Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-activated cell sorting

Abstract

The field of genomic research has undergone a remarkable transformation with the rapid expansion of high-quality genome databases, the discovery of epigenetic factors and the advent of CRISPR–Cas technology. However, a major challenge remains in linking these genetic and epigenetic perturbations to spatially resolved cellular phenotypes at scale. Image-activated cell sorting (IACS) offers a way to address this challenge by enabling real-time image-based sorting of suspended objects (for example, single live cells, cell clusters or cells adhered to carriers) at high rates of over 1,000 events per second. Unlike fluorescence-activated cell sorting (FACS), which relies on one-dimensional fluorescence intensity profiles of cells, IACS leverages multi-dimensional optical imaging to capture the full complexity of cellular characteristics, enabling high-content sorting based on both visual and functional attributes. A distinctive feature of IACS is its ability to integrate artificial intelligence for real-time image analysis, enabling sophisticated and precision decision-making in the sorting process. In this Review, we explore the principles, components and key performance indicators of IACS. We also highlight its unique applications across fields such as microbiology, immunology, cancer biology, food science and sustainability science, while addressing the challenges and future opportunities that lie ahead for IACS. Our goal is for this Review to serve as a comprehensive guide to IACS for beginners and experienced users alike, fostering its adoption and driving discoveries across biology and medicine.

Key points

  • The field of genomic research has been revolutionized by the rapid growth of high-quality genome databases, the identification of epigenetic factors and the introduction of CRISPR–Cas technology.

  • A key challenge remains in linking genetic changes to spatially resolved cellular phenotypes, given that spatial organization is vital to understanding cellular function and behaviour.

  • Image-activated cell sorting (IACS) offers a way to address this challenge by providing real-time, high-content sorting of suspended objects such as single live cells, cell clusters or cells adhered to carriers, based on their visual and functional attributes using multi-dimensional imaging.

  • The integration of artificial intelligence for real-time image analysis enables sophisticated and precise decision-making based on nuanced features during the sorting process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of IACS.
Fig. 2: Components of IACS.
Fig. 3: Applications of IACS.
Fig. 4: Challenges and future opportunities.

Similar content being viewed by others

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  Google Scholar 

  2. Gibbs, R. A. The human genome project changed everything. Nat. Rev. Genet. 21, 575–576 (2020).

    Article  Google Scholar 

  3. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  Google Scholar 

  4. Altshuler, D. L. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  Google Scholar 

  5. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  Google Scholar 

  6. Gosden, R. G. & Feinberg, A. P. Genetics and epigenetics — nature’s pen-and-pencil set. N. Engl. J. Med. 356, 731–733 (2007).

    Article  Google Scholar 

  7. Hinte, L. C. et al. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature 636, 457–465 (2024).

    Article  Google Scholar 

  8. Tomar, A. et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630, 720–727 (2024).

    Article  Google Scholar 

  9. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  Google Scholar 

  10. Feinberg, A. P. Epigenetics at the epicenter of modern medicine. JAMA 299, 1345–1350 (2008).

    Article  Google Scholar 

  11. Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    Article  Google Scholar 

  12. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  Google Scholar 

  13. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  Google Scholar 

  14. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  Google Scholar 

  15. Karlić, R., Chung, H.-R., Lasserre, J., Vlahoviček, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).

    Article  Google Scholar 

  16. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  Google Scholar 

  17. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  Google Scholar 

  18. Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2021).

    Article  Google Scholar 

  19. Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  Google Scholar 

  20. Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017).

    Article  Google Scholar 

  21. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  Google Scholar 

  22. Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  Google Scholar 

  23. Kotliar, D. et al. Single-cell profiling of Ebola virus disease in vivo reveals viral and host dynamics. Cell 183, 1383–1401.e19 (2020).

    Article  Google Scholar 

  24. Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nat. Biotechnol. 40, 374–381 (2022).

    Article  Google Scholar 

  25. Valdes, A. M., Glass, D. & Spector, T. D. Omics technologies and the study of human ageing. Nat. Rev. Genet. 14, 601–607 (2013).

