Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-model bacteria as platforms for endogenous gene expression in synthetic biology

Abstract

Microbial synthetic biology seeks to engineer bacterial genomes for industrial and biomedical applications, typically by applying heterologous gene expression in well-characterized model organisms, such as Escherichia coli. However, heterologous gene expression might cause metabolic disruptions, thereby impacting production efficiency and yield. In this Review, we highlight non-model organisms, such as Lacticaseibacillus and pseudomonads, for endogenous compound production, taking advantage of their evolutionary optimization for the production of certain metabolites and proteins. We first outline key limitations of heterologous production and then examine endogenous production pathways in non-model organisms for biotechnological and therapeutic applications. In particular, multi-omics approaches enable the discovery and characterization of these organisms, and phage-based genome refactoring enhances genome engineering capabilities. Finally, we outline key bottlenecks in the application of non-model organisms in biotechnology, including scale-up, costs and safety.

Key points

  • Chassis diversification is essential to unlock the full potential of microbial synthetic biology.

  • Native producers have an evolutionary advantage over heterologous expression hosts, which can be leveraged for biotechnological applications.

  • Multi-omics techniques enable the characterization of non-model organisms to become the next generation of synthetic biology chassis.

  • Bacteriophage genomes are valuable sources for the discovery of synthetic biology tools to modify gene expression in non-model organisms.

  • The switch towards endogenous gene expression can improve market adoption for the second generation of microbial cell factories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterologous and endogenous gene expression in biotechnology.
Fig. 2: Omics technologies guiding the transition from isolation to microbial cell factories.
Fig. 3: Pipeline to identify and test phage-derived regulatory elements.

Similar content being viewed by others

References

  1. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article  Google Scholar 

  2. Lorenzo, V. de & Danchin, A. Synthetic biology: discovering new worlds and new words. The new and not so new aspects of this emerging research field. EMBO Rep. 9, 822 (2008).

    Article  Google Scholar 

  3. Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    Article  Google Scholar 

  4. Adamala, K. P. et al. Present and future of synthetic cell development. Nat. Rev. Mol. Cell Biol. 25, 162–167 (2024).

    Article  Google Scholar 

  5. Volk, M. J. et al. Metabolic engineering: methodologies and applications. Chem. Rev. 123, 5521–5570 (2023).

    Article  Google Scholar 

  6. David, F. et al. A perspective on synthetic biology in drug discovery and development — current impact and future opportunities. SLAS Discov. 26, 581–603 (2021).

    Article  Google Scholar 

  7. Okoro, V., Azimov, U. & Munoz, J. Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design — a review. Fuel 316, 123330 (2022).

    Article  Google Scholar 

  8. Kumari, R., Singha, L. P. & Shukla, P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS Microbes 4, xtad015 (2023).

    Article  Google Scholar 

  9. Wang, L., Zang, X. & Zhou, J. Synthetic biology: a powerful booster for future agriculture. Adv. Agrochem. 1, 7–11 (2022).

    Article  Google Scholar 

  10. Jalili, P., Ala, A., Nazari, P., Jalili, B. & Ganji, D. D. A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon 10, e25439 (2024).

    Article  Google Scholar 

  11. Mugwanda, K. et al. Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci. Rep. 43, BSR20211299 (2023).

    Article  Google Scholar 

  12. Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).

    Article  Google Scholar 

  13. de Lorenzo, V., Krasnogor, N. & Schmidt, M. For the sake of the bioeconomy: define what a synthetic biology chassis is! N. Biotechnol. 60, 44–51 (2021).

    Article  Google Scholar 

  14. Adams, B. L. The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth. Biol. 5, 1328–1330 (2016).

    Article  Google Scholar 

  15. Pontrelli, S. et al. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50, 16–46 (2018).

    Article  Google Scholar 

  16. Rosano, G. L., Morales, E. S. & Ceccarelli, E. A. New tools for recombinant protein production in Escherichia coli: a 5-year update. Protein Sci. 28, 1412–1422 (2019).

    Article  Google Scholar 

  17. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  Google Scholar 

  18. Yang, D., Park, S. Y., Park, Y. S., Eun, H. & Lee, S. Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 38, 745–765 (2020).

    Article  Google Scholar 

  19. Pouresmaeil, M. & Azizi-Dargahlou, S. Factors involved in heterologous expression of proteins in E. coli host. Arch. Microbiol. 205, 212 (2023).

    Article  Google Scholar 

  20. İncir, İ & Kaplan, Ö Escherichia coli as a versatile cell factory: advances and challenges in recombinant protein production. Protein Expr. Purif. 219, 106463 (2024).

    Article  Google Scholar 

  21. Mahalik, S., Sharma, A. K. & Mukherjee, K. J. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb. Cell Factories 13, 177 (2014).

    Article  Google Scholar 

  22. Olicón-Hernández, D. R. et al. Fundaments and concepts on screening of microorganisms for biotechnological applications. Mini review. Curr. Microbiol. 79, 373 (2022).

    Article  Google Scholar 

  23. Lara, A. R., Galindo, E., Ramírez, O. T. & Palomares, L. A. Living with heterogeneities in bioreactors. Mol. Biotechnol. 34, 355–381 (2006).

    Article  Google Scholar 

  24. Mu, X. & Zhang, F. Diverse mechanisms of bioproduction heterogeneity in fermentation and their control strategies. J. Ind. Microbiol. Biotechnol. 50, kuad033 (2023).

    Article  Google Scholar 

  25. Snoeck, S., Guidi, C. & De Mey, M. “Metabolic burden” explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb. Cell Factories 23, 96 (2024).

    Article  Google Scholar 

  26. Hwang, S., Joung, C., Kim, W., Palsson, B. & Cho, B.-K. Recent advances in non-model bacterial chassis construction. Curr. Opin. Syst. Biol. 36, 100471 (2023).

    Article  Google Scholar 

  27. Liu, J., Wang, X., Dai, G., Zhang, Y. & Bian, X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol. Adv. 59, 107966 (2022).

    Article  Google Scholar 

  28. Nagata, S. et al. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284, 316–320 (1980).

    Article  Google Scholar 

  29. Carroll, A. L., Desai, S. H. & Atsumi, S. Microbial production of scent and flavor compounds. Curr. Opin. Biotechnol. 37, 8–15 (2016).

    Article  Google Scholar 

  30. Chance, R. E. & Frank, B. H. Research, development, production, and safety of biosynthetic human insulin. Diabetes Care 16, 133–142 (1993).

    Article  Google Scholar 

  31. Wang, C., Pfleger, B. F. & Kim, S.-W. Reassessing Escherichia coli as a cell factory for biofuel production. Curr. Opin. Biotechnol. 45, 92–103 (2017).

    Article  Google Scholar 

  32. Jiang, R. et al. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol. Adv. 75, 108417 (2024).

    Article  Google Scholar 

  33. Sharp, P. M. & Li, W. H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281 (1987).

    Article  Google Scholar 

  34. Al-Hawash, A. B., Zhang, X. & Ma, F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Rep. 9, 46–53 (2017).

    Article  Google Scholar 

  35. Liu, Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun. Signal. 18, 145 (2020).

    Article  Google Scholar 

  36. Love, A. M. & Nair, N. U. Specific codons control cellular resources and fitness. Sci. Adv. 10, eadk3485 (2024).

    Article  Google Scholar 

  37. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  Google Scholar 

  38. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  Google Scholar 

  39. Greunke, C. et al. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential. Metab. Eng. 47, 334–345 (2018).

    Article  Google Scholar 

  40. Larionov, V. et al. Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc. Natl Acad. Sci. USA 93, 491–496 (1996).

    Article  Google Scholar 

  41. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794 (1992).

    Article  Google Scholar 

  42. Noskov, V. N. et al. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast. BMC Genomics 4, 16 (2003).

    Article  Google Scholar 

  43. Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 14, 1009 (2023).

    Article  Google Scholar 

  44. Nah, H.-J., Woo, M.-W., Choi, S.-S. & Kim, E.-S. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Factories 14, 140 (2015).

    Article  Google Scholar 

  45. Kudo, K. et al. Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds. J. Antibiot. 77, 288–298 (2024).

    Article  Google Scholar 

  46. Kakirde, K. S. et al. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries. Gene 475, 57–62 (2011).

    Article  Google Scholar 

  47. Zhang, J. J., Tang, X., Zhang, M., Nguyen, D. & Moore, B. S. Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in gram-negative bacteria. mBio 8, e01291-17 (2017).

    Article  Google Scholar 

  48. Ren, J., Karna, S., Lee, H.-M., Yoo, S. M. & Na, D. Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl. Microbiol. Biotechnol. 103, 9205–9215 (2019).

    Article  Google Scholar 

  49. Singh, J. A., Noorbaloochi, S., MacDonald, R. & Maxwell, L. J. Chondroitin for osteoarthritis. Cochrane Database Syst. Rev. 2015, CD005614 (2015).

    Google Scholar 

  50. Zhao, C. et al. Reprogramming metabolic flux in Escherichia coli to enhance chondroitin production. Adv. Sci. 11, 2307351 (2024).

    Article  Google Scholar 

  51. Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).

    Article  Google Scholar 

  52. Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016).

    Article  Google Scholar 

  53. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article  Google Scholar 

  54. Fragata, I., Blanckaert, A., Dias Louro, M. A., Liberles, D. A. & Bank, C. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34, 69–82 (2019).

    Article  Google Scholar 

  55. Bajić, D., Vila, J. C. C., Blount, Z. D. & Sánchez, A. On the deformability of an empirical fitness landscape by microbial evolution. Proc. Natl Acad. Sci. USA 115, 11286–11291 (2018).

    Article  Google Scholar 

  56. Sah, S., Krishnani, S. & Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr. Res. Microb. Sci. 2, 100084 (2021).

    Google Scholar 

  57. Qin, S. et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 7, 1–27 (2022).

    Google Scholar 

  58. Xin, X.-F., Kvitko, B. & He, S. Y. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328 (2018).

    Article  Google Scholar 

  59. Aida, H. & Ying, B.-W. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun. Biol. 7, 1–12 (2024).

    Article  Google Scholar 

  60. Ying, B.-W., Seno, S., Matsuda, H. & Yomo, T. A simple comparison of the extrinsic noise in gene expression between native and foreign regulations in Escherichia coli. Biochem. Biophys. Res. Commun. 486, 852–857 (2017).

    Article  Google Scholar 

  61. Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12 (2010).

    Article  Google Scholar 

  62. Radde, N. et al. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat. Commun. 15, 6242 (2024).

    Article  Google Scholar 

  63. Kochhar, N. et al. Perspectives on the microorganism of extreme environments and their applications. Curr. Res. Microb. Sci. 3, 100134 (2022).

    Google Scholar 

  64. Febriani, Aura, N., Kemala, P., Saidi, N. & Iqbalsyah, T. M. Novel thermostable lipase produced by a thermo-halophilic bacterium that catalyses hydrolytic and transesterification reactions. Heliyon 6, e04520 (2020).

    Article  Google Scholar 

  65. Phuyal, M. et al. Xylanase-producing microbes and their real-world application. Int. J. Chem. Eng. 2023, 3593035 (2023).

    Article  Google Scholar 

  66. Wang, K., Cui, B., Wang, Y. & Luo, W. Microbial production of ectoine: a review. ACS Synth. Biol. 14, 332–342 (2025).

    Article  Google Scholar 

  67. Mitra, R., Xu, T., Xiang, H. & Han, J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Factories 19, 86 (2020).

    Article  Google Scholar 

  68. Gao, H. et al. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J. Microbiol. Biotechnol. 32, 1226–1233 (2022).

    Article  Google Scholar 

  69. Gadhvi, M. S., Javia, B. M., Vyas, S. J., Patel, R. & Dudhagara, D. R. Bhargavaea beijingensis a promising tool for bio-cementation, soil improvement, and mercury removal. Sci. Rep. 14, 23976 (2024).

    Article  Google Scholar 

  70. Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).

    Article  Google Scholar 

  71. Lentsch, V. et al. “EvoVax” — a rationally designed inactivated Salmonella Typhimurium vaccine induces strong and long-lasting immune responses in pigs. Vaccine 41, 5545–5552 (2023).

    Article  Google Scholar 

  72. Yang, S. et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 9, 699–717 (2016).

    Article  Google Scholar 

  73. Kunakom, S. & Eustáquio, A. S. Burkholderia as a source of natural products. J. Nat. Prod. 82, 2018–2037 (2019).

    Article  Google Scholar 

  74. Weldon, M. & Euler, C. Physiology-informed use of cupriavidus necator in biomanufacturing: a review of advances and challenges. Microb. Cell Factories 24, 30 (2025).

    Article  Google Scholar 

  75. Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).

    Article  Google Scholar 

  76. Trüper, H. G. & Krämer, J. in The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria (eds Starr, M. P. et al.) 176–193 (Springer, 1981).

  77. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  Google Scholar 

  78. Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genomics 7, 000685 (2021).

    Article  Google Scholar 

  79. Ahmad, S. et al. The UniProt website API: facilitating programmatic access to protein knowledge. Nucleic Acids Res. 53, W547–W553 (2025).

    Article  Google Scholar 

  80. Goldfarb, T. et al. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 53, D243–D257 (2024).

    Article  Google Scholar 

  81. Lobb, B., Tremblay, B. J.-M., Moreno-Hagelsieb, G. & Doxey, A. C. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genomics 6, e000341 (2020).

    Article  Google Scholar 

  82. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  Google Scholar 

  83. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  Google Scholar 

  84. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Article  Google Scholar 

  85. Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).

    Article  Google Scholar 

  86. Hauns, S., Alkhnbashi, O. S. & Backofen, R. Deepdefense: annotation of immune systems in prokaryotes using deep learning. GigaScience 13, giae062 (2024).

    Article  Google Scholar 

  87. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article  Google Scholar 

  88. Wishart, D. S. et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 51, W443–W450 (2023).

    Article  Google Scholar 

  89. Daniels, W. et al. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microb. Cell Factories 17, 198 (2018).

    Article  Google Scholar 

  90. Cassiano, M. H. A. & Silva-Rocha, R. Benchmarking bacterial promoter prediction tools: potentialities and limitations. mSystems 5, e00439–20 (2020).

    Article  Google Scholar 

  91. Costa-Silva, J., Domingues, D. & Lopes, F. M. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS ONE 12, e0190152 (2017).

    Article  Google Scholar 

  92. Wang, H., Fan, Q., Wang, Y., Yi, L. & Wang, Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC Microbiol. 24, 297 (2024).

    Article  Google Scholar 

  93. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).

    Article  Google Scholar 

  94. Ettwiller, L., Buswell, J., Yigit, E. & Schildkraut, I. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genomics 17, 199 (2016).

    Article  Google Scholar 

  95. Putzeys, L. et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput. Struct. Biotechnol. J. 20, 2624–2638 (2022).

    Article  Google Scholar 

  96. Yan, B., Boitano, M., Clark, T. A. & Ettwiller, L. SMRT-cappable-seq reveals complex operon variants in bacteria. Nat. Commun. 9, 3676 (2018).

    Article  Google Scholar 

  97. Wang, X. et al. Processing generates 3’ ends of RNA masking transcription termination events in prokaryotes. Proc. Natl Acad. Sci. USA 116, 4440–4445 (2019).

    Article  Google Scholar 

  98. Papenfort, K. & Storz, G. Insights into bacterial metabolism from small RNAs. Cell Chem. Biol. 31, 1571–1577 (2024).

    Article  Google Scholar 

  99. Vitale, G. A. et al. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat. Prod. Rep. 41, 885–904 (2024).

    Article  Google Scholar 

  100. Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

    Article  Google Scholar 

  101. Fu, Q., Murray, C. I., Karpov, O. A. & Van Eyk, J. E. Automated proteomic sample preparation: the key component for high throughput and quantitative mass spectrometry analysis. Mass. Spectrom. Rev. 42, 873–886 (2023).

    Article  Google Scholar 

  102. Sinclair, I. et al. Novel acoustic loading of a mass spectrometer: toward next-generation high-throughput MS screening. SLAS Technol. 21, 19–26 (2016).

    Article  Google Scholar 

  103. Van Puyvelde, B. et al. Acoustic ejection mass spectrometry empowers ultra-fast protein biomarker quantification. Nat. Commun. 15, 5114 (2024).

    Article  Google Scholar 

  104. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Article  Google Scholar 

  105. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where, and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

    Article  Google Scholar 

  106. Meydan, S. et al. Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol. Cell 74, 481–493.e6 (2019).

    Article  Google Scholar 

  107. Crown, S. B. & Antoniewicz, M. R. Publishing 13C metabolic flux analysis studies: a review and future perspectives. Metab. Eng. 20, 42–48 (2013).

    Article  Google Scholar 

  108. Volke, D. C., Gurdo, N., Milanesi, R. & Nikel, P. I. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab. Eng. 79, 159–172 (2023).

    Article  Google Scholar 

  109. Weimer, A. et al. Systems biology of electrogenic Pseudomonas putida — multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb. Cell Factories 23, 246 (2024).

    Article  Google Scholar 

  110. Dou, H., Liu, X.-X., Wang, G.-Q., Xiong, Z.-Q. & Ai, L.-Z. Integration of transcriptomics and metabolomics provides comprehensive insights into metabolic and functional alterations in Lactobacillus plantarum AR195 exposed to excess linoleic acid. Food Biosci. 64, 105957 (2025).

    Article  Google Scholar 

  111. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Article  Google Scholar 

  112. Pandey, V., Hadadi, N. & Hatzimanikatis, V. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models. PLoS Comput. Biol. 15, e1007036 (2019).

    Article  Google Scholar 

  113. Chen, C., Liao, C. & Liu, Y.-Y. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning. Nat. Commun. 14, 2375 (2023).

    Article  Google Scholar 

  114. Chen, K. et al. Electro-biodiesel empowered by co-design of microorganism and electrocatalysis. Joule 9, 101769 (2025).

    Article  Google Scholar 

  115. Gong, Z. et al. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: current advances and future prospects. Biotechnol. Adv. 72, 108319 (2024).

    Article  Google Scholar 

  116. Yan, X. et al. Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis. Nat. Commun. 15, 10441 (2024).

    Article  Google Scholar 

  117. Yan, X., He, Q., Geng, B. & Yang, S. Microbial cell factories in the bioeconomy era: from discovery to creation. BioDesign Res. 6, 0052 (2024).

    Article  Google Scholar 

  118. Kitano, S., Lin, C., Foo, J. L. & Chang, M. W. Synthetic biology: learning the way toward high-precision biological design. PLoS Biol. 21, e3002116 (2023).

    Article  Google Scholar 

  119. Goshisht, M. K. Machine learning and deep learning in synthetic biology: key architectures, applications, and challenges. ACS Omega 9, 9921–9945 (2024).

    Article  Google Scholar 

  120. Vijayakumar, S., Rahman, P. K. S. M. & Angione, C. A hybrid flux balance analysis and machine learning pipeline elucidates metabolic adaptation in Cyanobacteria. iScience 23, 101818 (2020).

    Article  Google Scholar 

  121. Fristot, E. et al. An optimized electrotransformation protocol for Lactobacillus jensenii. PLoS ONE 18, e0280935 (2023).

    Article  Google Scholar 

  122. Bales, M. K., Vergara, M. M. & Eckert, C. A. Application of functional genomics for domestication of novel non-model microbes. J. Ind. Microbiol. Biotechnol. 51, kuae022 (2024).

    Article  Google Scholar 

  123. García-Gutiérrez, C. et al. Multifunctional SEVA shuttle vectors for actinomycetes and gram-negative bacteria. MicrobiologyOpen 9, e1024 (2020).

    Article  Google Scholar 

  124. Lammens, E.-M. et al. Engineering a phi15-based expression system for stringent gene expression in Pseudomonas putida. Commun. Biol. 8, 1–15 (2025).

    Article  Google Scholar 

  125. Gawin, A., Valla, S. & Brautaset, T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. 10, 702–718 (2017).

    Article  Google Scholar 

  126. Landy, A. The λ integrase site-specific recombination pathway. Microbiol. Spectr. 3, MDNA3-0051–2014 (2015).

    Article  Google Scholar 

  127. MacDonald, A. I. et al. Variable orthogonality of serine integrase interactions within the ϕC31 family. Sci. Rep. 14, 26280 (2024).

    Article  Google Scholar 

  128. Lammens, E.-M. et al. A SEVA-based, CRISPR–Cas3-assisted genome engineering approach for Pseudomonas with efficient vector curing. Microbiol. Spectr. 11, e02707–e02723 (2023).

    Article  Google Scholar 

  129. Volke, D. C., Wirth, N. T. & Nikel, P. Rapid genome engineering of Pseudomonas assisted by fluorescent markers and tractable curing of plasmids. Bio Protoc. 11, e3917 (2021).

    Article  Google Scholar 

  130. Volke, D. C., Martino, R. A., Kozaeva, E., Smania, A. M. & Nikel, P. I. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat. Commun. 13, 3026 (2022).

    Article  Google Scholar 

  131. Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    Article  Google Scholar 

  132. Lammens, E.-M., Nikel, P. I. & Lavigne, R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat. Commun. 11, 5294 (2020).

    Article  Google Scholar 

  133. Lemire, S., Yehl, K. M. & Lu, T. K. Phage-based applications in synthetic biology. Annu. Rev. Virol. 5, 453–476 (2018).

    Article  Google Scholar 

  134. Putzeys, L. et al. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. microLife 5, uqae002 (2024).

    Article  Google Scholar 

  135. Lammens, E.-M., Putzeys, L., Boon, M. & Lavigne, R. Sourcing phage-encoded terminators using ONT-cappable-seq for SynBio applications in Pseudomonas. ACS Synth. Biol. 12, 1415–1423 (2023).

    Article  Google Scholar 

  136. Lammens, E.-M., Feyaerts, N., Kerremans, A., Boon, M. & Lavigne, R. Assessing the orthogonality of phage-encoded RNA polymerases for tailored synthetic biology applications in Pseudomonas species. Int. J. Mol. Sci. 24, 7175 (2023).

    Article  Google Scholar 

  137. Putzeys, L. et al. Transcriptomics-driven characterization of LUZ100, a T7-like Pseudomonas phage with temperate features. mSystems 8, e01189-22 (2023).

    Article  Google Scholar 

  138. Poppeliers, J. et al. Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: uncovering the small regulatory details of a giant phage. Microb. Biotechnol. 17, e70037 (2024).

    Article  Google Scholar 

  139. Schwartz, D. A., Lehmkuhl, B. K. & Lennon, J. T. Phage-encoded sigma factors alter bacterial dormancy. mSphere 7, e00297-22 (2022).

    Article  Google Scholar 

  140. Nechaev, S. & Severinov, K. Bacteriophage-induced modifications of host RNA polymerase. Annu. Rev. Microbiol. 57, 301–322 (2003).

    Article  Google Scholar 

  141. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  Google Scholar 

  142. Zhang, Y., Ba, F., Huang, S., Liu, W.-Q. & Li, J. Orthogonal serine integrases enable scalable gene storage cascades in bacterial genome. ACS Synth. Biol. 13, 3022–3031 (2024).

    Article  Google Scholar 

  143. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).

    Article  Google Scholar 

  144. Pisithkul, T., Patel, N. M. & Amador-Noguez, D. Post-translational modifications as key regulators of bacterial metabolic fluxes. Curr. Opin. Microbiol. 24, 29–37 (2015).

    Article  Google Scholar 

  145. Longin, H., Broeckaert, N., van Noort, V., Lavigne, R. & Hendrix, H. Posttranslational modifications in bacteria during phage infection. Curr. Opin. Microbiol. 77, 102425 (2024).

    Article  Google Scholar 

  146. Zou, X., Mo, Z., Wang, L., Chen, S. & Lee, S. Y. Overcoming bacteriophage contamination in bioprocessing: strategies and applications. Small Methods 9, 2400932 (2024).

    Article  Google Scholar 

  147. Ma, Y., Manna, A. & Moon, T. S. Advances in engineering genetic circuits for microbial biocontainment. Curr. Opin. Syst. Biol. 36, 100483 (2023).

    Article  Google Scholar 

  148. Simon, A. J. & Ellington, A. D. Recent advances in synthetic biosafety. F1000Research 5, F1000 Faculty Rev-2118 (2016).

    Article  Google Scholar 

  149. Barcelos, M. C. S., Lupki, F. B., Campolina, G. A., Nelson, D. L. & Molina, G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol. Lett. 365, fny239 (2018).

    Article  Google Scholar 

  150. Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).

    Article  Google Scholar 

  151. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    Article  Google Scholar 

  152. Orhan, I. E., Suntar, I. & Emerce, E. Leading role of natural products in pharmaceutical, biotechnological, and cosmeceutical applications (GPSS-2021). Phytochem. Rev. 22, 1–2 (2023).

    Article  Google Scholar 

  153. Jørgensen, J. B. Exploiting microorganisms for animal feed production. In 7th Malaysia International Agro-Bio Business Conference (2011).

  154. Carpenter, R., Showell, M. S., Barnes, J. & Pal, N. Microbial-based waste water treatment compositions and methods of use thereof. European patent EP2999801B1 (2021).

  155. Gemperlein, K. et al. Synthetic biology approaches to establish a heterologous production system for coronatines. Metab. Eng. 44, 213–222 (2017).

    Article  Google Scholar 

  156. Landrain, T., Adenis, M. S., Blache, J. & Boissonnat, G. Use of actinorhodine and its derivatives as a coloring agent. WIPO patent WO2018138089A1 (2018).

  157. Giri, A. V., Anandkumar, N., Muthukumaran, G. & Pennathur, G. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 4, 11 (2004).

    Article  Google Scholar 

  158. Kwon, S.-K., Park, Y.-K. & Kim, J. F. Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl. Environ. Microbiol. 76, 1661–1668 (2010).

    Article  Google Scholar 

  159. Choi, S. Y., Lim, S., Yoon, K., Lee, J. I. & Mitchell, R. J. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15, 10 (2021).

    Article  Google Scholar 

  160. Domröse, A. et al. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front. Microbiol. 6, 972 (2015).

    Article  Google Scholar 

  161. Whiffin, F., Santomauro, F. & Chuck, C. J. Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose. Biofuels Bioprod. Bioref. 10, 316–334 (2016).

    Article  Google Scholar 

  162. Nunes, D. D., Pillay, V. L., Van Rensburg, E. & Pott, R. W. M. Oleaginous microorganisms as a sustainable oil source with a focus on downstream processing and cost-lowering production strategies: a review. Bioresour. Technol. Rep. 26, 101871 (2024).

    Article  Google Scholar 

  163. Goswami, L., Tejas Namboodiri, M. M., Vinoth Kumar, R., Pakshirajan, K. & Pugazhenthi, G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew. Energy 105, 400–406 (2017).

    Article  Google Scholar 

  164. Beuker, J. et al. High titer heterologous rhamnolipid production. AMB Express 6, 124 (2016).

    Article  Google Scholar 

  165. Müller, M. M., Hörmann, B., Kugel, M., Syldatk, C. & Hausmann, R. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 89, 585–592 (2011).

    Article  Google Scholar 

  166. Zhang, Y. et al. Microbial upcycling of depolymerized lignin into value-added chemicals. BioDesign Res. 6, 0027 (2024).

    Article  Google Scholar 

  167. Lad, B. C., Coleman, S. M. & Alper, H. S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 49, kuab056 (2021).

    Article  Google Scholar 

  168. Bertile, F., Matallana-Surget, S., Tholey, A., Cristobal, S. & Armengaud, J. Diversifying the concept of model organisms in the age of -omics. Commun. Biol. 6, 1–4 (2023).

    Article  Google Scholar 

  169. Mitra, S. & Murthy, G. S. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. Syst. Microbiol. Biomanuf. 2, 91–112 (2022).

    Article  Google Scholar 

  170. Fink, M., Cserjan-Puschmann, M., Reinisch, D. & Striedner, G. High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci. Rep. 11, 2056 (2021).

    Article  Google Scholar 

  171. Wang, Y., Ling, C., Chen, Y., Jiang, X. & Chen, G.-Q. Microbial engineering for easy downstream processing. Biotechnol. Adv. 37, 107365 (2019).

    Article  Google Scholar 

  172. Schroeder, J. W., Yeesin, P., Simmons, L. A. & Wang, J. D. Sources of spontaneous mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 53, 29–48 (2018).

    Article  Google Scholar 

  173. Wesseler, J., Kleter, G., Meulenbroek, M. & Purnhagen, K. P. EU regulation of genetically modified microorganisms in light of new policy developments: possible implications for EU bioeconomy investments. Appl. Econ. Perspect. Policy 45, 839–859 (2022).

    Article  Google Scholar 

  174. Lensch, A. et al. Safety aspects of microorganisms deliberately released into the environment. EFB Bioecon. J. 4, 100061 (2024).

    Article  Google Scholar 

  175. Shams, A., Fischer, A., Bodnar, A. & Kliegman, M. Perspectives on genetically engineered microorganisms and their regulation in the United States. ACS Synth. Biol. 13, 1412–1423 (2024).

    Article  Google Scholar 

  176. Yan, Q. & Fong, S. S. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J. Biol. Eng. 11, 33 (2017).

    Article  Google Scholar 

  177. Zobel, S. et al. Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth. Biol. 4, 1341–1351 (2015).

    Article  Google Scholar 

  178. Johnson, A. O., Gonzalez-Villanueva, M., Tee, K. L. & Wong, T. S. An engineered constitutive promoter set with broad activity range for Cupriavidus necator H16. ACS Synth. Biol. 7, 1918–1928 (2018).

    Article  Google Scholar 

  179. Li, T. et al. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp. Biotechnol. J. 11, 219–227 (2016).

    Article  Google Scholar 

  180. Yang, Y. et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol. Biofuels 12, 52 (2019).

    Article  Google Scholar 

  181. Yu, M. & Tsang, J. S. H. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Protein Expr. Purif. 49, 219–227 (2006).

    Article  Google Scholar 

  182. De Paepe, B., Maertens, J., Vanholme, B. & De Mey, M. Modularization and response curve engineering of a naringenin-responsive transcriptional biosensor. ACS Synth. Biol. 7, 1303–1314 (2018).

    Article  Google Scholar 

  183. Worsey, M. J. & Williams, P. A. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124, 7–13 (1975).

    Article  Google Scholar 

  184. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  Google Scholar 

  185. Wanner, B. L., Kodaira, R. & Neidhardt, F. C. Physiological regulation of a decontrolled lac operon. J. Bacteriol. 130, 212–222 (1977).

    Article  Google Scholar 

  186. Egan, S. M. & Schleif, R. F. A regulatory cascade in the induction of rhaBAD. J. Mol. Biol. 234, 87–98 (1993).

    Article  Google Scholar 

  187. Rosenberg, A. H. et al. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135 (1987).

    Article  Google Scholar 

  188. Cheng, X. & Patterson, T. A. Construction and use of lambda PL promoter vectors for direct cloning and high level expression of PCR amplified DNA coding sequences. Nucleic Acids Res. 20, 4591–4598 (1992).

    Article  Google Scholar 

  189. Mead, D. A., Skorupa, E. S. & Kemper, B. Single stranded DNA SP6 promoter plasmids for engineering mutant RNAs and proteins: synthesis of a ‘stretched’ preproparathyroid hormone. Nucleic Acids Res. 13, 1103–1118 (1985).

    Article  Google Scholar 

  190. Delaleau, M. et al. Rho-dependent transcriptional switches regulate the bacterial response to cold shock. Mol. Cell 84, 3482–3496.e7 (2024).

    Article  Google Scholar 

  191. Silva-Rocha, R. et al. The standard European vector architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41, D666–D675 (2013).

    Article  Google Scholar 

  192. Bai, C. et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl Acad. Sci. USA 112, 12181–12186 (2015).

    Article  Google Scholar 

  193. Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).

    Article  Google Scholar 

  194. Ohuchi, S., Mori, Y. & Nakamura, Y. Evolution of an inhibitory RNA aptamer against T7 RNA polymerase. FEBS Open. Bio 2, 203–207 (2012).

    Article  Google Scholar 

  195. Mori, Y., Nakamura, Y. & Ohuchi, S. Inhibitory RNA aptamer against SP6 RNA polymerase. Biochem. Biophys. Res. Commun. 420, 440–443 (2012).

    Article  Google Scholar 

  196. Kolpashchikov, D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 127, 12442–12443 (2005).

    Article  Google Scholar 

  197. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Article  Google Scholar 

  198. Sirois, S. & Szatmari, G. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae. J. Bacteriol. 177, 4183–4186 (1995).

    Article  Google Scholar 

  199. Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M. & Smith, M. C. M. New applications for phage integrases. J. Mol. Biol. 426, 2703–2716 (2014).

    Article  Google Scholar 

  200. Walker, S. A. & Klaenhammer, T. R. Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the Lactococcal Bacteriophage φ31. J. Bacteriol. 180, 921–931 (1998).

    Article  Google Scholar 

  201. Engstrom, M. D. & Pfleger, B. F. Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol. 2, 176–191 (2017).

    Article  Google Scholar 

  202. De Paepe, B. & De Mey, M. Biological switches: past and future milestones of transcription factor-based biosensors. ACS Synth. Biol. 14, 72–86 (2025).

    Article  Google Scholar 

  203. Pu, W. et al. Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors. Biosens. Bioelectron. 222, 115004 (2023).

    Article  Google Scholar 

  204. De Wannemaeker, L. et al. Standardization of fluorescent reporter assays in synthetic biology across the visible light spectrum. ACS Synth. Biol. 12, 3591–3607 (2023).

    Article  Google Scholar 

  205. Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA. 88, 4438–4442 (1991).

    Article  Google Scholar 

  206. Inouye, S. Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell. Mol. Life Sci. 67, 387–404 (2009).

    Article  Google Scholar 

  207. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article  Google Scholar 

  208. Ahmed, F. H. et al. Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallogr. Sect. Struct. Biol. 78, 599–612 (2022).

    Article  Google Scholar 

  209. Martínez-García, E. et al. SEVA 4.0: an update of the standard European vector architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res. 51, D1558–D1567 (2023).

    Article  Google Scholar 

  210. Chen, W. et al. CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6, 222–231 (2018).

    Article  Google Scholar 

  211. Cong, L. & Zhang, F. in Chromosomal Mutagenesis (ed. Pruett-Miller, S. M.) 197–217 (Springer, 2015).

  212. Volke, D. C., Friis, L., Wirth, N. T., Turlin, J. & Nikel, P. I. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng. Commun. 10, e00126 (2020).

    Article  Google Scholar 

  213. Li, R., Li, A., Zhang, Y. & Fu, J. The emerging role of recombineering in microbiology. Eng. Microbiol. 3, 100097 (2023).

    Article  Google Scholar 

  214. Green, B., Bouchier, C., Fairhead, C., Craig, N. L. & Cormack, B. P. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3, 3 (2012).

    Article  Google Scholar 

  215. Chang, C.-W., Truong, V. A., Pham, N. N. & Hu, Y.-C. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol. 42, 970–985 (2024).

    Article  Google Scholar 

  216. Wiechert, J., Gätgens, C., Wirtz, A. & Frunzke, J. Inducible expression systems based on xenogeneic silencing and counter-silencing and design of a metabolic toggle switch. ACS Synth. Biol. 9, 2023–2038 (2020).

    Article  Google Scholar 

  217. Saberi, F., Kamali, M., Najafi, A., Yazdanparast, A. & Moghaddam, M. M. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell. Mol. Biol. Lett. 21, 6 (2016).

    Article  Google Scholar 

  218. Carpine, R., Olivieri, G., Hellingwerf, K. J., Pollio, A. & Marzocchella, A. Industrial production of poly-?-hydroxybutyrate from CO2: can Cyanobacteria meet this challenge? Processes 8, 323 (2020).

    Article  Google Scholar 

  219. Rajpurohit, H., Sharma, P., Sharma, S. & Bhandari, A. Polymers for colon targeted drug delivery. Indian. J. Pharm. Sci. 72, 689–696 (2010).

    Article  Google Scholar 

  220. Venegas, F. A. et al. The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci. Rep. 9, 13661 (2019).

    Article  Google Scholar 

  221. Zaykov, A. N., Mayer, J. P. & DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug. Discov. 15, 425–439 (2016).

    Article  Google Scholar 

  222. Knox, C. et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 52, D1265–D1275 (2023).

    Article  Google Scholar 

  223. Precedence Research. Synthetic biology market size to hit USD 148.93 billion by 2033 https://www.precedenceresearch.com/synthetic-biology-market (2025).

  224. Switzer, A., Šusta, L. & Mines, P. Routes to industrial scalability to maximise investment in engineering biology in the UK — a bioplastics small and medium-sized enterprise perspective. Eng. Biol. 8, 41–46 (2024).

    Article  Google Scholar 

  225. Mavrommati, M., Daskalaki, A., Papanikolaou, S. & Aggelis, G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 54, 107795 (2022).

    Article  Google Scholar 

  226. Asin-Garcia, E., Fawcett, J. D., Batianis, C. & Martins Dos Santos, V. A. P. A snapshot of biomanufacturing and the need for enabling research infrastructure. Trends Biotechnol. 43, 1000–1014 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

J.P. holds a predoctoral SB scholarship from FWO (grant no. 1S18723N). M.B., M.D.M. and R.L. are supported by a grant from the Special Research Fund (grant no. iBOF/21/092). J.M. and R.L. are supported by a grant from FWO (grant no. G044624N).

Author information

Authors and Affiliations

Authors

Contributions

J.P. researched data for the article and contributed to discussion of content and writing. M.B., M.D.M., J.M. and R.L. contributed to discussion and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Rob Lavigne.

Ethics declarations

Citation diversity statement

We acknowledge that research authored by scholars from historically excluded groups is systematically under-cited. Every attempt has been made to reference relevant research in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Shihui Yang, Joshua Yuan and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poppeliers, J., Boon, M., De Mey, M. et al. Non-model bacteria as platforms for endogenous gene expression in synthetic biology. Nat Rev Bioeng 4, 67–81 (2026). https://doi.org/10.1038/s44222-025-00354-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00354-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research