Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR–Cas therapies targeting bacteria

Abstract

Technologies derived from the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas immune system of prokaryotes have revolutionized our ability to cleave and modify target nucleic acid sequences. In addition to the use of CRISPR–Cas tools for the editing of human genes, they can also be designed to target pathogenic and commensal bacteria that colonize the body, offering new pathways for the treatment of infections and microbiome modulation. In this Review, we explore how the CRISPR–Cas toolbox can be engineered to kill or modify specific bacteria. We discuss DNA-targeting and RNA-targeting strategies, outlining how these can be applied to disarm bacteria by removing, modifying or silencing specific genes. Furthermore, we examine the delivery of CRISPR–Cas tools by bacteriophages and through conjugation and explore intracellular barriers to CRISPR–Cas tool maintenance and expression. Finally, we highlight therapeutic opportunities in the treatment of infectious diseases and for the modification of the microbiome, outlining progress and challenges in translating these approaches into clinical applications.

Key points

  • CRISPR (clustered regularly interspaced short palindromic repeats)–Cas systems can be designed as tools to kill or modify target bacteria, for example, by targeting antibiotic resistance genes, virulence factors or genes involved in microbiome-related diseases.

  • CRISPR–Cas tools can be delivered to target bacteria by phage particles or plasmid conjugation.

  • Delivery of CRISPR–Cas therapeutics requires engineering to enhance efficiency, adapt the host range to the target strains and bypass bacterial defence mechanisms.

  • First clinical trials have demonstrated the safety of Cas-armed phages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR–Cas therapeutics targeting bacteria.
Fig. 2: Modes of action for various CRISPR–Cas tools.
Fig. 3: CRISPR–Cas tool delivery by phages and plasmids.
Fig. 4: Challenges in CRISPR–Cas tool delivery.

Similar content being viewed by others

References

  1. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  2. Okeke, I. N. et al. The scope of the antimicrobial resistance challenge. Lancet 403, 2426–2438 (2024).

    Article  Google Scholar 

  3. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  Google Scholar 

  4. Hou, K. et al. Microbiota in health and diseases. Signal. Transduct. Target. Ther. 7, 135 (2022).

    Article  Google Scholar 

  5. Pirnay, J.-P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453 (2024).

    Article  Google Scholar 

  6. Lei, M., Jayaraman, A., Deventer, J. A. V. & Lee, K. Engineering selectively targeting antimicrobial peptides. Annu. Rev. Biomed. Eng. 23, 339–357 (2021).

    Article  Google Scholar 

  7. Altae-Tran, H. et al. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 382, eadi1910 (2023).

    Article  Google Scholar 

  8. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  Google Scholar 

  9. Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).

    Article  Google Scholar 

  10. Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant Enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).

    Article  Google Scholar 

  11. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  Google Scholar 

  12. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  Google Scholar 

  13. Lam, K. N. et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Article  Google Scholar 

  14. Park, J. Y. et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci. Rep. 7, 44929 (2017).

    Article  Google Scholar 

  15. Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).

    Article  Google Scholar 

  16. Neil, K. et al. High-efficiency delivery of CRISPR-Cas9 by engineered probiotics enables precise microbiome editing. Mol. Syst. Biol. 17, e10335 (2021).

    Article  Google Scholar 

  17. Jin, W.-B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562.e22 (2022).

    Article  Google Scholar 

  18. Zhou, Y. et al. Exploiting a conjugative endogenous CRISPR-Cas3 system to tackle multidrug-resistant Klebsiella pneumoniae. eBioMedicine 88, 104445 (2023).

    Article  Google Scholar 

  19. Selle, K. et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 11, e00019-20 (2020).

    Article  Google Scholar 

  20. Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2023).

    Article  Google Scholar 

  21. Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44, 4243–4251 (2016).

    Article  Google Scholar 

  22. Csörgő, B. et al. A compact Cascade–Cas3 system for targeted genome engineering. Nat. Methods 17, 1183–1190 (2020).

    Article  Google Scholar 

  23. Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013).

    Article  Google Scholar 

  24. Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. C. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180088 (2019).

    Article  Google Scholar 

  25. Vialetto, E. et al. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res. 52, 6079–6091 (2024).

    Article  Google Scholar 

  26. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  Google Scholar 

  27. Stella, G. & Marraffini, L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends Biochem. Sci. 49, 28–37 (2024).

    Article  Google Scholar 

  28. Rostøl, J. T. et al. The Card1 nuclease provides defence during type III CRISPR immunity. Nature 590, 624–629 (2021).

    Article  Google Scholar 

  29. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    Article  Google Scholar 

  30. Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe 22, 343–353.e3 (2017).

    Article  Google Scholar 

  31. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, eaaf5573 (2016).

    Article  Google Scholar 

  32. Vialetto, E. et al. A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13. Cell Host Microbe 30, 1151–1162.e6 (2022).

    Article  Google Scholar 

  33. Kiga, K. et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 11, 2934 (2020).

    Article  Google Scholar 

  34. Dmytrenko, O. et al. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 613, 588–594 (2023).

    Article  Google Scholar 

  35. Selle, K., Klaenhammer, T. R. & Barrangou, R. CRISPR-based screening of genomic island excision events in bacteria. Proc. Natl Acad. Sci. USA 112, 8076–8081 (2015).

    Article  Google Scholar 

  36. Wang, P. et al. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J. Antimicrob. Chemother. 74, 2559–2565 (2019).

    Article  Google Scholar 

  37. Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).

    Article  Google Scholar 

  38. Long, T.-F. et al. Innovative delivery system combining CRISPR-Cas12f for combatting antimicrobial resistance in gram-negative bacteria. ACS Synth. Biol. 13, 1831–1841 (2024).

    Article  Google Scholar 

  39. Paterson, D. L. & Bonomo, R. A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18, 657–686 (2005).

    Article  Google Scholar 

  40. Tagliaferri, T. L. et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Front. Microbiol. 11, 578 (2020).

    Article  Google Scholar 

  41. Wongpayak, P., Meesungnoen, O., Saejang, S. & Subsoontorn, P. A highly effective and self-transmissible CRISPR antimicrobial for elimination of target plasmids without antibiotic selection. PeerJ 9, e11996 (2021).

    Article  Google Scholar 

  42. Dong, H., Xiang, H., Mu, D., Wang, D. & Wang, T. Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. Int. J. Antimicrob. Agents 53, 1–8 (2019).

    Article  Google Scholar 

  43. Li, P. et al. Targeted elimination of bla NDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system. Infect. Drug Resist. 15, 1707–1716 (2022).

    Article  Google Scholar 

  44. Walker-Sünderhauf, D. et al. Removal of AMR plasmids using a mobile, broad host-range CRISPR-Cas9 delivery tool. Microbiology 169, 001334 (2023).

    Google Scholar 

  45. Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature 573, 276–280 (2019).

    Article  Google Scholar 

  46. Quinones-Olvera, N. et al. Diverse and abundant phages exploit conjugative plasmids. Nat. Commun. 15, 3197 (2024).

    Article  Google Scholar 

  47. Jurėnas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 20, 335–350 (2022).

    Article  Google Scholar 

  48. Reuter, A. et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 49, 3584–3598 (2021).

    Article  Google Scholar 

  49. Benz, F. et al. Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans. Cell Host Microbe 32, 875–886.e9 (2024).

    Article  Google Scholar 

  50. Mamontov, V. et al. Persistence of plasmids targeted by CRISPR interference in bacterial populations. Proc. Natl Acad. Sci. USA 119, e2114905119 (2022).

    Article  Google Scholar 

  51. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  Google Scholar 

  52. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015).

    Article  Google Scholar 

  53. Reisch, C. R. & Prather, K. L. J. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci. Rep. 5, 15096 (2015).

    Article  Google Scholar 

  54. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  Google Scholar 

  55. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  Google Scholar 

  56. Brödel, A. K. et al. In situ targeted base editing of bacteria in the mouse gut. Nature 632, 877–884 (2024).

    Article  Google Scholar 

  57. Guzmán-Herrador, D. L., Fernández-Gómez, A., Depardieu, F., Bikard, D. & Llosa, M. In vivo delivery of functional Cas:DNA nucleoprotein complexes into recipient bacteria through a type IV secretion system. Proc. Natl Acad. Sci. USA 121, e2408509121 (2024).

    Article  Google Scholar 

  58. Nethery, M. A., Hidalgo-Cantabrana, C., Roberts, A. & Barrangou, R. CRISPR-based engineering of phages for in situ bacterial base editing. Proc. Natl Acad. Sci. USA 119, e2206744119 (2022).

    Article  Google Scholar 

  59. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  Google Scholar 

  60. Gelsinger, D. R. et al. Bacterial genome engineering using CRISPR-associated transposases. Nat. Protoc. 19, 752–790 (2024).

    Article  Google Scholar 

  61. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  Google Scholar 

  62. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    Article  Google Scholar 

  63. Qi, L. S. et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  Google Scholar 

  64. Luo, M. L., Mullis, A. S., Leenay, R. T. & Beisel, C. L. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681 (2015).

    Article  Google Scholar 

  65. Kim, S. K. et al. Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth. Biol. 6, 1273–1282 (2017).

    Article  Google Scholar 

  66. Vigouroux, A. & Bikard, D. CRISPR tools to control gene expression in bacteria. Microbiol. Mol. Biol. Rev. 84, e00077-19 (2020).

    Article  Google Scholar 

  67. Zebec, Z., Manica, A., Zhang, J., White, M. F. & Schleper, C. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res. 42, 5280–5288 (2014).

    Article  Google Scholar 

  68. Adler, B. A. et al. Genome-wide characterization of diverse bacteriophages enabled by RNA-binding CRISPRi. Nat. Microbiol. 10, 694–709 (2025).

    Article  Google Scholar 

  69. Charles, E. J. et al. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445687 (2021).

    Article  Google Scholar 

  70. Kim, G. et al. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Nat. Commun. 15, 5319 (2024).

    Article  Google Scholar 

  71. Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).

    Article  Google Scholar 

  72. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012).

    Article  Google Scholar 

  73. Gomaa, A. A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5, e00928-13 (2014).

    Article  Google Scholar 

  74. Shkoporov, A. N. et al. Viral biogeography of the mammalian gut and parenchymal organs. Nat. Microbiol. 7, 1301–1311 (2022).

    Article  Google Scholar 

  75. López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).

    Article  Google Scholar 

  76. Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).

    Article  Google Scholar 

  77. Bertozzi Silva, J., Storms, Z. & Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363, fnw002 (2016).

    Article  Google Scholar 

  78. Buffet, A., Rocha, E. P. C. & Rendueles, O. Nutrient conditions are primary drivers of bacterial capsule maintenance in Klebsiella. Proc. R. Soc. B Biol. Sci. 288, 20202876 (2021).

    Article  Google Scholar 

  79. Klumpp, J., Dunne, M. & Loessner, M. J. A perfect fit: bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr. Opin. Microbiol. 71, 102240 (2023).

    Article  Google Scholar 

  80. Latka, A. et al. Engineering the modular receptor-binding proteins of Klebsiella phages switches their capsule serotype specificity. mBio 12, e00455-21 (2021).

    Article  Google Scholar 

  81. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Article  Google Scholar 

  82. Apjok, G. et al. Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nat. Microbiol. 8, 410–423 (2023).

    Google Scholar 

  83. Cunliffe, T. G., Parker, A. L. & Jaramillo, A. Pseudotyping bacteriophage P2 tail fibers to extend the host range for biomedical applications. ACS Synth. Biol. 10, 3207–3215 (2022).

    Article  Google Scholar 

  84. Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350.e4 (2019).

    Article  Google Scholar 

  85. Lam, C. N. et al. A tail fiber engineering platform for improved bacterial transduction-based diagnostic reagents. ACS Synth. Biol. 10, 1292–1299 (2021).

    Article  Google Scholar 

  86. Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. & Tanji, Y. Site‐specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 295, 211–217 (2009).

    Article  Google Scholar 

  87. Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S. & Qimron, U. Extending the host range of bacteriophage particles for DNA transduction. Mol. Cell 66, 721–728.e3 (2017).

    Article  Google Scholar 

  88. Montag, D., Schwarz, H. & Henning, U. A component of the side tail fiber of Escherichia coli bacteriophage lambda can functionally replace the receptor-recognizing part of a long tail fiber protein of the unrelated bacteriophage T4. J. Bacteriol. 171, 4378–4384 (1989).

    Article  Google Scholar 

  89. Nobrega, F. L. et al. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16, 760–773 (2018).

    Article  Google Scholar 

  90. Ibarra-Chávez, R. Rebooting synthetic phage-inducible chromosomal islands: one method to forge them all. Biodes. Res. 2020, 5783064 (2020).

    Article  Google Scholar 

  91. Huss, P., Meger, A., Leander, M., Nishikawa, K. K. & Raman, S. Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. eLife 10, e63775 (2021).

    Article  Google Scholar 

  92. Liang, J., Zhang, H., Tan, Y. L., Zhao, H. & Ang, E. L. Directed evolution of replication-competent double-stranded DNA bacteriophage toward new host specificity. ACS Synth. Biol. 11, 634–643 (2022).

    Article  Google Scholar 

  93. Yehl, K. et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179, 459–469.e9 (2019).

    Article  Google Scholar 

  94. Liyanagedera, S. B. W. et al. SpyPhage: a cell-free TXTL platform for rapid engineering of targeted phage therapies. ACS Synth. Biol. 11, 3330–3342 (2022).

    Article  Google Scholar 

  95. Levrier, A. et al. PHEIGES: all-cell-free phage synthesis and selection from engineered genomes. Nat. Commun. 15, 2223 (2024).

    Article  Google Scholar 

  96. Favor, A. H., Llanos, C. D., Youngblut, M. D. & Bardales, J. A. Optimizing bacteriophage engineering through an accelerated evolution platform. Sci. Rep. 10, 13981 (2020).

    Article  Google Scholar 

  97. Nobrega, F. L. et al. Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine. Sci. Rep. 6, 39235 (2016).

    Article  Google Scholar 

  98. Kittleson, J. T., DeLoache, W., Cheng, H.-Y. & Anderson, J. C. Scalable plasmid transfer using engineered P1-based phagemids. ACS Synth. Biol. 1, 583–589 (2012).

    Article  Google Scholar 

  99. Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA 106, 4629–4634 (2009).

    Article  Google Scholar 

  100. Tridgett, M., Ababi, M., Osgerby, A., Garcia, R. R. & Jaramillo, A. Engineering bacteria to produce pure phage-like particles for gene delivery. ACS Synth. Biol. 10, 107–114 (2021).

    Article  Google Scholar 

  101. Westwater, C., Schofield, D. A., Schmidt, M. G., Norris, J. S. & Dolan, J. W. Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria. Microbiology 148, 943–950 (2002).

    Article  Google Scholar 

  102. Edgar, R., Friedman, N., Molshanski-Mor, S. & Qimron, U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol. 78, 744–751 (2012).

    Article  Google Scholar 

  103. Hsu, B. B. et al. In situ reprogramming of gut bacteria by oral delivery. Nat. Commun. 11, 5030 (2020).

    Article  Google Scholar 

  104. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article  Google Scholar 

  105. Cronan, J. E. Improved plasmid-based system for fully regulated off-to-on gene expression in Escherichia coli: application to production of toxic proteins. Plasmid 69, 81–89 (2013).

    Article  Google Scholar 

  106. Ibarra-Chávez, R., Hansen, M. F., Pinilla-Redondo, R., Seed, K. D. & Trivedi, U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol. Rev. 45, fuab031 (2021).

    Article  Google Scholar 

  107. de Sousa, J. A. M., Fillol-Salom, A., Penadés, J. R. & Rocha, E. P. C. Identification and characterization of thousands of bacteriophage satellites across bacteria. Nucleic Acids Res. 51, 2759–2777 (2023).

    Article  Google Scholar 

  108. Chen, J. & Novick, R. P. Phage-mediated intergeneric transfer of toxin genes. Science 323, 139–141 (2009).

    Article  Google Scholar 

  109. Caro, L. G. & Schnös, M. The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc. Natl Acad. Sci. USA 56, 126–132 (1966).

    Article  Google Scholar 

  110. Loeb, T. Isolation of a bacteriophage specific for the F+ and Hfr mating types of Escherichia coli K-12. Science 131, 932–933 (1960).

    Article  Google Scholar 

  111. Paepe, M. D. et al. Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. PLoS Genet. 7, e1002107 (2011).

    Article  Google Scholar 

  112. Paepe, M. D. et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 12, e1005861 (2016).

    Article  Google Scholar 

  113. Bernabéu-Gimeno, M. et al. Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients. Med 5, 1096–1111.e6 (2024).

    Article  Google Scholar 

  114. Dedrick, R. M. et al. Phage therapy of mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. 76, 103–112 (2023).

    Article  Google Scholar 

  115. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    Article  Google Scholar 

  116. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  Google Scholar 

  117. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    Article  Google Scholar 

  118. Chin, W. H. et al. Bacteriophages evolve enhanced persistence to a mucosal surface. Proc. Natl Acad. Sci. USA 119, e2116197119 (2022).

    Article  Google Scholar 

  119. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Article  Google Scholar 

  120. Klümper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015).

    Article  Google Scholar 

  121. Mazodier, P. & Davies, J. Gene transfer between distantly related bacteria. Annu. Rev. Genet. 25, 147–171 (1991).

    Article  Google Scholar 

  122. Johnson, C. M. & Grossman, A. D. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49, 577–601 (2015).

    Article  Google Scholar 

  123. Peters, J. M. et al. Enabling genetic analysis of diverse bacteria with mobile-CRISPRi. Nat. Microbiol. 4, 244–250 (2019).

    Article  Google Scholar 

  124. Djermoun, S., Reuter, A., Derollez, E., Lesterlin, C. & Bigot, S. Reprogramming targeted-antibacterial-plasmids (TAPs) to achieve broad-host range antibacterial activity. Plasmid 126, 102680 (2023).

    Article  Google Scholar 

  125. Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).

    Article  Google Scholar 

  126. Ji, W. et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 3, 929–931 (2014).

    Article  Google Scholar 

  127. Li, X. et al. Degradation of antibiotic resistance genes by VADER with CRISPR-Cas immunity. Appl. Environ. Microbiol. 89, e00053-23 (2023).

    Article  Google Scholar 

  128. Ruotsalainen, P., Penttinen, R., Mattila, S. & Jalasvuori, M. Midbiotics: conjugative plasmids for genetic engineering of natural gut flora. Gut Microbes 10, 643–653 (2019).

    Article  Google Scholar 

  129. Sheng, H. et al. Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance. PLoS One 18, e0291520 (2023).

    Article  Google Scholar 

  130. Song, Z. et al. Pathogen-specific bactericidal method mediated by conjugative delivery of CRISPR-Cas13a targeting bacterial endogenous transcripts. Microbiol. Spectr. 10, e0130022 (2022).

    Article  Google Scholar 

  131. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–791 (1983).

    Article  Google Scholar 

  132. Bradley, D. E., Taylor, D. E. & Cohen, D. R. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J. Bacteriol. 143, 1466–1470 (1980).

    Article  Google Scholar 

  133. Arutyunov, D. & Frost, L. S. F conjugation: back to the beginning. Plasmid 70, 18–32 (2013).

    Article  Google Scholar 

  134. Bradley, D. E. Characteristics and function of thick and thin conjugative pili determined by transfer-derepressed plasmids of incompatibility groups I1, I2, I5, B, K and Z. J. Gen. Microbiol. 130, 1489–1502 (1984).

    Google Scholar 

  135. Ishiwa, A. & Komano, T. The lipopolysaccharide of recipient cells is a specific receptor for PilV proteins, selected by shufflon DNA rearrangement, in liquid matings with donors bearing the R64 plasmid. Mol. Gen. Genet. 263, 159–164 (2000).

    Article  Google Scholar 

  136. Neil, K., Allard, N., Grenier, F., Burrus, V. & Rodrigue, S. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Commun. Biol. 3, 523 (2020).

    Article  Google Scholar 

  137. Hamilton, T. A. et al. De novo synthesis of a conjugative system from human gut metagenomic data for targeted delivery of Cas9 antimicrobials. ACS Synth. Biol. 12, 3578–3590 (2023).

    Article  Google Scholar 

  138. Fox, R. E., Zhong, X., Krone, S. M. & Top, E. M. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J. 2, 1024–1039 (2008).

    Article  Google Scholar 

  139. Benz, F. et al. Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. ISME J. 15, 862–878 (2020).

    Article  Google Scholar 

  140. Licht, T. R., Christensen, B. B., Krogfelt, K. A. & Molin, S. Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145, 2615–2622 (1999).

    Article  Google Scholar 

  141. Christensen, B. B. et al. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64, 2247–2255 (1998).

    Article  Google Scholar 

  142. Haagensen, J. A. J., Hansen, S. K., Johansen, T. & Molin, S. In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42, 261–268 (2002).

    Article  Google Scholar 

  143. Neil, K., Allard, N. & Rodrigue, S. Molecular mechanisms influencing bacterial conjugation in the intestinal microbiota. Front. Microbiol. 12, 673260 (2021).

    Article  Google Scholar 

  144. Allard, N., Collette, A., Paquette, J., Rodrigue, S. & Côté, J.-P. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun. Biol. 6, 1172 (2023).

    Article  Google Scholar 

  145. Ishiwa, A. & Komano, T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J. Bacteriol. 185, 5192–5199 (2003).

    Article  Google Scholar 

  146. Low, W. W. et al. Mating pair stabilization mediates bacterial conjugation species specificity. Nat. Microbiol. 7, 1016–1027 (2022).

    Article  Google Scholar 

  147. Robledo, M. et al. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res. 50, 12938–12950 (2022).

    Article  Google Scholar 

  148. Allard, N., Neil, K., Grenier, F. & Rodrigue, S. The type IV pilus of plasmid TP114 displays adhesins conferring conjugation specificity and is important for DNA transfer in the mouse gut microbiota. Microbiol. Spectr. 10, e0230321 (2022).

    Article  Google Scholar 

  149. Brouwer, M. S. M. et al. The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions. Plasmid 102, 51–55 (2019).

    Article  Google Scholar 

  150. Komano, T., Kubo, A. & Nisioka, T. Shufflon: multi-inversion of four contiguous DNA segments of plasmid R64 creates seven different open reading frames. Nucleic Acids Res. 15, 1165–1172 (1987).

    Article  Google Scholar 

  151. Dąbrowska, K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).

    Article  Google Scholar 

  152. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

    Article  Google Scholar 

  153. Kristensen, N. B. et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8, 52 (2016).

    Article  Google Scholar 

  154. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    Article  Google Scholar 

  155. Furuta, Y. & Kobayashi, I. Restriction-modification systems as mobile epigenetic elements. Madame Curie Bioscience Database (Landes Bioscience, 2013).

  156. Loenen, W. A. M. & Raleigh, E. A. The other face of restriction: modification-dependent enzymes. Nucleic Acids Res. 42, 56–69 (2014).

    Article  Google Scholar 

  157. Aparicio-Maldonado, C. et al. Class I DISARM provides anti-phage and anti-conjugation activity by unmethylated DNA recognition. Preprint at bioRxiv https://doi.org/10.1101/2021.12.28.474362 (2021).

    Article  Google Scholar 

  158. Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

    Article  Google Scholar 

  159. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    Article  Google Scholar 

  160. Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10, 1688 (2019).

    Article  Google Scholar 

  161. Johnston, C. D. et al. Systematic evasion of the restriction-modification barrier in bacteria. Proc. Natl Acad. Sci. USA 116, 11454–11459 (2019).

    Article  Google Scholar 

  162. Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43, D298–D299 (2015).

    Article  Google Scholar 

  163. Dimitriu, T., Szczelkun, M. D. & Westra, E. R. Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. Nucleic Acids Res. 52, 12976–12986 (2024).

    Article  Google Scholar 

  164. Roer, L., Aarestrup, F. M. & Hasman, H. The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation. J. Bacteriol. 197, 337–342 (2015).

    Article  Google Scholar 

  165. Maffei, E. et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    Article  Google Scholar 

  166. Zeng, X., Wu, Z., Zhang, Q. & Lin, J. A cotransformation method to identify a restriction-modification enzyme that reduces conjugation efficiency in Campylobacter jejuni. Appl. Environ. Microbiol. 84, e02004-18 (2018).

    Article  Google Scholar 

  167. Suzuki, H. In Methylation — from DNA, RNA and Histones to Diseases and Treatment (ed. Dricu, A.) https://doi.org/10.5772/51691 (IntechOpen, 2012).

  168. Vento, J. M. et al. A cell-free transcription-translation pipeline for recreating methylation patterns boosts DNA transformation in bacteria. Mol. Cell https://doi.org/10.1016/j.molcel.2024.06.003 (2024).

    Article  Google Scholar 

  169. Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445.e7 (2022).

    Article  Google Scholar 

  170. Mayo-Muñoz, D., Pinilla-Redondo, R., Camara-Wilpert, S., Birkholz, N. & Fineran, P. C. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat. Rev. Genet. 25, 237–254 (2024).

    Article  Google Scholar 

  171. Kudryavtseva, A. A. et al. Broadness and specificity: ArdB, ArdA, and Ocr against various restriction-modification systems. Front. Microbiol. 14, 1133144 (2023).

    Article  Google Scholar 

  172. Dharmalingam, K., Revel, H. R. & Goldberg, E. B. Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene. J. Bacteriol. 149, 694–699 (1982).

    Article  Google Scholar 

  173. Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329 (2022).

    Article  Google Scholar 

  174. Zongo, P. D. et al. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat. Commun. 15, 4093 (2024).

    Article  Google Scholar 

  175. Liu, H. W. et al. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol. Cell 82, 4727–4740.e6 (2022).

    Article  Google Scholar 

  176. Tesson, F. et al. A comprehensive resource for exploring antiphage defense: DefensefFinder webservice,wiki and databases. Peer Community J. 4, e91 (2024).

    Article  Google Scholar 

  177. Samuel, B., Mittelman, K., Croitoru, S. Y., Ben Haim, M. & Burstein, D. Diverse anti-defence systems are encoded in the leading region of plasmids. Nature 635, 186–192 (2024).

    Article  Google Scholar 

  178. Bouet, J. Y., Nordström, K. & Lane, D. Plasmid partition and incompatibility — the focus shifts. Mol. Microbiol. 65, 1405–1414 (2007).

    Article  Google Scholar 

  179. Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. Annu. Rev. Genet. 39, 453–479 (2005).

    Article  Google Scholar 

  180. Jiang, Y. et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8, 15179 (2017).

    Article  Google Scholar 

  181. Naduthodi, M. I. S., Barbosa, M. J. & van der Oost, J. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. Biotechnol. J. 13, 1700591 (2018).

    Article  Google Scholar 

  182. Rock, J. M. et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2, 16274 (2017).

    Article  Google Scholar 

  183. Cui, L. et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, 1912 (2018).

    Article  Google Scholar 

  184. Depardieu, F. & Bikard, D. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods 172, 61–75 (2020).

    Article  Google Scholar 

  185. Rostain, W. et al. Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Res. 51, 3485–3496 (2023).

    Article  Google Scholar 

  186. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  Google Scholar 

  187. Porse, A., Schou, T. S., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat. Commun. 9, 522 (2018).

    Article  Google Scholar 

  188. Tuller, T. et al. Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Res. 39, 4743–4755 (2011).

    Article  Google Scholar 

  189. Uribe, R. V. et al. Bacterial resistance to CRISPR-Cas antimicrobials. Sci. Rep. 11, 17267 (2021).

    Article  Google Scholar 

  190. Gomes, A. L. C. et al. Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. ISME J. 14, 2347–2357 (2020).

    Article  Google Scholar 

  191. Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    Article  Google Scholar 

  192. Lamberte, L. E. et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat. Microbiol. 2, 16249 (2017).

    Article  Google Scholar 

  193. Singh, K., Milstein, J. N. & Navarre, W. W. Xenogeneic silencing and its impact on bacterial genomes. Annu. Rev. Microbiol. 70, 199–213 (2016).

    Article  Google Scholar 

  194. Schelling, M. A., Nguyen, G. T. & Sashital, D. G. CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes. PLoS Biol. 21, e3002065 (2023).

    Article  Google Scholar 

  195. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    Article  Google Scholar 

  196. Castledine, M. et al. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 11, e73679 (2022).

    Article  Google Scholar 

  197. Wright, R. C. T., Friman, V.-P., Smith, M. C. M. & Brockhurst, M. A. Resistance evolution against phage combinations depends on the timing and order of exposure. mBio 10, e01652-19 (2019).

    Article  Google Scholar 

  198. Averbuch, D. et al. Antimicrobial resistance in gram-negative rods causing bacteremia in hematopoietic stem cell transplant recipients: intercontinental prospective study of the infectious diseases working party of the European Bone Marrow Transplantation Group. Clin. Infect. Dis. 65, 1819–1828 (2017).

    Article  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05277350 (2023).

  200. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04191148 (2022).

  201. Kim, P., Sanchez, A., Kime, J. & Ousterout, D. 1083. Phase 1b results of pharmacokinetics, pharmacodynamics, and safety for LBP-EC01, a CRISPR-Cas3 enhanced bacteriophage cocktail targeting escherichia coli that cause urinary tract infections. Open Forum Infect. Dis. 8, S633 (2021).

    Article  Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05488340 (2024).

  203. Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. 24, 1319–1332 (2024).

    Article  Google Scholar 

  204. Sheitoyan-Pesant, C. et al. Clinical and healthcare burden of multiple recurrences of Clostridium difficile infection. Clin. Infect. Dis. 62, 574–580 (2016).

    Article  Google Scholar 

  205. Johnson, S. et al. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73, e1029–e1044 (2021).

    Article  Google Scholar 

  206. van Prehn, J. et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 27, S1–S21 (2021).

    Article  Google Scholar 

  207. Umansky, A. A. & Fortier, L. C. The long and sinuous road to phage-based therapy of Clostridioides difficile infections. Front. Med. 10, 1259427 (2023).

    Article  Google Scholar 

  208. Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Invest. Dermatol. 133, 2152–2160 (2013).

    Article  Google Scholar 

  209. Mei, Z. et al. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat. Med. 30, 2265–2276 (2024).

    Article  Google Scholar 

  210. Leveau, A., Canadas Blasco, I., Mathieu, A. & Decrulle, A. Phage-derived particles for in situ delivery of DNA payload into C. acnes population. US Patent US20240254496A1 (2024).

  211. Freedman, S. B., van de Kar, N. C. A. J. & Tarr, P. I. Shiga toxin-producing escherichia coli and the hemolytic-uremic syndrome. N. Engl. J. Med. 389, 1402–1414 (2023).

    Article  Google Scholar 

  212. Galtier, M. et al. Treatment of STEC infection via CRISPR-Cas targeted cleavage of the Shiga toxin gene in animal models. Preprint at bioRxiv https://doi.org/10.1101/2025.02.28.640725 (2025).

    Article  Google Scholar 

  213. Pacia, D. M., Brown, B. L., Minssen, T. & Darrow, J. J. CRISPR-phage antibacterials to address the antibiotic resistance crisis: scientific, economic, and regulatory considerations. J. Law Biosci. 11, lsad030 (2024).

    Article  Google Scholar 

  214. Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Article  Google Scholar 

  215. López-Igual, R., Bernal-Bayard, J., Rodríguez-Patón, A., Ghigo, J. M. & Mazel, D. Engineered toxin–intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat. Biotechnol. 37, 755–760 (2019).

    Article  Google Scholar 

  216. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  Google Scholar 

  217. Ozdemir, T., Fedorec, A. J. H., Danino, T. & Barnes, C. P. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7, 5–16 (2018).

    Article  Google Scholar 

  218. Sheridan, C. The world’s first CRISPR therapy is approved: who will receive it? Nat. Biotechnol. 42, 3–4 (2023).

    Article  Google Scholar 

  219. Tou, C. J. & Kleinstiver, B. P. Programmable RNA-guided enzymes for next-generation genome editing. Nature 630, 827–828 (2024).

    Article  Google Scholar 

  220. Calvo-Villamañán, A. et al. On-target activity predictions enable improved CRISPR–dCas9 screens in bacteria. Nucleic Acids Res. 48, e64 (2020).

    Article  Google Scholar 

  221. Gutierrez, B., Ng, J. W., Cui, L., Becavin, C. & Bikard, D. Genome-wide CRISPR-Cas9 screen in E. coli identifies design rules for efficient targeting. Preprint at bioRxiv https://doi.org/10.1101/308148 (2018).

  222. Guo, J. et al. Improved sgRNA design in bacteria via genome-wide activity profiling. Nucleic Acids Res. 46, 7052–7069 (2018).

    Article  Google Scholar 

  223. Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression-fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

    Article  Google Scholar 

  224. Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & van Teeffelen, S. Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Syst. Biol. 14, e7899 (2018).

    Article  Google Scholar 

  225. Rottinghaus, A. G., Vo, S. & Moon, T. S. Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia. Proc. Natl Acad. Sci. USA 120, e2213154120 (2022).

    Article  Google Scholar 

  226. Yu, Y. et al. Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration. Genome Biol. 25, 13 (2024).

    Article  Google Scholar 

  227. Moreb, E. A. et al. Managing the SOS response for enhanced CRISPR-Cas-based recombineering in E. coli through transient inhibition of host RecA activity. ACS Synth. Biol. 6, 2209–2218 (2017).

    Article  Google Scholar 

  228. Rottinghaus, A. G., Ferreiro, A., Fishbein, S. R. S., Dantas, G. & Moon, T. S. Genetically stable CRISPR-based kill switches for engineered microbes. Nat. Commun. 13, 672 (2022).

    Article  Google Scholar 

  229. Forier, K. et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Rel. 190, 607–623 (2014).

    Article  Google Scholar 

  230. Lee, H. W., Kharel, S. & Loo, S. C. J. Lipid-coated hybrid nanoparticles for enhanced bacterial biofilm penetration and antibiofilm efficacy. ACS Omega 7, 35814–35824 (2022).

    Article  Google Scholar 

  231. Moreira, L. et al. Liposome delivery of nucleic acids in bacteria: toward in vivo labeling of human microbiota. ACS Infect. Dis. 8, 1218–1230 (2022).

    Article  Google Scholar 

  232. Pereira, S. et al. Lipoplexes to deliver oligonucleotides in gram-positive and gram-negative bacteria: towards treatment of blood infections. Pharmaceutics 13, 989 (2021).

    Article  Google Scholar 

  233. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  Google Scholar 

  234. Wagner, V., Dullaart, A., Bock, A.-K. & Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006).

    Article  Google Scholar 

  235. Vogel, J. An RNA biology perspective on species-specific programmable RNA antibiotics. Mol. Microbiol. 113, 550–559 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Synthetic Biology group at Institute Pasteur for discussions. F.B. was supported by the SNSF (P500PB_210944). D.B. and B.B. were supported by the European Research Council (101044479) and Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID). In some instances, we have used ChatGPT to reformulate sentences and improve style. All generated text has been carefully reviewed for accuracy.

Author information

Authors and Affiliations

Authors

Contributions

F.B. and D.B. conceptualized the project. B.B. and R.L. contributed to structuring the manuscript. F.B., B.B., R.L., A.M., X.D., A.D. and D.B. wrote the manuscript. F.B., B.B. and R.L. prepared figures and tables. D.B. supervised the project. All authors made a substantial contribution to the discussion of content and editing of the manuscript.

Corresponding authors

Correspondence to Fabienne Benz or David Bikard.

Ethics declarations

Competing interests

The following authors have links to Eligo Bioscience, of which work is cited and discussed in this article: D.B is a co-founder, shareholder and advisor; X.D. is a co-founder, CEO and shareholder; and A.D. is an employee and shareholder. These authors are also listed as inventors on several patents in the field. This relationship has been disclosed to the journal, and all authors declare that there are no other competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Sheng Yang, who co-reviewed with Siqi Yang, and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benz, F., Beamud, B., Laurenceau, R. et al. CRISPR–Cas therapies targeting bacteria. Nat Rev Bioeng 3, 627–644 (2025). https://doi.org/10.1038/s44222-025-00311-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00311-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research