    Article  Google Scholar 

  26. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  Google Scholar 

  27. Zhang, S. et al. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat. Commun. 14, 3064 (2023).

    Article  Google Scholar 

  28. Nolan, T. M. et al. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379, eadf4721 (2023).

    Article  Google Scholar 

  29. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  Google Scholar 

  30. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).

    Article  Google Scholar 

  31. Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).

    Article  Google Scholar 

  32. Hao, N., Budnik, B. A., Gunawardena, J. & O’Shea, E. K. Tunable signal processing through modular control of transcription factor translocation. Science 339, 460–464 (2013).

    Article  Google Scholar 

  33. Mackinder, L. C. M. et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171, 133–147.e14 (2017).

    Article  Google Scholar 

  34. Moor, A. E. et al. Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science 357, 1299–1303 (2017).

    Article  Google Scholar 

  35. Pernas, L., Bean, C., Boothroyd, J. C. & Scorrano, L. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab. 27, 886–897.e4 (2018).

    Article  Google Scholar 

  36. von Erlach, T. C. et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 17, 237–242 (2018).

    Article  Google Scholar 

  37. Zenker, J. et al. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357, 925–928 (2017).

    Article  Google Scholar 

  38. He, F. et al. π-HuB: the proteomic navigator of the human body. Nature 636, 322–331 (2024).

    Article  Google Scholar 

  39. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  Google Scholar 

  40. Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339–342 (2018).

    Article  Google Scholar 

  41. Ludwig, C. H. & Bintu, L. Mapping chromatin modifications at the single cell level. Development 146, dev170217 (2019).

    Article  Google Scholar 

  42. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 (2021).

    Article  Google Scholar 

  43. Albert, F. W., Treusch, S., Shockley, A. H., Bloom, J. S. & Kruglyak, L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014).

    Article  Google Scholar 

  44. Wu, M. & Singh, A. K. Single-cell protein analysis. Curr. Opin. Biotechnol. 23, 83–88 (2012).

    Article  Google Scholar 

  45. Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276.e13 (2018). This pioneering study established IACS as a real-time, AI-driven platform for high-content cell sorting based on intracellular and intercellular phenotypes.

    Article  Google Scholar 

  46. Nitta, N. et al. Raman image-activated cell sorting. Nat. Commun. 11, 3452 (2020). This work presents Raman IACS for chemical imaging-based cell sorting without fluorescent labelling, useful for IACS applications where labelling should be avoided.

    Article  Google Scholar 

  47. Isozaki, A. et al. Intelligent image-activated cell sorting 2.0. Lab. Chip 20, 2263–2273 (2020). This work presents the next-generation intelligent IACS platform with 20-fold improvements in throughput and sensitivity, enabling real-time, high-content sorting of live cells for advanced applications across biology and medicine.

    Article  Google Scholar 

  48. Nawaz, A. A. et al. Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat. Methods 17, 595–599 (2020). This study introduces a cell-sorting platform to achieve label-free, image-based sorting with molecular specificity by combining deformability cytometry, standing surface acoustic wave actuation and deep learning.

    Article  MathSciNet  Google Scholar 

  49. Schraivogel, D. et al. High-speed fluorescence image–enabled cell sorting. Science 375, 315–320 (2022). This study presents an IACS system that integrates fluorescence imaging with droplet sorting to enable genome-scale, phenotype-driven CRISPR screens at unprecedented throughput.

    Article  Google Scholar 

  50. Filby, A. & Carpenter, A. E. A new image for cell sorting. N. Engl. J. Med. 386, 1755–1758 (2022).

    Article  Google Scholar 

  51. Kuhn, T. M., Paulsen, M. & Cuylen-Haering, S. Accessible high-speed image-activated cell sorting. Trends Cell Biol. 34, 657–670 (2024).

    Article  Google Scholar 

  52. Doan, M. & Carpenter, A. E. Leveraging machine vision in cell-based diagnostics to do more with less. Nat. Mater. 18, 414–418 (2019).

    Article  Google Scholar 

  53. LaBelle, C. A., Massaro, A., Cortés-Llanos, B., Sims, C. E. & Allbritton, N. L. Image-based live cell sorting. Trends Biotechnol. 39, 613–623 (2021).

    Article  Google Scholar 

  54. Schraivogel, D. & Steinmetz, L. M. Cell sorters see things more clearly now. Mol. Syst. Biol. 19, e11254 (2023).

    Article  Google Scholar 

  55. Chen, X. et al. Image-guided cell sorting using fast scanning lasers. APL Photon. 5, 040801 (2020).

    Article  Google Scholar 

  56. Herbig, M. et al. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues. Sci. Rep. 12, 963 (2022).

    Article  Google Scholar 

  57. Salek, M. et al. COSMOS: a platform for real-time morphology-based, label-free cell sorting using deep learning. Commun. Biol. 6, 971 (2023).

    Article  Google Scholar 

  58. Lee, J. et al. Versatile phenotype-activated cell sorting. Sci. Adv. 6, eabb7438 (2020).

    Article  Google Scholar 

  59. Hasle, N. et al. High‐throughput, microscope‐based sorting to dissect cellular heterogeneity. Mol. Syst. Biol. 16, e9442 (2020).

    Article  Google Scholar 

  60. Nawaz, A. A. et al. Image-based cell sorting using focused travelling surface acoustic waves. Lab. Chip 23, 372–387 (2023).

    Article  Google Scholar 

  61. Lee, K., Kim, S.-E., Doh, J., Kim, K. & Chung, W. K. User-friendly image-activated microfluidic cell sorting technique using an optimized, fast deep learning algorithm. Lab. Chip 21, 1798–1810 (2021).

    Article  Google Scholar 

  62. Gu, Y. et al. Machine learning based real‐time image‐guided cell sorting and classification. Cytometry A 95, 499–509 (2019). This work introduces a real-time, machine learning-based IACS system that combines high-throughput flow cytometry with high-content image analysis and on-chip piezoelectric actuation to enable precise, phenotype-driven cell classification and sorting.

    Article  Google Scholar 

  63. Sesen, M. & Whyte, G. Image-based single cell sorting automation in droplet microfluidics. Sci. Rep. 10, 8736 (2020).

    Article  Google Scholar 

  64. Anagnostidis, V. et al. Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures. Lab. Chip 20, 889–900 (2020).

    Article  Google Scholar 

  65. Gerling, T., Godino, N., Pfisterer, F., Hupf, N. & Kirschbaum, M. High-precision, low-complexity, high-resolution microscopy-based cell sorting. Lab. Chip 23, 3172–3185 (2023).

    Article  Google Scholar 

  66. Li, Y. et al. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep. 9, 11088 (2019).

    Article  Google Scholar 

  67. Isozaki, A. et al. A practical guide to intelligent image-activated cell sorting. Nat. Protoc. 14, 2370–2415 (2019). This practical protocol for building and operating an IACS system enabled real-time, image-based sorting using deep learning and an integrated high-throughput microfluidic-optical system.

    Article  Google Scholar 

  68. Tang, R. et al. Low-latency label-free image-activated cell sorting using fast deep learning and AI inferencing. Biosens. Bioelectron. 220, 114865 (2023).

    Article  Google Scholar 

  69. Hayashi, M. et al. Is AI essential? Examining the need for deep learning in image-activated sorting of Saccharomyces cerevisiae. Lab. Chip 23, 4232–4244 (2023).

    Article  Google Scholar 

  70. Harmon, J. et al. Intelligent image‐activated sorting of Chlamydomonas reinhardtii by mitochondrial localization. Cytometry A 101, 1027–1034 (2022).

    Article  Google Scholar 

  71. Isozaki, A. et al. AI on a chip. Lab. Chip 20, 3074–3090 (2020).

    Article  Google Scholar 

  72. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 49, 1457–1973 (2019).

    Article  Google Scholar 

  73. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 51, 2708–3145 (2021).

    Article  Google Scholar 

  74. Zhao, Y. et al. Intelligent sort‐timing prediction for image‐activated cell sorting. Cytometry A 103, 88–97 (2023).

    Article  Google Scholar 

  75. Jiao, Z., Zhao, J., Chao, Z., You, Z. & Zhao, J. An air-chamber-based microfluidic stabilizer for attenuating syringe-pump-induced fluctuations. Microfluid. Nanofluid 23, 26 (2019).

    Article  Google Scholar 

  76. Yun, H., Kim, K. & Lee, W. G. Cell manipulation in microfluidics. Biofabrication 5, 022001 (2013).

    Article  Google Scholar 

  77. Patel, Y. M. et al. An inexpensive microfluidic device for three-dimensional hydrodynamic focusing in imaging flow cytometry. Biomicrofluidics 14, 064110 (2020).

    Article  Google Scholar 

  78. Yan, S. & Yuan, D. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta 221, 121401 (2021).

    Article  Google Scholar 

  79. Zhang, P., Bachman, H., Ozcelik, A. & Huang, T. J. Acoustic microfluidics. Annu. Rev. Anal. Chem. 13, 17–43 (2020).

    Article  Google Scholar 

  80. Li, Y. et al. Recent advances in acoustic microfluidics and its exemplary applications. Biomicrofluidics 16, 031502 (2022).

    Article  Google Scholar 

  81. Di Carlo, D. Inertial microfluidics. Lab. Chip 9, 3038 (2009).

    Article  Google Scholar 

  82. Xiang, N. & Ni, Z. Inertial microfluidics: current status, challenges, and future opportunities. Lab. Chip 22, 4792–4804 (2022).

    Article  Google Scholar 

  83. Zhang, T. et al. Passive microfluidic devices for cell separation. Biotechnol. Adv. 71, 108317 (2024).

    Article  Google Scholar 

  84. Lee, K. C. M. et al. Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particle filtration and analysis. Lab. Chip 24, 4182–4197 (2024).

    Article  Google Scholar 

  85. Lee, K. C. M., Guck, J., Goda, K. & Tsia, K. K. Toward deep biophysical cytometry: prospects and challenges. Trends Biotechnol. 39, 1249–1262 (2021).

    Article  Google Scholar 

  86. Rees, P., Summers, H. D., Filby, A., Carpenter, A. E. & Doan, M. Imaging flow cytometry. Nat. Rev. Meth. Prim. 2, 86 (2022).

    Article  Google Scholar 

  87. Mikami, H. et al. Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 11, 1162 (2020). This optomechanical fluorescence imaging method achieved microscopy-grade imaging at >10,000 eps, overcoming the trade-off between speed, resolution and sensitivity in flow cytometry, an important requirement for IACS.

    Article  Google Scholar 

  88. Doan, M. et al. Deepometry, a framework for applying supervised and weakly supervised deep learning to imaging cytometry. Nat. Protoc. 16, 3572–3595 (2021).

    Article  Google Scholar 

  89. Mikami, H. et al. Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica 5, 117 (2018).

    Article  Google Scholar 

  90. Kanno, H., Mikami, H., Kaya, Y., Ozeki, Y. & Goda, K. Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Opt. Lett. 44, 467 (2019).

    Article  Google Scholar 

  91. Diebold, E. D., Buckley, B. W., Gossett, D. R. & Jalali, B. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photon. 7, 806–810 (2013).

    Article  Google Scholar 

  92. Kanno, H. et al. High-throughput fluorescence lifetime imaging flow cytometry. Nat. Commun. 15, 7376 (2024).

    Article  Google Scholar 

  93. Han, Y. & Lo, Y.-H. Imaging cells in flow cytometer using spatial-temporal transformation. Sci. Rep. 5, 13267 (2015).

    Article  Google Scholar 

  94. Han, Y. et al. Cameraless high-throughput three-dimensional imaging flow cytometry. Optica 6, 1297 (2019).

    Article  Google Scholar 

  95. Lai, Q. T. K. et al. High-speed laser-scanning biological microscopy using FACED. Nat. Protoc. 16, 4227–4264 (2021).

    Article  Google Scholar 

  96. Wang, M. et al. Low-latency in situ image analytics with FPGA-based quantized convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst. 33, 2853–2866 (2022).

    Article  Google Scholar 

  97. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  Google Scholar 

  98. Moen, E. et al. Deep learning for cellular image analysis. Nat. Meth. 16, 1233–1246 (2019).

    Article  Google Scholar 

  99. Goda, K., Lu, H., Fei, P. & Guck, J. Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies. Lab. Chip 23, 3737–3740 (2023).

    Article  Google Scholar 

  100. Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In Proc. 12th USENIX Symp. Operating Systems Design and Implementation (OSDI ’16) 265–283 (USENIX, 2016).

  101. Chollet, F. Keras: the Python deep learning library. Keras https://keras.io (2015).

  102. Sakuma, S., Kasai, Y., Hayakawa, T. & Arai, F. On-chip cell sorting by high-speed local-flow control using dual membrane pumps. Lab. Chip 17, 2760–2767 (2017).

    Article  Google Scholar 

  103. Wyatt Shields, C. IV, Reyes, C. D. & López, G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab. Chip 15, 1230–1249 (2015).

    Article  Google Scholar 

  104. Shen, Y., Yalikun, Y. & Tanaka, Y. Recent advances in microfluidic cell sorting systems. Sens. Actuat. B 282, 268–281 (2019).

    Article  Google Scholar 

  105. Wu, M. et al. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5, 32 (2019).

    Article  Google Scholar 

  106. Kim, C., Hwang, D. H., Lee, S. & Kim, S.-J. Water-head pumps provide precise and fast microfluidic pumping and switching versus syringe pumps. Microfluid. Nanofluid. 20, 4 (2016).

    Article  Google Scholar 

  107. Guo, B. & Jiang, L. Flowing cells stability test and evaluation for fast flow cytometry. J. Opt. 48, 54–59 (2019).

    Article  Google Scholar 

  108. Herbig, M. et al. Best practices for reporting throughput in biomedical research. Nat. Meth. 19, 633–634 (2022). This work establishes the best practices for defining and reporting throughput in biomedical research, providing a rigorous framework essential for evaluating high-throughput technologies such as IACS.

    Article  Google Scholar 

  109. Ryan, K., Rose, R. E., Jones, D. R. & Lopez, P. A. Sheath fluid impacts the depletion of cellular metabolites in cells afflicted by sorting induced cellular stress (SICS). Cytometry A 99, 921–929 (2021).

    Article  Google Scholar 

  110. Gala de Pablo, J., Lindley, M., Hiramatsu, K. & Goda, K. High-throughput Raman flow cytometry and beyond. Acc. Chem. Res. 54, 2132–2143 (2021).

    Article  Google Scholar 

  111. Nishiyama, R. et al. Fourier transform coherent anti-Stokes Raman scattering spectroscopy: a comprehensive review. Anal. Chem. 96, 18322–18336 (2024).

    Article  Google Scholar 

  112. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Edn 57, 4143–4148 (2018).

    Article  Google Scholar 

  113. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  Google Scholar 

  114. Xu, M. et al. Morphological indicator for directed evolution of Euglena gracilis with a high heavy metal removal efficiency. Environ. Sci. Technol. 55, 7880–7889 (2021).

    Article  Google Scholar 

  115. Lei, C. et al. High-throughput optical imaging technology for large-scale single-cell analysis of live Euglena gracilis. TrAC Trends Anal. Chem. 180, 117938 (2024).

    Article  Google Scholar 

  116. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011).

    Article  Google Scholar 

  117. Mehta, S. K. & Gaur, J. P. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25, 113–152 (2005).

    Article  Google Scholar 

  118. Leong, Y. K. & Chang, J.-S. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour. Technol. 303, 122886 (2020).

    Article  Google Scholar 

  119. Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

    Article  Google Scholar 

  120. Lee, K. S. et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat. Protoc. 16, 634–676 (2021).

    Article  Google Scholar 

  121. Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

    Article  Google Scholar 

  122. Müller, S. & Nebe-von-Caron, G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 34, 554–587 (2010).

    Article  Google Scholar 

  123. Lo, M. C. K. et al. Information‐distilled generative label‐free morphological profiling encodes cellular heterogeneity. Adv. Sci. 11, e2307591 (2024).

    Article  Google Scholar 

  124. Siu, D. M. D. et al. Optofluidic imaging meets deep learning: from merging to emerging. Lab. Chip 23, 1011–1033 (2023).

    Article  Google Scholar 

  125. de Rutte, J. et al. Suspendable hydrogel nanovials for massively parallel single-cell functional analysis and sorting. ACS Nano 16, 7242–7257 (2022).

    Article  Google Scholar 

  126. Udani, S. et al. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. Nat. Nanotechnol. 19, 354–363 (2024).

    Article  Google Scholar 

  127. Koo, D. et al. Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. Nat. Commun. 15, 4870 (2024).

    Article  Google Scholar 

  128. Koo, D. et al. Defining T cell receptor repertoires using nanovial-based binding and functional screening. Proc. Natl Acad. Sci. 121, e2320442121 (2024).

    Article  Google Scholar 

  129. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).

    Article  Google Scholar 

  130. Rees, C. L., Moradi, K. & Ascoli, G. A. Weighing the evidence in Peters’ rule: does neuronal morphology predict connectivity? Trends Neurosci. 40, 63–71 (2017).

    Article  Google Scholar 

  131. Martin, D., Xu, J., Porretta, C. & Nichols, C. D. Neurocytometry: flow cytometric sorting of specific neuronal populations from human and rodent brain. ACS Chem. Neurosci. 8, 356–367 (2017).

    Article  Google Scholar 

  132. Spitzer, D. et al. A flow cytometry-based protocol for syngenic isolation of neurovascular unit cells from mouse and human tissues. Nat. Protoc. 18, 1510–1542 (2023).

    Article  Google Scholar 

  133. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Meth. Prim. 2, 8 (2022).

    Article  Google Scholar 

  134. Findinier, J. et al. Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO2 concentrating mechanism. Proc. Natl Acad. Sci. 121, e2407548121 (2024).

    Article  Google Scholar 

  135. Isozaki, A. et al. Investigating T‐cell receptor dynamics under in vitro antibody‐based stimulation using imaging flow cytometry. Cytometry A 107, 88–97 (2025).

    Article  Google Scholar 

  136. Challa, D. et al. Function-first discovery of high affinity monoclonal antibodies using Nanovial-based plasma B cell screening. Preprint at bioRxiv https://doi.org/10.1101/2024.08.15.608174 (2024).

  137. Langerman, J. et al. Linking single-cell transcriptomes with secretion using SEC-seq. Nat. Protoc. 20, 2034–2055 (2025).

    Article  Google Scholar 

  138. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  Google Scholar 

  139. Kleiber, A., Kraus, D., Henkel, T. & Fritzsche, W. Review: tomographic imaging flow cytometry. Lab. Chip 21, 3655–3666 (2021).

    Article  Google Scholar 

  140. Gualda, E. J., Pereira, H., Martins, G. G., Gardner, R. & Moreno, N. Three‐dimensional imaging flow cytometry through light‐sheet fluorescence microscopy. Cytometry A 91, 144–151 (2017).

    Article  Google Scholar 

  141. Zhang, Z. et al. A high-throughput technique to map cell images to cell positions using a 3D imaging flow cytometer. Proc. Natl. Acad. Sci. 119, e2118068119 (2022).

    Article  Google Scholar 

  142. Cheng, J.-X. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004).

    Article  Google Scholar 

  143. Lindley, M. et al. High‐throughput Raman‐activated cell sorting in the fingerprint region. Adv. Mater. Technol. 7, 2101567 (2022).

    Article  Google Scholar 

  144. Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. 116, 15842–15848 (2019).

    Article  Google Scholar 

  145. Wakisaka, Y. et al. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol. 1, 16124 (2016).

    Article  Google Scholar 

  146. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  Google Scholar 

  147. Brzozowski, K. et al. Stimulated Raman scattering microscopy in chemistry and life science — development, innovation, perspectives. Biotechnol. Adv. 60, 108003 (2022).

    Article  Google Scholar 

  148. Vicidomini, G., Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nat. Meth. 15, 173–182 (2018).

    Article  Google Scholar 

  149. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).

    Article  Google Scholar 

  150. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  Google Scholar 

  151. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Meth. Prim. 1, 39 (2021).

    Article  Google Scholar 

  152. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth. 3, 793–796 (2006).

    Article  Google Scholar 

  153. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  Google Scholar 

  154. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  Google Scholar 

  155. Heintzmann, R. & Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 117, 13890–13908 (2017).

    Article  Google Scholar 

  156. Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Meth. 15, 1011–1019 (2018).

    Article  Google Scholar 

  157. Li, X. et al. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat. Biotechnol. 41, 1307–1319 (2023).

    Article  Google Scholar 

  158. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  Google Scholar 

  159. Moerner, W. E. & William, E. Single‐molecule spectroscopy, imaging, and photocontrol: foundations for super‐resolution microscopy. Angew. Chem. Int. Edn 54, 8067–8093 (2015).

    Article  Google Scholar 

  160. Keshava, N. & Mustard, J. F. Spectral unmixing. IEEE Signal. Process. Mag. 19, 44–57 (2002).

    Article  Google Scholar 

  161. Nolan, J. P. & Condello, D. Spectral flow cytometry. Curr. Protoc. Cytom. https://doi.org/10.1002/0471142956.cy0127s63 (2013).

  162. Martino, N. et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photon. 13, 720–727 (2019).

    Article  Google Scholar 

  163. Kwok, S. J. J. et al. High-dimensional multi-pass flow cytometry via spectrally encoded cellular barcoding. Nat. Biomed. Eng. 8, 310–324 (2023).

    Article  Google Scholar 

  164. Lugli, E., Roederer, M. & Sottile, R. Multipass high-dimensional flow cytometry. Nat. Biomed. Eng. 8, 209–211 (2023).

    Article  Google Scholar 

  165. Bröker, F., Holt, L. L., Roads, B. D., Dayan, P. & Love, B. C. Demystifying unsupervised learning: how it helps and hurts. Trends Cogn. Sci. 28, 974–986 (2024).

    Article  Google Scholar 

  166. Wu, Z. et al. DynaMorph: self-supervised learning of morphodynamic states of live cells. Mol. Biol. Cell 33, ar59 (2022).

    Article  Google Scholar 

  167. Zhou, Y. et al. Intelligent classification of platelet aggregates by agonist type. eLife 9, e52938 (2020).

    Article  Google Scholar 

  168. Zaritsky, A. et al. Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma. Cell Syst. 12, 733–747.e6 (2021).

    Article  Google Scholar 

  169. Kobayashi, H., Cheveralls, K. C., Leonetti, M. D. & Royer, L. A. Self-supervised deep learning encodes high-resolution features of protein subcellular localization. Nat. Meth. 19, 995–1003 (2022).

    Article  Google Scholar 

  170. Dwivedi, R. et al. Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55, 194 (2023).

    Article  Google Scholar 

  171. Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W. & Mostafavi, S. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat. Rev. Genet. 24, 125–137 (2023).

    Article  Google Scholar 

  172. Ng, D. P. et al. Recommendations for using artificial intelligence in clinical flow cytometry. Cytometry B 106, 228–238 (2024).

    Article  Google Scholar 

  173. Vyawahare, S. et al. Sorting droplets into many outlets. Lab. Chip 21, 4262–4273 (2021).

    Article  Google Scholar 

  174. Sobahi, N. & Han, A. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes. Biosens. Bioelectron. 166, 112458 (2020).

    Article  Google Scholar 

  175. Verbist, W. et al. SeParate: multiway fluorescence-activated droplet sorting based on integration of serial and parallel triaging concepts. Lab. Chip 24, 2107–2121 (2024).

    Article  Google Scholar 

  176. Chen, Y. et al. Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Small 10, 1746–1751 (2014).

    Article  Google Scholar 

  177. Iino, T. et al. High-speed microparticle isolation unlimited by Poisson statistics. Lab. Chip 19, 2669–2677 (2019).

    Article  Google Scholar 

  178. Pritchard, R. H. et al. Cell sorting actuated by a microfluidic inertial vortex. Lab. Chip 19, 2456–2465 (2019).

    Article  Google Scholar 

  179. Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    Article  Google Scholar 

  180. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

    Article  Google Scholar 

  181. Jia, Q., Chu, H., Jin, Z., Long, H. & Zhu, B. High-throughput single-сell sequencing in cancer research. Signal. Transduct. Target. Ther. 7, 145 (2022).

    Article  Google Scholar 

  182. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  Google Scholar 

  183. Neto, M. D., Oliveira, M. B. & Mano, J. F. Microparticles in contact with cells: from carriers to multifunctional tissue modulators. Trends Biotechnol. 37, 1011–1028 (2019).

    Article  Google Scholar 

  184. Zheng, Y. et al. Microfluidic engineering of crater–terrain hydrogel microparticles: toward novel cell carriers. ACS Appl. Mater. Interf. 15, 7833–7840 (2023).

    Article  Google Scholar 

  185. Zheng, Q. et al. Hydrogels as carriers deliver stem cells/exosomes for liver injury. Mater. Adv. 5, 3587–3601 (2024).

    Article  Google Scholar 

  186. Feng, Q. et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent. Sci. 5, 440–450 (2019).

    Article  Google Scholar 

  187. Zhuang, S., Semenec, L., Nagy, S. S., Cain, A. K. & Inglis, D. W. High‐precision screening and sorting of double emulsion droplets. Cytometry A 105, 547–554 (2024).

    Article  Google Scholar 

  188. Brower, K. K. et al. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab. Chip 20, 2062–2074 (2020).

    Article  Google Scholar 

  189. Hulett, H. R., Bonner, W. A., Barrett, J. & Herzenberg, L. A. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166, 747–749 (1969).

    Article  Google Scholar 

  190. Liu, L., Cheung, T. H., Charville, G. W. & Rando, T. A. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat. Protoc. 10, 1612–1624 (2015).

    Article  Google Scholar 

  191. Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Nat. Rev. Genet. 23, 89–103 (2022).

    Article  Google Scholar 

  192. Shapiro, H. M. Practical Flow Cytometry (John Wiley & Sons, 2005).

  193. Cho, S. H., Chen, C. H., Tsai, F. S., Godin, J. M. & Lo, Y.-H. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab. Chip 10, 1567 (2010).

    Article  Google Scholar 

  194. Chen, C. H. et al. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization. Anal. Chem. 83, 7269–7275 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS Core-to-Core Program (JPJSCCA20190007 to K.G.), the Research Grants Council (14125924 and RFS2021-7S06 to K.K.T.), the Innovation and Technology Commission (InnoHK initiative and ITS/318/22FP to K.K.T.), the Chan Zuckerberg Initiative Donor Advised Fund (2023-332386 to D.D.C.), the Humboldt Foundation’s Philipp Franz von Siebold Award (to K.G.), the Humboldt Association of Japan (to K.G.), the Mohammed bin Salman Center for Future Science and Technology for Saudi-Japan Vision 2030 (to K.G.), and the Cell Aging Control Endowed Chair at the University of Tokyo. We gratefully acknowledge the Serendipity Lab, the MSCA ITN Cell2Cell, and the LMU Munich and the University of Tokyo strategic partnership fund for facilitating collaboration opportunities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. K.G. edited the manuscript and led the manuscript development team.

Corresponding author

Correspondence to Keisuke Goda.

Ethics declarations

Competing interests

K.G. is a shareholder of CYBO, LucasLand and FlyWorks. K.K.T. is a shareholder of Conzeb. D.D.C. and the Regents of the University of California are shareholders of Partillion Bioscience Corporation, which sells Nanovials.

Citation diversity statement

We acknowledge that papers authored by scholars from minoritized groups are systematically under-cited. Here, we have made every attempt to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Yu-Hwa Lo, Shi-Wei Chu, who co-reviewed with Hsuan-Wen Lin, and Paul Rees for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Lee, K.C.M., Tsia, K.K. et al. Image-activated cell sorting. Nat Rev Bioeng 3, 890–907 (2025). https://doi.org/10.1038/s44222-025-00334-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00334-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing