Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioremediation of heavy metal(loid)s in agricultural soils and crops

Abstract

Heavy metal(loid) contamination in crops threatens the quality and safety of food and fodder. This contamination affects human health, as non-biodegradable heavy metal(loid)s can build up in the body through the food chain and bioaccumulation processes. Although heavy metal(loid)s exist naturally, their displacement and extensive use in chemicals and consumer products heighten the risk of accumulation in agricultural soils and crops. Managing or removing these hazardous materials from agricultural soils is challenging, owing to the large spatial distribution of contaminants, as well as limited technical and management options. However, concerns regarding agricultural soil quality and food safety have led to interest in environmentally friendly methods, such as the bioremediation of agricultural soils contaminated with heavy metal(loid)s. Given the low-to-moderate levels and diffused nature of heavy metal(loid) pollution in agricultural soils, one strategy is to cultivate crops that can tolerate these heavy metal(loid)s. Additionally, scalable bioremediation strategies include the bioengineering of crop varieties that are heavy metal(loid) resistant, and ecosystem-level bioengineering approaches for soil remediation. In this Review, we discuss trans-disciplinary approaches that integrate traditional bioremediation with crop bioengineering, microbiome engineering and nanotechnology to develop effective solutions for heavy metal(loid)-contaminated agricultural soils.

Key points

  • Heavy metal(loid) contamination in agricultural soils is estimated to be 14–17% but could be widespread.

  • Selection of remediation techniques should prioritize soil-grown food and fodder quality and safety.

  • Remediation is challenging, owing to broadacre pollution and crop involvement.

  • Bioremediation, including plant-based technology and in situ microbiome engineering, is deemed to be feasible.

  • A system-based approach, combining multiple strategies, is essential to overcoming the challenges posed by mixed pollutants, high economic costs and consumer acceptance of agricultural produce.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A fraction of widespread distribution of priority heavy metal(loid) s.
Fig. 2: Pictorial representation of phytoremediation.
Fig. 3: Engineering heavy metal(loid) tolerance.
Fig. 4: Penetration and translocation of nanomaterials into the plant system.

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution - Summary for Policymakers 250 (Food and Agriculture Organization, 2021).

  2. Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution - Summary for Policymakers 48 (Food and Agriculture Organization, 2021).

  3. Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).

    Article  Google Scholar 

  4. Huang, Y. et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci. Total Environ. 651, 3034–3042 (2019).

    Article  Google Scholar 

  5. Qin, G. et al. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267, 129205 (2021).

    Article  Google Scholar 

  6. Wan, Y., Liu, J., Zhuang, Z., Wang, Q. & Li, H. Heavy metals in agricultural soils: sources, influencing factors, and remediation strategies. Toxics 12, 63 (2024).

    Article  Google Scholar 

  7. Tóth, G., Hermann, T., Szatmári, G. & Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 565, 1054–1062 (2016).

    Article  Google Scholar 

  8. Ballabio, C., Jones, A. & Panagos, P. Cadmium in topsoils of the European Union — an analysis based on LUCAS topsoil database. Sci. Total Environ. 912, 168710 (2024).

    Article  Google Scholar 

  9. Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 207, 159–168 (2018).

    Article  Google Scholar 

  10. Liu, P. et al. Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: evidence from field monitoring and Pb isotope analysis. Environ. Pollut. 330, 121740 (2023).

    Article  Google Scholar 

  11. Tom, M., Fletcher, T. D. & McCarthy, D. T. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time? PLoS ONE 9, e112441 (2014).

    Article  Google Scholar 

  12. Shu, Y. et al. Antibiotics-heavy metals combined pollution in agricultural soils: sources, fate, risks, and countermeasures. Green Energy Environ. https://doi.org/10.1016/j.gee.2024.07.007 (2024).

    Article  Google Scholar 

  13. Shen, L. et al. Characterization of the bioavailability of per- and polyfluoroalkyl substances in farmland soils and the factors impacting their translocation to edible plant tissues. Environ. Sci. Technol. 58, 15790–15798 (2024).

    Article  Google Scholar 

  14. Kaur, R. et al. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 173, 430–448 (2021).

    Google Scholar 

  15. Tang, Z., Wang, H.-Q., Chen, J., Chang, J.-D. & Zhao, F.-J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant Biol. 65, 570–593 (2023).

    Article  Google Scholar 

  16. Zhao, F.-J., Tang, Z., Song, J.-J., Huang, X.-Y. & Wang, P. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant. 15, 27–44 (2022).

    Article  Google Scholar 

  17. Zhu, Z. et al. Foliar uptake, translocation and its contribution to cadmium accumulation in rice. Sci. Total Environ. 958, 177945 (2025).

    Article  Google Scholar 

  18. Wang, C.-C. et al. Heavy metal(loid)s in agricultural soil from main grain production regions of China: bioaccessibility and health risks to humans. Sci. Total Environ. 858, 159819 (2023).

    Article  Google Scholar 

  19. Edelstein, M. & Ben-Hur, M. Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Horticult. 234, 431–444 (2018).

    Article  Google Scholar 

  20. Rashid, A. et al. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy https://doi.org/10.3390/agronomy13061521 (2023).

  21. Islam, S. et al. Variation in arsenic bioavailability in rice genotypes using swine model: an animal study. Sci. Total Environ. 599–600, 324–331 (2017).

    Article  Google Scholar 

  22. Sultana, R., Tanvir, R. U., Hussain, K. A., Chamon, A. S. & Mondol, M. N. Heavy metals in commonly consumed root and leafy vegetables in Dhaka city, Bangladesh, and assessment of associated public health risks. Environ. Syst. Res. 11, 15 (2022).

    Article  Google Scholar 

  23. Mawari, G. et al. Heavy metal accumulation in fruits and vegetables and human health risk assessment: findings from Maharashtra, India. Environ. Health Insights 16, 11786302221119151 (2022).

    Article  Google Scholar 

  24. Tongprung, S., Wibuloutai, J., Dechakhamphu, A. & Samaneein, K. Health risk assessment associated with consumption of heavy metal-contaminated vegetables: a case study in the southern area of Northeast Thailand. Environ. Chall. 14, 100845 (2024).

    Article  Google Scholar 

  25. Zhang, X., Zhong, T., Liu, L. & Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 10, e0135182 (2015).

    Article  Google Scholar 

  26. Xiao, W. et al. The easily overlooked effect of global warming: diffusion of heavy metals. Toxics 12, 400 (2024).

    Article  Google Scholar 

  27. Drabesch, S. et al. Climate induced microbiome alterations increase cadmium bioavailability in agricultural soils with pH below 7. Commun. Earth Environ. 5, 637 (2024).

    Article  Google Scholar 

  28. Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B. & Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10, 4985 (2019).

    Article  Google Scholar 

  29. Jimenez, P. A., Díaz, X., Silva, M. L., Vega, A. & Curi, N. Assessing and understanding arsenic contamination in agricultural soils and lake sediments from papallacta rural parish, Northeastern Ecuador, via ecotoxicology factors, for environmental embasement. Sustainability 15, 3951 (2023).

    Article  Google Scholar 

  30. Mishra, R. et al. Mapping arsenic contamination and health risk assessment of arsenic in agricultural soils of Eastern India. Water Air Soil Pollut. 235, 559 (2024).

    Article  Google Scholar 

  31. Jiang, T., Wang, M., Zhang, W., Zhu, C. & Wang, F. A comprehensive analysis of agricultural non-point source pollution in China: current status, risk assessment and management strategies. Sustainability 16, 2515 (2024).

    Article  Google Scholar 

  32. Islam, M. M., Saxena, N. & Sharma, D. Phytoremediation as a green and sustainable prospective method for heavy metal contamination: a review. RSC Sustain. 2, 1269–1288 (2024).

    Article  Google Scholar 

  33. Charagh, S. et al. Unveiling innovative approaches to mitigate metals/metalloids toxicity for sustainable agriculture. Physiol. Plant. 176, e14226 (2024).

    Article  Google Scholar 

  34. Manara, A. in Plants and Heavy Metals (ed. Furini, A.) 27–53 (Springer Netherlands, 2012).

  35. Ejaz, U. et al. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 14, 1154571 (2023).

    Article  Google Scholar 

  36. Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).

    Article  Google Scholar 

  37. Yan, A. et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11, 359 (2020).

    Article  Google Scholar 

  38. Espada, J. J., Rodríguez, R., Gari, V., Salcedo-Abraira, P. & Bautista, L. F. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: a comparative life cycle assessment. Sci. Total Environ. 840, 156675 (2022).

    Article  Google Scholar 

  39. Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).

    Article  Google Scholar 

  40. Sladkovska, T., Wolski, K., Bujak, H., Radkowski, A. & Sobol, Ł. A review of research on the use of selected grass species in removal of heavy metals. Agronomy 12, 2587 (2022).

    Article  Google Scholar 

  41. Sharma, P., Reitz, T., Singh, S. P., Worrich, A. & Muehe, E. M. Going beyond improving soil health: cover plants as contaminant removers in agriculture. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2025.01.009 (2025).

    Article  Google Scholar 

  42. Chandra, R., Kumar, V. & Singh, K. in Phytoremediation of Environmental Pollutants (eds Chandra, R., Dubey, N. K. & Kumar, V.) 1–38 (CRC Press, 2018).

  43. Bhatti, S. S., Sambyal, V. & Nagpal, A. K. Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India. SpringerPlus 5, 173 (2016).

    Article  Google Scholar 

  44. Godinho, D. P., Serrano, H. C., Magalhães, S. & Branquinho, C. Concurrent herbivory and metal accumulation: the outcome for plants and herbivores. Plant Environ. Interact. 3, 170–178 (2022).

    Article  Google Scholar 

  45. Lu, J., Lu, H., Wang, W., Feng, S. & Lei, K. Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: an information network environ analysis. Ecol. Model 455, 109633 (2021).

    Article  Google Scholar 

  46. Guo, Y. et al. Defense of cabbages against herbivore cutworm Spodoptera litura under Cd stress and insect herbivory stress simultaneously. Environ. Pollut. 358, 124519 (2024).

    Article  Google Scholar 

  47. Pollard, A. J. & Baker, A. J. M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). N. Phytol. 135, 655–658 (1997).

    Article  Google Scholar 

  48. Durand, A. et al. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399, 179–192 (2016).

    Article  Google Scholar 

  49. Gao, J. et al. Organic amendments for in situ immobilization of heavy metals in soil: a review. Chemosphere 335, 139088 (2023).

    Article  Google Scholar 

  50. Hamid, Y. et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660, 80–96 (2019).

    Article  Google Scholar 

  51. Burges, A., Alkorta, I., Epelde, L. & Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediat. 20, 384–397 (2018).

    Article  Google Scholar 

  52. Kafle, A. et al. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8, 100203 (2022).

    Article  Google Scholar 

  53. Oladele, S. O., Oladele, B. B., Ajala, R. & Dada, B. F. Emerging contaminants: evaluation of degradable chelators towards enhancing cadmium phytoextraction efficiency of bioenergy crop grown on polluted soil. Emerg. Contam. 7, 139–148 (2021).

    Article  Google Scholar 

  54. Arora, D. et al. Unleashing the feasibility of nanotechnology in phytoremediation of heavy metal-contaminated soil: a critical review towards sustainable approach. Water Air Soil Pollut. https://doi.org/10.1007/s11270-023-06874-9 (2024).

    Article  Google Scholar 

  55. Dhanapal, A. R. et al. Nanotechnology approaches for the remediation of agricultural polluted soils. ACS Omega 9, 13522–13533 (2024).

    Article  Google Scholar 

  56. Huang, D. et al. Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol. Environ. Saf. 153, 229–237 (2018).

    Article  Google Scholar 

  57. Vítková, M., Puschenreiter, M. & Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200, 217–226 (2018).

    Article  Google Scholar 

  58. Hussan, M. U. et al. Calcium oxide nanoparticles ameliorate cadmium toxicity in alfalfa seedlings by depriving its bioaccumulation, enhancing photosystem II functionality and antioxidant gene expression. Sci. Total Environ. 955, 176797 (2024).

    Article  Google Scholar 

  59. Yang, D. et al. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Sci. Total Environ. 814, 152798 (2022).

    Article  Google Scholar 

  60. Ren, J., Mi, X. & Tao, L. Stabilization of cadmium in polluted soil using palygorskite-coated nanoscale zero-valent iron. J. Soils Sediment. 21, 1001–1009 (2021).

    Article  Google Scholar 

  61. Hannan, F. et al. Remediation of Cd-polluted soil, improving Brassica napus L. growth and soil health with hardystonite synthesized with zeolite, limestone, and green zinc oxide nanoparticles. J. Clean. Prod. 437, 140737 (2024).

    Article  Google Scholar 

  62. Chen, Q. & Wu, F.-b Breeding for low cadmium accumulation cereals. J. Zhejiang Univ. Sci. B 21, 442–459 (2020).

    Article  Google Scholar 

  63. Melotto, M. et al. Breeding crops for enhanced food safety. Front. Plant Sci. 11, 428 (2020).

    Article  Google Scholar 

  64. Clarke, J., McCaig, T., DePauw, R. & Knox, R. Registration of ‘Strongfield’ durum wheat. Crop Sci. 46, 2306 (2006).

    Article  Google Scholar 

  65. Xu, M. et al. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Ecotoxicol. Environ. Saf. 247, 114244 (2022).

    Article  Google Scholar 

  66. Murugaiyan, V. et al. Identification of promising genotypes through systematic evaluation for arsenic tolerance and exclusion in rice (Oryza sativa L.). Front. Plant Sci. 12, 753063 (2021).

    Article  Google Scholar 

  67. Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).

    Article  Google Scholar 

  68. Hanlon, P. & Sewalt, V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit. Rev. Food Sci. Nutr. 61, 959–970 (2021).

    Article  Google Scholar 

  69. Singh, J., Mishra, V. & Varshney, V. Arsenic tolerance unveiled in Arabidopsis: CPK23 and PHT1;1 alliance. J. Plant Biochem. Biotechnol. https://doi.org/10.1007/s13562-024-00885-1 (2024).

    Article  Google Scholar 

  70. Peña-Garcia, Y. et al. Arsenic stress-related F-box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. J. Hazard. Mater. 407, 124831 (2021).

    Article  Google Scholar 

  71. Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S. & Mandal, A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J. Plant Physiol. 218, 121–126 (2017).

    Article  Google Scholar 

  72. Inamuddin, D., Adetunji, C. O., Ahamed, M. I. & Altalhi, T. (eds) Genetically Engineered Organisms in Bioremediation (CRC Press, 2024).

  73. El-Sappah, A. H. et al. Plants’ molecular behavior to heavy metals: from criticality to toxicity. Front. Plant Sci. 15, 1423625 (2024).

    Article  Google Scholar 

  74. Kakeshpour, T. et al. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. Physiol. Plant. 173, 1263–1279 (2021).

    Article  Google Scholar 

  75. Khan, I. U. et al. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J. Clean. Prod. 272, 123152 (2020).

    Article  Google Scholar 

  76. Zhang, B. Q. et al. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere 247, 125958 (2020).

    Article  Google Scholar 

  77. Lin, H. et al. Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regul. 86, 149–157 (2018).

    Article  Google Scholar 

  78. Barr, Z. K., Werner, T. & Tilsner, J. Heavy metal-associated isoprenylated plant proteins (HIPPs) at plasmodesmata: exploring the link between localization and function. Plants 12, 3015 (2023).

    Article  Google Scholar 

  79. Sharma, P., Sirohi, R., Tong, Y. W., Kim, S. H. & Pandey, A. Metal and metal(loids) removal efficiency using genetically engineered microbes: applications and challenges. J. Hazard. Mater. 416, 125855 (2021).

    Article  Google Scholar 

  80. Thai, T. D., Lim, W. & Na, D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front. Bioeng. Biotechnol. 11, 1178680 (2023).

    Article  Google Scholar 

  81. Wang, Y. et al. Plant growth-promoting bacteria in metal-contaminated soil: current perspectives on remediation mechanisms. Front. Microbiol. 13, 966226 (2022).

    Article  Google Scholar 

  82. Pande, V., Pandey, S. C., Sati, D., Bhatt, P. & Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 13, 824084 (2022).

    Article  Google Scholar 

  83. Azad, M. A. K., Amin, L. & Sidik, N. M. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin. Sci. Bull. 59, 703–714 (2014).

    Article  Google Scholar 

  84. Rojas, L. A. et al. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6, e17555 (2011).

    Article  Google Scholar 

  85. Bravo, G., Vega-Celedón, P., Gentina, J. C. & Seeger, M. Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms 8, 1952 (2020).

    Article  Google Scholar 

  86. Jia, X., Li, Y., Xu, T. & Wu, K. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnol. Bioeng. 117, 3820–3834 (2020).

    Article  Google Scholar 

  87. Weyens, N. et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J. Soils Sediment. 13, 176–188 (2013).

    Article  Google Scholar 

  88. Cotta, S. R., Dias, A. C. F., Mendes, R. & Andreote, F. D. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz. J. Microbiol. https://doi.org/10.1007/s42770-024-01583-9 (2024).

    Article  Google Scholar 

  89. Ruan, Z. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat. Commun. 15, 4694 (2024).

    Article  Google Scholar 

  90. Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).

    Article  Google Scholar 

  91. Narayanan, M. & Ma, Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Manag. 345, 118732 (2023).

    Article  Google Scholar 

  92. Narayanan, M. & Ma, Y. Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environ. Res. 222, 115413 (2023).

    Article  Google Scholar 

  93. Tang, H., Xiang, G., Xiao, W., Yang, Z. & Zhao, B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Front. Plant Sci. 15, 1420408 (2024).

    Article  Google Scholar 

  94. Bai, X. et al. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. J. Hazard. Mater. 471, 134370 (2024).

    Article  Google Scholar 

  95. Liu, Y.-Q. et al. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 469, 134085 (2024).

    Article  Google Scholar 

  96. Zhou, Y. et al. Superiority of native soil core microbiomes in supporting plant growth. Nat. Commun. 15, 6599 (2024).

    Article  Google Scholar 

  97. Wang, Z., Hu, X., Solanki, M. K. & Pang, F. A synthetic microbial community of plant core microbiome can be a potential biocontrol tool. J. Agric. Food Chem. 71, 5030–5041 (2023).

    Article  Google Scholar 

  98. Solomon, W., Janda, T. & Molnár, Z. Unveiling the significance of rhizosphere: implications for plant growth, stress response, and sustainable agriculture. Plant Physiol. Biochem. 206, 108290 (2024).

    Article  Google Scholar 

  99. Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. https://doi.org/10.3389/fagro.2022.896307 (2022).

  100. Afridi, M. S. et al. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 279, 127564 (2024).

    Article  Google Scholar 

  101. Shi, A. et al. Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Sci. Total Environ. 947, 174585 (2024).

    Article  Google Scholar 

  102. Guzmán-Moreno, J. et al. Bacillus megaterium HgT21: a promising metal multiresistant plant growth-promoting bacteria for soil biorestoration. Microbiol. Spectr. 10, e0065622 (2022).

    Article  Google Scholar 

  103. Jamil, M. et al. Inoculation of heavy metal resistant bacteria alleviated heavy metal-induced oxidative stress biomarkers in spinach (Spinacia oleracea L.). BMC Plant Biol. 24, 221 (2024).

    Article  Google Scholar 

  104. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  Google Scholar 

  105. Zhao, L. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).

    Article  Google Scholar 

  106. Yao, J. et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9, 2927–2933 (2018).

    Article  Google Scholar 

  107. Celardo, I., Pedersen, J. Z., Traversa, E. & Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011).

    Article  Google Scholar 

  108. Saleem, M., Fariduddin, Q. & Castroverde, C. D. M. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 168, 381–397 (2021).

    Article  Google Scholar 

  109. Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. & Hasanuzzaman, M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10, 277 (2021).

    Article  Google Scholar 

  110. Ragab, G. & Saad-Allah, K. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. J. Plant Growth Regul. 40, 1894–1902 (2021).

    Article  Google Scholar 

  111. Anwar, A. et al. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. J. Hazard. Mater. 468, 133829 (2024).

    Article  Google Scholar 

  112. Khan, I. et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020).

    Article  Google Scholar 

  113. He, W., Zhou, Y.-T., Wamer, W. G., Boudreau, M. D. & Yin, J.-J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33, 7547–7555 (2012).

    Article  Google Scholar 

  114. Yan, X. et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environ. Sci. Nano 9, 2195–2206 (2022).

    Article  Google Scholar 

  115. Al-Khayri, J. M. et al. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 12, 292 (2023).

    Article  Google Scholar 

  116. Guha, T., Das, H., Mukherjee, A. & Kundu, R. Elucidating ROS signaling networks and physiological changes involved in nanoscale zero valent iron primed rice seed germination sensu stricto. Free Radic. Biol. Med. 171, 11–25 (2021).

    Article  Google Scholar 

  117. Hong, J. et al. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano 8, 1196–1210 (2021).

    Article  Google Scholar 

  118. Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant Commun. 3, 100346 (2022).

    Article  Google Scholar 

  119. Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    Article  Google Scholar 

  120. Lv, J., Christie, P. & Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59 (2019).

    Article  Google Scholar 

  121. Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K. & Patil, B. S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019).

    Article  Google Scholar 

  122. Cao, Y. et al. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. Nat. Food https://doi.org/10.1038/s43016-024-01063-1 (2024).

    Article  Google Scholar 

  123. Feng, J.-R., Deng, Q.-X., Han, S.-K. & Ni, H.-G. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: a mini review. Chemosphere 313, 137391 (2023).

    Article  Google Scholar 

  124. Bhatt, P. et al. Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J. Hazard. Mater. 427, 128033 (2022).

    Article  Google Scholar 

  125. Saravanan, A. et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264, 128580 (2021).

    Article  Google Scholar 

  126. AbdelRahim, K. et al. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 24, 208–216 (2017).

    Article  Google Scholar 

  127. Ameen, F. et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct. 1202, 127233 (2020).

    Article  Google Scholar 

  128. Ahmed, E., Kalathil, S., Shi, L., Alharbi, O. & Wang, P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J. Saudi Chem. Soc. 22, 919–929 (2018).

    Article  Google Scholar 

  129. Zhang, Y. et al. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil–water systems. J. Environ. Sci. 57, 329–337 (2017).

    Article  Google Scholar 

  130. Ahmed, F. et al. Development of selenium nanoparticle based agriculture sensor for heavy metal toxicity detection. Agriculture 10, 610 (2020).

    Article  Google Scholar 

  131. Maity, S., Bose, S., Dokania, P., Lohar, S. & Sarkar, A. A comprehensive review of arsenic contamination in India with an emphasis on its detection through biosensors and bioremediation from the aqueous system. Environ. Qual. Manag. 33, 427–457 (2024).

    Article  Google Scholar 

  132. Lea-Smith, D. J. et al. Engineering biology applications for environmental solutions: potential and challenges. Nat. Commun. 16, 3538 (2025).

    Article  Google Scholar 

  133. Feng, H. & Cheng, J. Whole-process risk management of soil amendments for remediation of heavy metals in agricultural soil — a review. Int. J. Environ. Res. Public Health 20, 1869 (2023).

    Article  Google Scholar 

  134. Hou, D., Bolan, N. S., Tsang, D. C. W., Kirkham, M. B. & O’Connor, D. Sustainable soil use and management: an interdisciplinary and systematic approach. Sci. Total Environ. 729, 138961 (2020).

    Article  Google Scholar 

  135. Thijs, S., Sillen, W., Rineau, F., Weyens, N. & Vangronsveld, J. Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front. Microbiol. 7, 341 (2016).

    Article  Google Scholar 

  136. Huang, H. et al. Comprehensive bioremediation effect of phosphorus-mineralized bacterium Enterobacter sp. PMB-5 on cadmium contaminated soil–crop system. J. Hazard. Mater. 470, 134227 (2024).

    Article  Google Scholar 

  137. D’Hondt, K. et al. Microbiome innovations for a sustainable future. Nat. Microbiol. 6, 138–142 (2021).

    Article  Google Scholar 

  138. Jurburg, S. D. et al. Potential of microbiome-based solutions for agrifood systems. Nat. Food 3, 557–560 (2022).

    Article  Google Scholar 

  139. Hu, Y. et al. Revolutionizing soil heavy metal remediation: cutting-edge innovations in plant disposal technology. Sci. Total Environ. 918, 170577 (2024).

    Article  Google Scholar 

  140. Li, F., Fang, L. & Wu, F. A roadmap for sustainable agricultural soil remediation under China’s carbon neutrality vision. Engineering 25, 28–31 (2023).

    Article  Google Scholar 

  141. Baritz, R., Wiese, L., Verbeke, I. & Vargas, R. Voluntary guidelines for sustainable soil management: global action for healthy soils. in International Yearbook of Soil Law and Policy 2017 (eds Ginzky, H. et al.) 17–36 (Springer International Publishing, 2018).

  142. Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).

    Article  Google Scholar 

  143. Zhang, S. et al. Escalating arsenic contamination throughout Chinese soils. Nat. Sustain. 7, 766–775 (2024).

    Article  Google Scholar 

  144. Kalve, S., Sarangi, B. K., Pandey, R. A. & Chakrabarti, T. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata — prospective for phytoextraction from contaminated water and soil. Curr. Sci. 100, 888–894 (2011).

    Google Scholar 

  145. Xu, M. et al. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environ. Pollut. 300, 118982 (2022).

    Article  Google Scholar 

  146. Li, S., Gu, X., Zhou, J., Wu, L. & Christie, P. Prediction of cadmium and zinc phytoextraction by the hyperaccumulator Sedum plumbizincicola using a dynamic geochemical mechanical combination model. Sci. Total Environ. 906, 167627 (2024).

    Article  Google Scholar 

  147. Atta, M. I. et al. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: plants-implications for phytoremediation. PeerJ 11, e16067 (2023).

    Article  Google Scholar 

  148. Alaboudi, K. A., Ahmed, B. & Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 63, 123–127 (2018).

    Article  Google Scholar 

  149. Bassegio, C. et al. Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int. J. Phytoremediat. 22, 134–139 (2020).

    Article  Google Scholar 

  150. Vamerali, T., Bandiera, M., Lucchini, P., Dickinson, N. M. & Mosca, G. Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur. J. Agron. 53, 56–66 (2014).

    Article  Google Scholar 

  151. Ofori-Agyemang, F. et al. Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic/fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter. Chemosphere 362, 142624 (2024).

    Article  Google Scholar 

  152. Smyth, S. J. Regulatory barriers to improving global food security. Glob. Food Sec. 26, 100440 (2020).

    Article  Google Scholar 

  153. Rozas, P., Kessi-Pérez, E. I. & Martínez, C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol. Res. 55, 31 (2022).

    Article  Google Scholar 

  154. Cheng, X. et al. Trends in the global commercialization of genetically modified crops in 2023. J. Integr. Agricult. 23, 3943–3952 (2024).

    Article  Google Scholar 

  155. Goodman, R. E. Twenty-eight years of GM Food and feed without harm: why not accept them? GM Crop Food 15, 40–50 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by crcCARE’s partner organizations. B.B. thanks the Alexander von Humboldt Foundation for financing his fellowship. R.N. and B.B. thank Australian Research Council (ARC) for the sustainable fertilizer project (DP230102963) and B.K.S. thanks ARC for microbial science project (DP230101448).

Author information

Authors and Affiliations

Authors

Contributions

B.B. and M.N. surveyed the literature. All authors contributed to writing and reviewing the manuscript. R.N. supervised this work.

Corresponding author

Correspondence to Ravi Naidu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Byong-Hun Jeon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Approval processes: https://www.bayer.com/en/agriculture/article/regulatory-process-gm-crops

Australian genetically modified organism register: https://www.ogtr.gov.au/what-weve-approved

BIOSYMBO: https://32770581.isolation.zscaler.com/profile/f1651b6c-5a7a-4e25-a61a-66f8cd23da60/zia-session/?controls_id=1a8da1d6-cbd2-42c3-9975-5a306307f5aa&region=par&tenant=2c2f6c39ed9e&user=b74938e93b23ed551798a193135db57ad3de0b2fe46d4ae04b52bcb3010ea1ee&original_url=https%3A%2F%2Fwww.biosysmo.eu%2F&key=sh-1&hmac=4dd8ab40b3126df93505c07ae1ec90134b6183f04d3621858aa670b09218d696

Closer to Zero: https://www.fda.gov/food/environmental-contaminants-food/closer-zero-reducing-childhood-exposure-contaminants-foods

Friends of the Earth: https://foe.org/resources/ge-soil-microbes/

Global Soil Partnership of the United Nations Food and Agriculture Organization: https://www.fao.org/global-soil-partnership/en/

News briefing: https://royalsociety.org/news/2023/10/gm-crops/

The Web of Science® database: https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fmode%3DNextgen%26action%3Dtransfer%26path%3D%252Fwos%252Fwoscc%252Fbasic-search%26DestApp%3DUA&referrer=mode%3DNextgen%26path%3D%252Fwos%252Fwoscc%252Fbasic-search%26DestApp%3DUA%26action%3Dtransfer&roaming=true

United Nations Sustainable Development Goals: https://sdgs.un.org/goals

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, R., Biswas, B., Nuruzzaman, M. et al. Bioremediation of heavy metal(loid)s in agricultural soils and crops. Nat Rev Bioeng 3, 1005–1018 (2025). https://doi.org/10.1038/s44222-025-00345-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00345-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene