Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evaluation and prediction of guide RNA activities in genome-editing tools

Abstract

CRISPR genome-editing tools, including Cas9 and Cas12a nucleases, base editors and prime editors, have revolutionized genome manipulation across various species and cell types. These tools have undergone continuous improvement as new variants or types of editors have been generated to improve their efficiency, specificity and applicability. However, given the vast array of genome editors and the multitude of designable guide RNAs, selecting the optimal combinations for efficient and precise genome editing has become increasingly challenging, especially under variable experimental conditions. To address this issue, several methods for evaluating genome-editing tools in a high-throughput manner have been developed. The resulting large datasets of editing efficiencies or specificities have been used to develop machine learning models that predict efficiency and specificity, greatly facilitating the optimal selection of genome editors and guide RNAs. Here, we review recent developments in high-throughput evaluations and machine learning-based predictions of genome-editing efficiencies and/or off-target effects, together with recent advances in diverse genome-editing tools. We also cover artificial intelligence-based development and evolution of genome-editing tools.

Key points

  • Gene-editing tools such as CRISPR nucleases, base editors and prime editors can manipulate genomes across a wide range of species and cell types.

  • With the expansion of the genome-editing toolbox, the selection of the most suitable tool and the design of appropriate guide RNAs for precise and efficient editing remain challenging.

  • High-throughput methods enable the measurement of protospacer adjacent motif sequence preference, on-target and off-target editing efficiencies, and outcomes at diverse target sequences, facilitating the determination of optimal genome-editing tools and guide RNA combinations from the available options.

  • The large amount of data on genome-editing tools evaluated at thousands of target DNA sequences has facilitated the development of machine learning models that quickly predict genome-editing activity for a given pair of guide RNA and target sequence.

  • Large language models trained on DNA, RNA and protein data enable the artificial intelligence-based design and evolution of genome editors. Combined with high-throughput datasets, they can contribute to the development of next-generation genome-editing tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic organization of the two Cas system classes and the mechanisms of genome-editing tools.
Fig. 2: High-throughput evaluation methods for genome-editing tools.
Fig. 3: Applications of pairwise libraries of guide RNA and target sequences.
Fig. 4: Schematics of unbiased, genome-wide off-target detection methods.

Similar content being viewed by others

References

  1. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  Google Scholar 

  2. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  Google Scholar 

  3. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  Google Scholar 

  4. DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  Google Scholar 

  5. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  Google Scholar 

  6. Jiang, W. Y., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  Google Scholar 

  7. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G. & Kamoun, S. Targeted mutagenesis in the model plant using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  Google Scholar 

  8. Shan, Q. W. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  Google Scholar 

  9. Wang, H. Y. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  Google Scholar 

  10. Zou, Q. J. et al. Generation of gene-target dogs using CRISPR/Cas9 system. J. Mol. Cell Biol. 7, 580–583 (2015).

    Article  Google Scholar 

  11. Hai, T., Teng, F., Guo, R. F., Li, W. & Zhou, Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).

    Article  Google Scholar 

  12. Niu, Y. Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  Google Scholar 

  13. Koike-Yusa, H., Li, Y. L., Tan, E. P., Velasco-Herrera, M. D. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    Article  Google Scholar 

  14. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  Google Scholar 

  15. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  Google Scholar 

  16. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  Google Scholar 

  17. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    Article  Google Scholar 

  18. Kim, Y. et al. High-throughput functional evaluation of human cancer-associated mutations using base editors. Nat. Biotechnol. 40, 874–884 (2022).

    Article  Google Scholar 

  19. Sánchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. 40, 862–873 (2022).

    Article  Google Scholar 

  20. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

    Article  Google Scholar 

  21. Erwood, S. et al. Saturation variant interpretation using CRISPR prime editing. Nat. Biotechnol. 40, 885–895 (2022).

    Article  Google Scholar 

  22. Ren, X. J. et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol. Cell 83, 4633–4645.e9 (2023).

    Article  Google Scholar 

  23. Gould, S. I. et al. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02172-9 (2024).

    Article  Google Scholar 

  24. Findlay, G. M. et al. Accurate classification of variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  Google Scholar 

  25. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  Google Scholar 

  26. Cetin, B., Erendor, F., Eksi, Y. E., Sanlioglu, A. D. & Sanlioglu, S. Advancing CRISPR genome editing into gene therapy clinical trials: progress and future prospects. Expert Rev. Mol. Med. 27, e16 (2025).

    Article  Google Scholar 

  27. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  Google Scholar 

  28. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  Google Scholar 

  29. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  Google Scholar 

  30. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  Google Scholar 

  31. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  Google Scholar 

  32. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  Google Scholar 

  33. Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    Article  Google Scholar 

  34. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  Google Scholar 

  35. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  Google Scholar 

  36. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  Google Scholar 

  37. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  Google Scholar 

  38. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  Google Scholar 

  39. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  Google Scholar 

  40. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  Google Scholar 

  41. Chen, F. Q. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753–755 (2011).

    Article  MathSciNet  Google Scholar 

  42. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  Google Scholar 

  43. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Google Scholar 

  44. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    Article  Google Scholar 

  45. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    Article  Google Scholar 

  46. Riesenberg, S. et al. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat. Methods 20, 1388–1399 (2023).

    Article  Google Scholar 

  47. Panier, S. & Boulton, S. J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7–18 (2014).

    Article  Google Scholar 

  48. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  Google Scholar 

  49. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  Google Scholar 

  50. Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  Google Scholar 

  51. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  Google Scholar 

  52. Casini, A. et al. A highly specific SpCas9 variant is identified by screening in yeast. Nat. Biotechnol. 36, 265–271 (2018).

    Article  Google Scholar 

  53. Lee, J. K. et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. 9, 3048 (2018).

    Article  Google Scholar 

  54. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  Google Scholar 

  55. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  Google Scholar 

  56. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  Google Scholar 

  57. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  Google Scholar 

  58. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  Google Scholar 

  59. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).

    Article  Google Scholar 

  60. Han, D. et al. Development of miniature base editors using engineered IscB nickase. Nat. Methods 20, 1029–1036 (2023).

    Article  Google Scholar 

  61. Han, L. et al. Engineering miniature IscB nickase for robust base editing with broad targeting range. Nat. Chem. Biol. 20, 1629–1639 (2024).

    Article  Google Scholar 

  62. Xue, N. et al. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Mol. Cell 84, 3128–3140.e4 (2024).

    Article  Google Scholar 

  63. Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935.e23 (2023).

    Article  Google Scholar 

  64. Li, Z. et al. Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model. Nat. Commun. 15, 831 (2024).

    Article  Google Scholar 

  65. Yan, H. et al. Assessing and engineering the IscB–ωRNA system for programmed genome editing. Nat. Chem. Biol. 20, 1617–1628 (2024).

    Article  Google Scholar 

  66. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  Google Scholar 

  67. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  Google Scholar 

  68. Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630.e7 (2017).

    Article  Google Scholar 

  69. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  Google Scholar 

  70. Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).

    Article  Google Scholar 

  71. van Beljouw, S. P. B. et al. The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349–1353 (2021).

    Article  Google Scholar 

  72. Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876.e12 (2020).

    Article  Google Scholar 

  73. Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2021).

    Article  Google Scholar 

  74. Liang, W. W. et al. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 187, 7637–7654.e29 (2024).

    Article  Google Scholar 

  75. Montero, J. J. et al. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Nat. Methods 21, 584–596 (2024).

    Article  Google Scholar 

  76. Wang, L. et al. CRISPR-Cas13d screens identify KILR, a breast cancer risk-associated lncRNA that regulates DNA replication and repair. Mol. Cancer 23, 101 (2024).

    Article  Google Scholar 

  77. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  Google Scholar 

  78. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    Article  Google Scholar 

  79. Joung, J. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 383, 1492–1494 (2020).

    Article  Google Scholar 

  80. Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2023).

    Article  Google Scholar 

  81. Zhang, F. et al. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02535-2 (2025).

    Article  Google Scholar 

  82. Hwang, G. H. et al. Large DNA deletions occur during DNA repair at 20-fold lower frequency for base editors and prime editors than for Cas9 nucleases. Nat. Biomed. Eng. 9, 79–92 (2025).

    Article  Google Scholar 

  83. Wu, L. et al. Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells. Genome Biol. 25, 291 (2024).

    Article  Google Scholar 

  84. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  Google Scholar 

  85. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  Google Scholar 

  86. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  Google Scholar 

  87. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  Google Scholar 

  88. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  Google Scholar 

  89. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  Google Scholar 

  90. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  Google Scholar 

  91. Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 686–697 (2023).

    Article  Google Scholar 

  92. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).

    Article  Google Scholar 

  93. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  Google Scholar 

  94. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  Google Scholar 

  95. Li, G. et al. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun. Signal. 19, 84 (2021).

    Article  Google Scholar 

  96. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article  Google Scholar 

  97. Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002.e26 (2023).

    Article  Google Scholar 

  98. Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    Article  Google Scholar 

  99. Jang, H. et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat. Biomed. Eng. 6, 181–194 (2022).

    Article  Google Scholar 

  100. Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    Article  Google Scholar 

  101. She, K. et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther. 8, 57 (2023).

    Article  Google Scholar 

  102. Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 42, 253–264 (2024).

    Article  Google Scholar 

  103. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  Google Scholar 

  104. Kwon, J. et al. TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat. Commun. 13, 7975 (2022).

    Article  Google Scholar 

  105. Liang, S. Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20, 898–907 (2023).

    Article  Google Scholar 

  106. Kim, D., Moon, S. B., Ko, J. H., Kim, Y. S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 48, 10576–10589 (2020).

    Article  Google Scholar 

  107. Karvelis, T. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253 (2015).

    Article  Google Scholar 

  108. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  Google Scholar 

  109. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  Google Scholar 

  110. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  Google Scholar 

  111. Guo, J. H. et al. Improved sgRNA design in bacteria via genome-wide activity profiling. Nucleic Acids Res. 46, 7052–7069 (2018).

    Article  Google Scholar 

  112. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  Google Scholar 

  113. Chari, R., Mali, P., Moosburner, M. & Church, G. M. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12, 823–826 (2015).

    Article  Google Scholar 

  114. Kim, H. K. et al. In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nat. Methods 14, 153–159 (2017).

    Article  Google Scholar 

  115. Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).

    Article  Google Scholar 

  116. Allen, F. et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat. Biotechnol. 37, 64–72 (2019).

    Article  Google Scholar 

  117. Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).

    Article  Google Scholar 

  118. Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).

    Article  Google Scholar 

  119. Wang, D. Q. et al. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat. Commun. 10, 4284 (2019).

    Article  Google Scholar 

  120. Kim, H. K. et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat. Biomed. Eng. 4, 111–124 (2020).

    Article  Google Scholar 

  121. Seo, S. Y. et al. Massively parallel evaluation and computational prediction of the activities and specificities of 17 small Cas9s. Nat. Methods 20, 999–1009 (2023).

    Article  Google Scholar 

  122. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480.e30 (2020).

    Article  Google Scholar 

  123. Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037–1043 (2020).

    Article  Google Scholar 

  124. Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 5114 (2021).

    Article  Google Scholar 

  125. Zhang, C. D. et al. Prediction of base editor off-targets by deep learning. Nat. Commun. 14, 5358 (2023).

    Article  Google Scholar 

  126. Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

    Article  Google Scholar 

  127. Pallaseni, A. et al. Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Res. 50, 3551–3564 (2022).

    Article  Google Scholar 

  128. Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272.e23 (2023).

    Article  Google Scholar 

  129. Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

    Article  Google Scholar 

  130. Koeppel, J. et al. Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nat. Biotechnol. 41, 1446–1456 (2023).

    Article  Google Scholar 

  131. Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).

    Article  Google Scholar 

  132. Mathis, N. et al. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat. Biotechnol. 43, 712–719 (2025).

    Article  Google Scholar 

  133. Akhtar, W. et al. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 9, 1255–1281 (2014).

    Article  Google Scholar 

  134. Kim, Y., Oh, H. C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02465-z (2024).

    Article  Google Scholar 

  135. Sack, L. M., Davoli, T., Xu, Q. K., Li, M. M. Z. & Elledge, S. J. Sources of error in mammalian genetic screens. G3 Genes Genomes Genet. 6, 2781–2790 (2016).

    Article  Google Scholar 

  136. Schlub, T. E., Smyth, R. P., Grimm, A. J., Mak, J. & Davenport, M. P. Accurately measuring recombination between closely related HIV-1 genomes. PLoS Comput. Biol. 6, e1000766 (2010).

    Article  Google Scholar 

  137. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  Google Scholar 

  138. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  Google Scholar 

  139. Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    Article  Google Scholar 

  140. Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286–289 (2019).

    Article  Google Scholar 

  141. Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).

    Article  Google Scholar 

  142. Kim, D. & Kim, J. S. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res. 28, 1894–1900 (2018).

    Article  Google Scholar 

  143. Zou, R. S. et al. Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+. Nat. Methods 20, 706–713 (2023).

    Article  Google Scholar 

  144. Kim, D., Kim, D. E., Lee, G., Cho, S. I. & Kim, J. S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435 (2019).

    Article  Google Scholar 

  145. Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67 (2019).

