L. et al. Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9, 4818–4827 (2017).

    Article  Google Scholar 

  157. Moirangthem, M., Arts, R., Merkx, M. & Schenning, A. P. An optical sensor based on a photonic polymer film to detect calcium in serum. Adv. Funct. Mater. 26, 1154–1160 (2016).

    Article  Google Scholar 

  158. Yao, Z. Q. et al. Dynamic full‐color tuning of organic chromophore in a multi‐stimuli‐responsive 2D flexible MOF. Angew. Chem. Int. Ed. 61, e202202073 (2022).

    Article  Google Scholar 

  159. Yang, S.-L. et al. Positive cooperative protonation of a metal–organic framework: pH-responsive fluorescence and proton conduction. J. Am. Chem. Soc. 143, 8838–8848 (2021).

    Article  Google Scholar 

  160. Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).

    Article  Google Scholar 

  161. Lan, R. et al. Humidity‐induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks. Adv. Funct. Mater. 31, 2106419 (2021).

    Article  Google Scholar 

  162. Parton, T. G. et al. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 13, 2657 (2022).

    Article  Google Scholar 

  163. Droguet, B. E. et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater. 21, 352–358 (2022).

    Article  Google Scholar 

  164. Kohri, M. Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci. Technol. Adv. Mater. 21, 833–848 (2020).

    Article  Google Scholar 

  165. Xiao, M., Shawkey, M. D. & Dhinojwala, A. Bioinspired melanin‐based optically active materials. Adv. Opt. Mater. 8, 2000932 (2020).

    Article  Google Scholar 

  166. Belmonte, A. et al. Dual light and temperature responsive micrometer‐sized structural color actuators. Small 16, 1905219 (2020).

    Article  Google Scholar 

  167. Wang, H., Liu, Y., Chen, Z., Sun, L. & Zhao, Y. Anisotropic structural color particles from colloidal phase separation. Sci. Adv. 6, eaay1438 (2020).

    Article  Google Scholar 

  168. Zhang, W. et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 12, 112 (2021).

    Article  Google Scholar 

  169. Lee, C. E. et al. Low‐powered E‐switching block copolymer structural color display with organohydrogel humidity controller. Adv. Mater. Technol. 7, 2200385 (2022).

    Article  Google Scholar 

  170. Wu, Y., Wang, Y., Zhang, S. & Wu, S. Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 15, 15720–15729 (2021).

    Article  Google Scholar 

  171. Prescher, J. A. & Contag, C. H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14, 80–89 (2010).

    Article  Google Scholar 

  172. Su, Y. et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat. Methods 17, 852–860 (2020).

    Article  Google Scholar 

  173. Evans, M. S. et al. A synthetic luciferin improves bioluminescence imaging in live mice. Nat. Methods 11, 393–395 (2014).

    Article  Google Scholar 

  174. Tian, X. et al. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice. Nat. Commun. 13, 3967 (2022).

    Article  Google Scholar 

  175. Chen, W. et al. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138, 5886–5894 (2013).

    Article  Google Scholar 

  176. Li, Q. et al. Imaging cellular forces with photonic crystals. Nat. Commun. 14, 7369 (2023).

    Article  Google Scholar 

  177. Fu, F., Shang, L., Chen, Z., Yu, Y. & Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018).

    Article  Google Scholar 

  178. Kong, B. et al. Structural color medical patch with surface dual‐properties of wet bioadhesion and slipperiness. Adv. Sci. 9, 2203096 (2022).

    Article  Google Scholar 

  179. Chen, C. et al. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact. Mater. 15, 194–202 (2022).

    Google Scholar 

  180. Wang, Y., Zhang, X., Chen, G., Lu, M. & Zhao, Y. Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 6, 1555–1568 (2023).

    Article  Google Scholar 

  181. Chen, F. et al. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci. Adv. 8, eabn5882 (2022).

    Article  Google Scholar 

  182. Zhang, J. et al. The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C 4, 2127–2133 (2016).

    Article  Google Scholar 

  183. Franklin, D. et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 6, 7337 (2015).

    Article  Google Scholar 

  184. Zhu, X., Yan, W., Levy, U., Mortensen, N. A. & Kristensen, A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017).

    Article  Google Scholar 

  185. Su, M. et al. A 3D self‐shaping strategy for nanoresolution multicomponent architectures. Adv. Mater. 30, 1703963 (2018).

    Article  Google Scholar 

  186. Li, W., Wang, Y., Li, M., Garbarini, L. P. & Omenetto, F. G. Inkjet printing of patterned, multispectral, and biocompatible photonic crystals. Adv. Mater. 31, 1901036 (2019).

    Article  Google Scholar 

  187. Duempelmann, L., Luu-Dinh, A., Gallinet, B. & Novotny, L. Four-fold color filter based on plasmonic phase retarder. ACS Photon. 3, 190–196 (2016).

    Article  Google Scholar 

  188. Kang, H. S. et al. Printable and rewritable full block copolymer structural color. Adv. Mater. 29, 1700084 (2017).

    Article  Google Scholar 

  189. Sahu, R. R. et al. Single-step fabrication of liquid gallium nanoparticles via capillary interaction for dynamic structural colours. Nat. Nanotechnol. 19, 766–774 (2024).

    Article  Google Scholar 

  190. Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    Article  Google Scholar 

  191. Li, D. et al. Rapid, linear, and highly reliable structural-color switching enabled by thermal regulation of chiral nematic mesophases. Chem. Eng. J. 453, 139835 (2023).

    Article  Google Scholar 

  192. Kim, D. H. et al. Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor. Adv. Funct. Mater. 32, 2200463 (2022).

    Article  Google Scholar 

  193. Zhang, C., Cano, G. G. & Braun, P. V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014).

    Article  Google Scholar 

  194. Xiao, F. et al. Label-free photonic crystal-based β-lactamase biosensor for β-lactam antibiotic and β-lactamase inhibitor. Anal. Chem. 88, 9207–9212 (2016).

    Article  Google Scholar 

  195. Qin, M., Sun, M., Hua, M. & He, X. Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 23, 13–27 (2019).

    Article  Google Scholar 

  196. Qin, M. et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 30, 1800468 (2018).

    Article  Google Scholar 

  197. Kragt, A. J., Hoekstra, D. C., Stallinga, S., Broer, D. J. & Schenning, A. P. 3D helix engineering in chiral photonic materials. Adv. Mater. 31, 1903120 (2019).

    Article  Google Scholar 

  198. Miao, S., Wang, Y., Sun, L. & Zhao, Y. Freeze-derived heterogeneous structural color films. Nat. Commun. 13, 4044 (2022).

    Article  Google Scholar 

  199. Qi, Y. et al. Encoding and decoding of invisible complex information in a dual‐response bilayer photonic crystal with tunable wettability. Adv. Funct. Mater. 29, 1906799 (2019).

    Article  Google Scholar 

  200. Zhong, K. et al. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Adv. Mater. 30, 1707246 (2018).

    Article  Google Scholar 

  201. Liu, Y. & Wu, P. Bioinspired hierarchical liquid‐metacrystal fibers for chiral optics and advanced textiles. Adv. Funct. Mater. 30, 2002193 (2020).

    Article  Google Scholar 

  202. Lee, J. et al. Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 7, 1054–1064 (2022).

    Article  Google Scholar 

  203. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).

    Article  Google Scholar 

  204. Lee, J. et al. Thermally controlled, active imperceptible artificial skin in visible‐to‐infrared range. Adv. Funct. Mater. 30, 2003328 (2020).

    Article  Google Scholar 

  205. Cui, Y., Gong, H., Wang, Y., Li, D. & Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 30, 1706807 (2018).

    Article  Google Scholar 

  206. Liu, Y., Feng, Z., Xu, C., Chatterjee, A. & Gorodetsky, A. A. Reconfigurable micro- and nano-structured camouflage surfaces inspired by cephalopods. ACS Nano 15, 17299–17309 (2021).

    Article  Google Scholar 

  207. Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl Acad. Sci. USA 117, 14657–14666 (2020).

    Article  Google Scholar 

  208. Shanker, R. et al. Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16, 10156–10162 (2022).

    Article  Google Scholar 

  209. Kumara, N., Lim, A., Lim, C. M., Petra, M. I. & Ekanayake, P. Recent progress and utilization of natural pigments in dye sensitized solar cells: a review. Renew. Sustain. Energy Rev. 78, 301–317 (2017).

    Article  Google Scholar 

  210. Siddique, R. H. et al. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, e1700232 (2017).

    Article  Google Scholar 

  211. Wang, S. et al. Narrow bandpass and efficient semitransparent organic solar cells based on bioinspired spectrally selective electrodes. ACS Nano 14, 5998–6006 (2020).

    Article  Google Scholar 

  212. Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).

    Article  Google Scholar 

  213. Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).

    Article  Google Scholar 

  214. Bae, J. et al. Three-dimensional printing of structural color using a femtoliter meniscus. ACS Nano 17, 13584–13593 (2023).

    Article  Google Scholar 

  215. Li, G. et al. Printable structural colors and their emerging applications. Mater. Today 69, 133–159 (2023).

    Article  Google Scholar 

  216. Lee, Y. et al. Digital laser micropainting for reprogrammable optoelectronic applications. Adv. Funct. Mater. 31, 2006854 (2021).

    Article  Google Scholar 

  217. Wu, P. et al. Dynamic structural color display based on femtosecond laser variable polarization processing. Adv. Mater. Interfaces 8, 2100460 (2021).

    Article  Google Scholar 

  218. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  Google Scholar 

  219. Bang, J. et al. Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 1, 597–613 (2024).

    Article  Google Scholar 

  220. Dötterl, S. & Vereecken, N. J. The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can. J. Zool. 88, 668–697 (2010).

    Article  Google Scholar 

  221. Baio, J. E. et al. NEXAFS imaging to characterize the physio-chemical composition of cuticle from African Flower Scarab Eudicella gralli. Nat. Commun. 10, 4758 (2019).

    Article  Google Scholar 

  222. Yan, J., Liu, X., Ma, C., Huang, Y. & Yang, G. All-dielectric materials and related nanophotonic applications. Mater. Sci. Eng. R Rep. 141, 100563 (2020).

    Article  Google Scholar 

  223. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (grant numbers RS-2025-00552995, RS-2024-00416938).

Author information

Authors and Affiliations

Authors

Contributions

S.H.C., D.K., Y.L. and S.H.K. researched data and wrote the manuscript. All authors contributed to the discussion, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Seung Hwan Ko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Rufan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.H., Kim, D., Lee, Y. et al. Bioinspired dynamic colour change. Nat Rev Bioeng 3, 579–595 (2025). https://doi.org/10.1038/s44222-025-00298-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00298-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research