    Article  Google Scholar 

  146. Zhu, M. et al. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR–Cas9-mediated genome editing. Nat. Biotechnol. 43, 799–810 (2025).

    Article  Google Scholar 

  147. Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    Article  Google Scholar 

  148. Wong, N., Liu, W. J. & Wang, X. W. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 16, 218 (2015).

    Article  Google Scholar 

  149. Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015).

    Article  Google Scholar 

  150. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    Article  Google Scholar 

  151. Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

    Article  Google Scholar 

  152. Xiang, X. et al. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 12, 3238 (2021).

    Article  Google Scholar 

  153. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  Google Scholar 

  154. Wessels, H. H. et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. 42, 628–637 (2024).

    Article  Google Scholar 

  155. van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).

    Article  Google Scholar 

  156. Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).

    Article  Google Scholar 

  157. Zhang, S. X., Li, X. T., Lin, Q. Z. & Wong, K. C. Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications. Bioinformatics 35, 1108–1115 (2019).

    Article  Google Scholar 

  158. Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2024).

    Article  Google Scholar 

  159. Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

    Article  Google Scholar 

  160. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  MathSciNet  Google Scholar 

  161. Ryu, S. M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  Google Scholar 

  162. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  Google Scholar 

  163. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  Google Scholar 

  164. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  Google Scholar 

  165. Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    Article  Google Scholar 

  166. Lin, Q. P. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923–927 (2021).

    Article  Google Scholar 

  167. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article  Google Scholar 

  168. Choi, J. H. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).

    Article  Google Scholar 

  169. Wang, J. L. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

    Article  Google Scholar 

  170. Zhuang, Y. et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29–37 (2022).

    Article  Google Scholar 

  171. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Article  Google Scholar 

  172. Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. 9, 22–39 (2025).

    Article  Google Scholar 

  173. Klein, J. C. et al. Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Res. 44, e43 (2016).

    Article  Google Scholar 

  174. Hegde, M., Strand, C., Hanna, R. E. & Doench, J. G. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS ONE 13, e0197547 (2018).

    Article  Google Scholar 

  175. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. Nat. Methods 3, 545–550 (2006).

    Article  Google Scholar 

  176. Feldman, D., Singh, A., Garrity, A. J. & Blainey, P. C. Lentiviral co-packaging mitigates the effects of intermolecular recombination and multiple integrations in pooled genetic screens. Preprint at bioRxiv https://doi.org/10.1101/262121 (2018).

  177. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  Google Scholar 

  178. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  Google Scholar 

  179. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article  Google Scholar 

  180. Daniloski, Z. et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 184, 92–105.e16 (2021).

    Article  Google Scholar 

  181. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Research Foundation of Korea grant funded by the Korean government (Ministry of Science and ICT) (RS-2024-00348839 (H.K.K.), RS-2022-NR070713 (H.H.K.), and RS-2025-02214844 (H.H.K.)), The Bio and Medical Technology Development Program of the National Research Foundation funded by the Korean government (Ministry of Science and ICT) (RS-2023-00262533 (H.K.K.), RS-2022-NR067326 (H.H.K.), RS-2022-NR067345 (H.H.K.) and RS-2023-00260968 (H.H.K.)), the Korea Drug Development Fund funded by the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy (RS-2022-DD128884 (H.K.K.)), the Korea–US Collaborative Research Fund (KUCRF) funded by the Ministry of Science and ICT and Ministry of Health & Welfare, Republic of Korea (grant number: RS-2024-00467177 (H.H.K.)), the Yonsei Signature Research Cluster Program of 2024-22-0165 (H.H.K.), the Brain Korea 21 FOUR Project for Medical Science (Yonsei University College of Medicine), the SNUH Kun-hee Lee Child Cancer and Rare Disease Project, Republic of Korea (22B-000-0101 (H.H.K.)), and the Yonsei Fellow Program, funded by Lee Youn Jae.

Author information

Authors and Affiliations

Authors

Contributions

H.H.K. conceptualized the manuscript. H.K.K. and H.H.K. wrote the manuscript.

Corresponding author

Correspondence to Hyongbum Henry Kim.

Ethics declarations

Competing interests

H.H.K. is the founder of cisionMed. H.K.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Yongming Wang, Sidi Chen, who co-reviewed with Kaiyuan Tang and Lei Peng, and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.K., Kim, H.H. Evaluation and prediction of guide RNA activities in genome-editing tools. Nat Rev Bioeng 4, 82–97 (2026). https://doi.org/10.1038/s44222-025-00352-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00352-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing