Abstract
Microbial synthetic biology seeks to engineer bacterial genomes for industrial and biomedical applications, typically by applying heterologous gene expression in well-characterized model organisms, such as Escherichia coli. However, heterologous gene expression might cause metabolic disruptions, thereby impacting production efficiency and yield. In this Review, we highlight non-model organisms, such as Lacticaseibacillus and pseudomonads, for endogenous compound production, taking advantage of their evolutionary optimization for the production of certain metabolites and proteins. We first outline key limitations of heterologous production and then examine endogenous production pathways in non-model organisms for biotechnological and therapeutic applications. In particular, multi-omics approaches enable the discovery and characterization of these organisms, and phage-based genome refactoring enhances genome engineering capabilities. Finally, we outline key bottlenecks in the application of non-model organisms in biotechnology, including scale-up, costs and safety.
Key points
-
Chassis diversification is essential to unlock the full potential of microbial synthetic biology.
-
Native producers have an evolutionary advantage over heterologous expression hosts, which can be leveraged for biotechnological applications.
-
Multi-omics techniques enable the characterization of non-model organisms to become the next generation of synthetic biology chassis.
-
Bacteriophage genomes are valuable sources for the discovery of synthetic biology tools to modify gene expression in non-model organisms.
-
The switch towards endogenous gene expression can improve market adoption for the second generation of microbial cell factories.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).
Lorenzo, V. de & Danchin, A. Synthetic biology: discovering new worlds and new words. The new and not so new aspects of this emerging research field. EMBO Rep. 9, 822 (2008).
Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).
Adamala, K. P. et al. Present and future of synthetic cell development. Nat. Rev. Mol. Cell Biol. 25, 162–167 (2024).
Volk, M. J. et al. Metabolic engineering: methodologies and applications. Chem. Rev. 123, 5521–5570 (2023).
David, F. et al. A perspective on synthetic biology in drug discovery and development — current impact and future opportunities. SLAS Discov. 26, 581–603 (2021).
Okoro, V., Azimov, U. & Munoz, J. Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design — a review. Fuel 316, 123330 (2022).
Kumari, R., Singha, L. P. & Shukla, P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS Microbes 4, xtad015 (2023).
Wang, L., Zang, X. & Zhou, J. Synthetic biology: a powerful booster for future agriculture. Adv. Agrochem. 1, 7–11 (2022).
Jalili, P., Ala, A., Nazari, P., Jalili, B. & Ganji, D. D. A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon 10, e25439 (2024).
Mugwanda, K. et al. Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci. Rep. 43, BSR20211299 (2023).
Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).
de Lorenzo, V., Krasnogor, N. & Schmidt, M. For the sake of the bioeconomy: define what a synthetic biology chassis is! N. Biotechnol. 60, 44–51 (2021).
Adams, B. L. The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth. Biol. 5, 1328–1330 (2016).
Pontrelli, S. et al. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50, 16–46 (2018).
Rosano, G. L., Morales, E. S. & Ceccarelli, E. A. New tools for recombinant protein production in Escherichia coli: a 5-year update. Protein Sci. 28, 1412–1422 (2019).
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
Yang, D., Park, S. Y., Park, Y. S., Eun, H. & Lee, S. Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 38, 745–765 (2020).
Pouresmaeil, M. & Azizi-Dargahlou, S. Factors involved in heterologous expression of proteins in E. coli host. Arch. Microbiol. 205, 212 (2023).
İncir, İ & Kaplan, Ö Escherichia coli as a versatile cell factory: advances and challenges in recombinant protein production. Protein Expr. Purif. 219, 106463 (2024).
Mahalik, S., Sharma, A. K. & Mukherjee, K. J. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb. Cell Factories 13, 177 (2014).
Olicón-Hernández, D. R. et al. Fundaments and concepts on screening of microorganisms for biotechnological applications. Mini review. Curr. Microbiol. 79, 373 (2022).
Lara, A. R., Galindo, E., Ramírez, O. T. & Palomares, L. A. Living with heterogeneities in bioreactors. Mol. Biotechnol. 34, 355–381 (2006).
Mu, X. & Zhang, F. Diverse mechanisms of bioproduction heterogeneity in fermentation and their control strategies. J. Ind. Microbiol. Biotechnol. 50, kuad033 (2023).
Snoeck, S., Guidi, C. & De Mey, M. “Metabolic burden” explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb. Cell Factories 23, 96 (2024).
Hwang, S., Joung, C., Kim, W., Palsson, B. & Cho, B.-K. Recent advances in non-model bacterial chassis construction. Curr. Opin. Syst. Biol. 36, 100471 (2023).
Liu, J., Wang, X., Dai, G., Zhang, Y. & Bian, X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol. Adv. 59, 107966 (2022).
Nagata, S. et al. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284, 316–320 (1980).
Carroll, A. L., Desai, S. H. & Atsumi, S. Microbial production of scent and flavor compounds. Curr. Opin. Biotechnol. 37, 8–15 (2016).
Chance, R. E. & Frank, B. H. Research, development, production, and safety of biosynthetic human insulin. Diabetes Care 16, 133–142 (1993).
Wang, C., Pfleger, B. F. & Kim, S.-W. Reassessing Escherichia coli as a cell factory for biofuel production. Curr. Opin. Biotechnol. 45, 92–103 (2017).
Jiang, R. et al. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol. Adv. 75, 108417 (2024).
Sharp, P. M. & Li, W. H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281 (1987).
Al-Hawash, A. B., Zhang, X. & Ma, F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Rep. 9, 46–53 (2017).
Liu, Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun. Signal. 18, 145 (2020).
Love, A. M. & Nair, N. U. Specific codons control cellular resources and fitness. Sci. Adv. 10, eadk3485 (2024).
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).
Greunke, C. et al. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential. Metab. Eng. 47, 334–345 (2018).
Larionov, V. et al. Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc. Natl Acad. Sci. USA 93, 491–496 (1996).
Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794 (1992).
Noskov, V. N. et al. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast. BMC Genomics 4, 16 (2003).
Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 14, 1009 (2023).
Nah, H.-J., Woo, M.-W., Choi, S.-S. & Kim, E.-S. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Factories 14, 140 (2015).
Kudo, K. et al. Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds. J. Antibiot. 77, 288–298 (2024).
Kakirde, K. S. et al. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries. Gene 475, 57–62 (2011).
Zhang, J. J., Tang, X., Zhang, M., Nguyen, D. & Moore, B. S. Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in gram-negative bacteria. mBio 8, e01291-17 (2017).
Ren, J., Karna, S., Lee, H.-M., Yoo, S. M. & Na, D. Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl. Microbiol. Biotechnol. 103, 9205–9215 (2019).
Singh, J. A., Noorbaloochi, S., MacDonald, R. & Maxwell, L. J. Chondroitin for osteoarthritis. Cochrane Database Syst. Rev. 2015, CD005614 (2015).
Zhao, C. et al. Reprogramming metabolic flux in Escherichia coli to enhance chondroitin production. Adv. Sci. 11, 2307351 (2024).
Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).
Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016).
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
Fragata, I., Blanckaert, A., Dias Louro, M. A., Liberles, D. A. & Bank, C. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34, 69–82 (2019).
Bajić, D., Vila, J. C. C., Blount, Z. D. & Sánchez, A. On the deformability of an empirical fitness landscape by microbial evolution. Proc. Natl Acad. Sci. USA 115, 11286–11291 (2018).
Sah, S., Krishnani, S. & Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr. Res. Microb. Sci. 2, 100084 (2021).
Qin, S. et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 7, 1–27 (2022).
Xin, X.-F., Kvitko, B. & He, S. Y. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328 (2018).
Aida, H. & Ying, B.-W. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun. Biol. 7, 1–12 (2024).
Ying, B.-W., Seno, S., Matsuda, H. & Yomo, T. A simple comparison of the extrinsic noise in gene expression between native and foreign regulations in Escherichia coli. Biochem. Biophys. Res. Commun. 486, 852–857 (2017).
Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12 (2010).
Radde, N. et al. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat. Commun. 15, 6242 (2024).
Kochhar, N. et al. Perspectives on the microorganism of extreme environments and their applications. Curr. Res. Microb. Sci. 3, 100134 (2022).
Febriani, Aura, N., Kemala, P., Saidi, N. & Iqbalsyah, T. M. Novel thermostable lipase produced by a thermo-halophilic bacterium that catalyses hydrolytic and transesterification reactions. Heliyon 6, e04520 (2020).
Phuyal, M. et al. Xylanase-producing microbes and their real-world application. Int. J. Chem. Eng. 2023, 3593035 (2023).
Wang, K., Cui, B., Wang, Y. & Luo, W. Microbial production of ectoine: a review. ACS Synth. Biol. 14, 332–342 (2025).
Mitra, R., Xu, T., Xiang, H. & Han, J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Factories 19, 86 (2020).
Gao, H. et al. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J. Microbiol. Biotechnol. 32, 1226–1233 (2022).
Gadhvi, M. S., Javia, B. M., Vyas, S. J., Patel, R. & Dudhagara, D. R. Bhargavaea beijingensis a promising tool for bio-cementation, soil improvement, and mercury removal. Sci. Rep. 14, 23976 (2024).
Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).
Lentsch, V. et al. “EvoVax” — a rationally designed inactivated Salmonella Typhimurium vaccine induces strong and long-lasting immune responses in pigs. Vaccine 41, 5545–5552 (2023).
Yang, S. et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 9, 699–717 (2016).
Kunakom, S. & Eustáquio, A. S. Burkholderia as a source of natural products. J. Nat. Prod. 82, 2018–2037 (2019).
Weldon, M. & Euler, C. Physiology-informed use of cupriavidus necator in biomanufacturing: a review of advances and challenges. Microb. Cell Factories 24, 30 (2025).
Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).
Trüper, H. G. & Krämer, J. in The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria (eds Starr, M. P. et al.) 176–193 (Springer, 1981).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genomics 7, 000685 (2021).
Ahmad, S. et al. The UniProt website API: facilitating programmatic access to protein knowledge. Nucleic Acids Res. 53, W547–W553 (2025).
Goldfarb, T. et al. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 53, D243–D257 (2024).
Lobb, B., Tremblay, B. J.-M., Moreno-Hagelsieb, G. & Doxey, A. C. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genomics 6, e000341 (2020).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).
Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).
Hauns, S., Alkhnbashi, O. S. & Backofen, R. Deepdefense: annotation of immune systems in prokaryotes using deep learning. GigaScience 13, giae062 (2024).
Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).
Wishart, D. S. et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 51, W443–W450 (2023).
Daniels, W. et al. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microb. Cell Factories 17, 198 (2018).
Cassiano, M. H. A. & Silva-Rocha, R. Benchmarking bacterial promoter prediction tools: potentialities and limitations. mSystems 5, e00439–20 (2020).
Costa-Silva, J., Domingues, D. & Lopes, F. M. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS ONE 12, e0190152 (2017).
Wang, H., Fan, Q., Wang, Y., Yi, L. & Wang, Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC Microbiol. 24, 297 (2024).
Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).
Ettwiller, L., Buswell, J., Yigit, E. & Schildkraut, I. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genomics 17, 199 (2016).
Putzeys, L. et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput. Struct. Biotechnol. J. 20, 2624–2638 (2022).
Yan, B., Boitano, M., Clark, T. A. & Ettwiller, L. SMRT-cappable-seq reveals complex operon variants in bacteria. Nat. Commun. 9, 3676 (2018).
Wang, X. et al. Processing generates 3’ ends of RNA masking transcription termination events in prokaryotes. Proc. Natl Acad. Sci. USA 116, 4440–4445 (2019).
Papenfort, K. & Storz, G. Insights into bacterial metabolism from small RNAs. Cell Chem. Biol. 31, 1571–1577 (2024).
Vitale, G. A. et al. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat. Prod. Rep. 41, 885–904 (2024).
Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).
Fu, Q., Murray, C. I., Karpov, O. A. & Van Eyk, J. E. Automated proteomic sample preparation: the key component for high throughput and quantitative mass spectrometry analysis. Mass. Spectrom. Rev. 42, 873–886 (2023).
Sinclair, I. et al. Novel acoustic loading of a mass spectrometer: toward next-generation high-throughput MS screening. SLAS Technol. 21, 19–26 (2016).
Van Puyvelde, B. et al. Acoustic ejection mass spectrometry empowers ultra-fast protein biomarker quantification. Nat. Commun. 15, 5114 (2024).
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).
Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where, and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).
Meydan, S. et al. Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol. Cell 74, 481–493.e6 (2019).
Crown, S. B. & Antoniewicz, M. R. Publishing 13C metabolic flux analysis studies: a review and future perspectives. Metab. Eng. 20, 42–48 (2013).
Volke, D. C., Gurdo, N., Milanesi, R. & Nikel, P. I. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab. Eng. 79, 159–172 (2023).
Weimer, A. et al. Systems biology of electrogenic Pseudomonas putida — multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb. Cell Factories 23, 246 (2024).
Dou, H., Liu, X.-X., Wang, G.-Q., Xiong, Z.-Q. & Ai, L.-Z. Integration of transcriptomics and metabolomics provides comprehensive insights into metabolic and functional alterations in Lactobacillus plantarum AR195 exposed to excess linoleic acid. Food Biosci. 64, 105957 (2025).
Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).
Pandey, V., Hadadi, N. & Hatzimanikatis, V. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models. PLoS Comput. Biol. 15, e1007036 (2019).
Chen, C., Liao, C. & Liu, Y.-Y. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning. Nat. Commun. 14, 2375 (2023).
Chen, K. et al. Electro-biodiesel empowered by co-design of microorganism and electrocatalysis. Joule 9, 101769 (2025).
Gong, Z. et al. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: current advances and future prospects. Biotechnol. Adv. 72, 108319 (2024).
Yan, X. et al. Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis. Nat. Commun. 15, 10441 (2024).
Yan, X., He, Q., Geng, B. & Yang, S. Microbial cell factories in the bioeconomy era: from discovery to creation. BioDesign Res. 6, 0052 (2024).
Kitano, S., Lin, C., Foo, J. L. & Chang, M. W. Synthetic biology: learning the way toward high-precision biological design. PLoS Biol. 21, e3002116 (2023).
Goshisht, M. K. Machine learning and deep learning in synthetic biology: key architectures, applications, and challenges. ACS Omega 9, 9921–9945 (2024).
Vijayakumar, S., Rahman, P. K. S. M. & Angione, C. A hybrid flux balance analysis and machine learning pipeline elucidates metabolic adaptation in Cyanobacteria. iScience 23, 101818 (2020).
Fristot, E. et al. An optimized electrotransformation protocol for Lactobacillus jensenii. PLoS ONE 18, e0280935 (2023).
Bales, M. K., Vergara, M. M. & Eckert, C. A. Application of functional genomics for domestication of novel non-model microbes. J. Ind. Microbiol. Biotechnol. 51, kuae022 (2024).
García-Gutiérrez, C. et al. Multifunctional SEVA shuttle vectors for actinomycetes and gram-negative bacteria. MicrobiologyOpen 9, e1024 (2020).
Lammens, E.-M. et al. Engineering a phi15-based expression system for stringent gene expression in Pseudomonas putida. Commun. Biol. 8, 1–15 (2025).
Gawin, A., Valla, S. & Brautaset, T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. 10, 702–718 (2017).
Landy, A. The λ integrase site-specific recombination pathway. Microbiol. Spectr. 3, MDNA3-0051–2014 (2015).
MacDonald, A. I. et al. Variable orthogonality of serine integrase interactions within the ϕC31 family. Sci. Rep. 14, 26280 (2024).
Lammens, E.-M. et al. A SEVA-based, CRISPR–Cas3-assisted genome engineering approach for Pseudomonas with efficient vector curing. Microbiol. Spectr. 11, e02707–e02723 (2023).
Volke, D. C., Wirth, N. T. & Nikel, P. Rapid genome engineering of Pseudomonas assisted by fluorescent markers and tractable curing of plasmids. Bio Protoc. 11, e3917 (2021).
Volke, D. C., Martino, R. A., Kozaeva, E., Smania, A. M. & Nikel, P. I. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat. Commun. 13, 3026 (2022).
Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).
Lammens, E.-M., Nikel, P. I. & Lavigne, R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat. Commun. 11, 5294 (2020).
Lemire, S., Yehl, K. M. & Lu, T. K. Phage-based applications in synthetic biology. Annu. Rev. Virol. 5, 453–476 (2018).
Putzeys, L. et al. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. microLife 5, uqae002 (2024).
Lammens, E.-M., Putzeys, L., Boon, M. & Lavigne, R. Sourcing phage-encoded terminators using ONT-cappable-seq for SynBio applications in Pseudomonas. ACS Synth. Biol. 12, 1415–1423 (2023).
Lammens, E.-M., Feyaerts, N., Kerremans, A., Boon, M. & Lavigne, R. Assessing the orthogonality of phage-encoded RNA polymerases for tailored synthetic biology applications in Pseudomonas species. Int. J. Mol. Sci. 24, 7175 (2023).
Putzeys, L. et al. Transcriptomics-driven characterization of LUZ100, a T7-like Pseudomonas phage with temperate features. mSystems 8, e01189-22 (2023).
Poppeliers, J. et al. Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: uncovering the small regulatory details of a giant phage. Microb. Biotechnol. 17, e70037 (2024).
Schwartz, D. A., Lehmkuhl, B. K. & Lennon, J. T. Phage-encoded sigma factors alter bacterial dormancy. mSphere 7, e00297-22 (2022).
Nechaev, S. & Severinov, K. Bacteriophage-induced modifications of host RNA polymerase. Annu. Rev. Microbiol. 57, 301–322 (2003).
Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).
Zhang, Y., Ba, F., Huang, S., Liu, W.-Q. & Li, J. Orthogonal serine integrases enable scalable gene storage cascades in bacterial genome. ACS Synth. Biol. 13, 3022–3031 (2024).
Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).
Pisithkul, T., Patel, N. M. & Amador-Noguez, D. Post-translational modifications as key regulators of bacterial metabolic fluxes. Curr. Opin. Microbiol. 24, 29–37 (2015).
Longin, H., Broeckaert, N., van Noort, V., Lavigne, R. & Hendrix, H. Posttranslational modifications in bacteria during phage infection. Curr. Opin. Microbiol. 77, 102425 (2024).
Zou, X., Mo, Z., Wang, L., Chen, S. & Lee, S. Y. Overcoming bacteriophage contamination in bioprocessing: strategies and applications. Small Methods 9, 2400932 (2024).
Ma, Y., Manna, A. & Moon, T. S. Advances in engineering genetic circuits for microbial biocontainment. Curr. Opin. Syst. Biol. 36, 100483 (2023).
Simon, A. J. & Ellington, A. D. Recent advances in synthetic biosafety. F1000Research 5, F1000 Faculty Rev-2118 (2016).
Barcelos, M. C. S., Lupki, F. B., Campolina, G. A., Nelson, D. L. & Molina, G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol. Lett. 365, fny239 (2018).
Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).
Orhan, I. E., Suntar, I. & Emerce, E. Leading role of natural products in pharmaceutical, biotechnological, and cosmeceutical applications (GPSS-2021). Phytochem. Rev. 22, 1–2 (2023).
Jørgensen, J. B. Exploiting microorganisms for animal feed production. In 7th Malaysia International Agro-Bio Business Conference (2011).
Carpenter, R., Showell, M. S., Barnes, J. & Pal, N. Microbial-based waste water treatment compositions and methods of use thereof. European patent EP2999801B1 (2021).
Gemperlein, K. et al. Synthetic biology approaches to establish a heterologous production system for coronatines. Metab. Eng. 44, 213–222 (2017).
Landrain, T., Adenis, M. S., Blache, J. & Boissonnat, G. Use of actinorhodine and its derivatives as a coloring agent. WIPO patent WO2018138089A1 (2018).
Giri, A. V., Anandkumar, N., Muthukumaran, G. & Pennathur, G. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 4, 11 (2004).
Kwon, S.-K., Park, Y.-K. & Kim, J. F. Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl. Environ. Microbiol. 76, 1661–1668 (2010).
Choi, S. Y., Lim, S., Yoon, K., Lee, J. I. & Mitchell, R. J. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15, 10 (2021).
Domröse, A. et al. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front. Microbiol. 6, 972 (2015).
Whiffin, F., Santomauro, F. & Chuck, C. J. Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose. Biofuels Bioprod. Bioref. 10, 316–334 (2016).
Nunes, D. D., Pillay, V. L., Van Rensburg, E. & Pott, R. W. M. Oleaginous microorganisms as a sustainable oil source with a focus on downstream processing and cost-lowering production strategies: a review. Bioresour. Technol. Rep. 26, 101871 (2024).
Goswami, L., Tejas Namboodiri, M. M., Vinoth Kumar, R., Pakshirajan, K. & Pugazhenthi, G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew. Energy 105, 400–406 (2017).
Beuker, J. et al. High titer heterologous rhamnolipid production. AMB Express 6, 124 (2016).
Müller, M. M., Hörmann, B., Kugel, M., Syldatk, C. & Hausmann, R. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 89, 585–592 (2011).
Zhang, Y. et al. Microbial upcycling of depolymerized lignin into value-added chemicals. BioDesign Res. 6, 0027 (2024).
Lad, B. C., Coleman, S. M. & Alper, H. S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 49, kuab056 (2021).
Bertile, F., Matallana-Surget, S., Tholey, A., Cristobal, S. & Armengaud, J. Diversifying the concept of model organisms in the age of -omics. Commun. Biol. 6, 1–4 (2023).
Mitra, S. & Murthy, G. S. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. Syst. Microbiol. Biomanuf. 2, 91–112 (2022).
Fink, M., Cserjan-Puschmann, M., Reinisch, D. & Striedner, G. High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci. Rep. 11, 2056 (2021).
Wang, Y., Ling, C., Chen, Y., Jiang, X. & Chen, G.-Q. Microbial engineering for easy downstream processing. Biotechnol. Adv. 37, 107365 (2019).
Schroeder, J. W., Yeesin, P., Simmons, L. A. & Wang, J. D. Sources of spontaneous mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 53, 29–48 (2018).
Wesseler, J., Kleter, G., Meulenbroek, M. & Purnhagen, K. P. EU regulation of genetically modified microorganisms in light of new policy developments: possible implications for EU bioeconomy investments. Appl. Econ. Perspect. Policy 45, 839–859 (2022).
Lensch, A. et al. Safety aspects of microorganisms deliberately released into the environment. EFB Bioecon. J. 4, 100061 (2024).
Shams, A., Fischer, A., Bodnar, A. & Kliegman, M. Perspectives on genetically engineered microorganisms and their regulation in the United States. ACS Synth. Biol. 13, 1412–1423 (2024).
Yan, Q. & Fong, S. S. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J. Biol. Eng. 11, 33 (2017).
Zobel, S. et al. Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth. Biol. 4, 1341–1351 (2015).
Johnson, A. O., Gonzalez-Villanueva, M., Tee, K. L. & Wong, T. S. An engineered constitutive promoter set with broad activity range for Cupriavidus necator H16. ACS Synth. Biol. 7, 1918–1928 (2018).
Li, T. et al. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp. Biotechnol. J. 11, 219–227 (2016).
Yang, Y. et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol. Biofuels 12, 52 (2019).
Yu, M. & Tsang, J. S. H. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Protein Expr. Purif. 49, 219–227 (2006).
De Paepe, B., Maertens, J., Vanholme, B. & De Mey, M. Modularization and response curve engineering of a naringenin-responsive transcriptional biosensor. ACS Synth. Biol. 7, 1303–1314 (2018).
Worsey, M. J. & Williams, P. A. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124, 7–13 (1975).
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
Wanner, B. L., Kodaira, R. & Neidhardt, F. C. Physiological regulation of a decontrolled lac operon. J. Bacteriol. 130, 212–222 (1977).
Egan, S. M. & Schleif, R. F. A regulatory cascade in the induction of rhaBAD. J. Mol. Biol. 234, 87–98 (1993).
Rosenberg, A. H. et al. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135 (1987).
Cheng, X. & Patterson, T. A. Construction and use of lambda PL promoter vectors for direct cloning and high level expression of PCR amplified DNA coding sequences. Nucleic Acids Res. 20, 4591–4598 (1992).
Mead, D. A., Skorupa, E. S. & Kemper, B. Single stranded DNA SP6 promoter plasmids for engineering mutant RNAs and proteins: synthesis of a ‘stretched’ preproparathyroid hormone. Nucleic Acids Res. 13, 1103–1118 (1985).
Delaleau, M. et al. Rho-dependent transcriptional switches regulate the bacterial response to cold shock. Mol. Cell 84, 3482–3496.e7 (2024).
Silva-Rocha, R. et al. The standard European vector architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41, D666–D675 (2013).
Bai, C. et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl Acad. Sci. USA 112, 12181–12186 (2015).
Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).
Ohuchi, S., Mori, Y. & Nakamura, Y. Evolution of an inhibitory RNA aptamer against T7 RNA polymerase. FEBS Open. Bio 2, 203–207 (2012).
Mori, Y., Nakamura, Y. & Ohuchi, S. Inhibitory RNA aptamer against SP6 RNA polymerase. Biochem. Biophys. Res. Commun. 420, 440–443 (2012).
Kolpashchikov, D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 127, 12442–12443 (2005).
Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).
Sirois, S. & Szatmari, G. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae. J. Bacteriol. 177, 4183–4186 (1995).
Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M. & Smith, M. C. M. New applications for phage integrases. J. Mol. Biol. 426, 2703–2716 (2014).
Walker, S. A. & Klaenhammer, T. R. Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the Lactococcal Bacteriophage φ31. J. Bacteriol. 180, 921–931 (1998).
Engstrom, M. D. & Pfleger, B. F. Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol. 2, 176–191 (2017).
De Paepe, B. & De Mey, M. Biological switches: past and future milestones of transcription factor-based biosensors. ACS Synth. Biol. 14, 72–86 (2025).
Pu, W. et al. Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors. Biosens. Bioelectron. 222, 115004 (2023).
De Wannemaeker, L. et al. Standardization of fluorescent reporter assays in synthetic biology across the visible light spectrum. ACS Synth. Biol. 12, 3591–3607 (2023).
Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA. 88, 4438–4442 (1991).
Inouye, S. Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell. Mol. Life Sci. 67, 387–404 (2009).
Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).
Ahmed, F. H. et al. Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallogr. Sect. Struct. Biol. 78, 599–612 (2022).
Martínez-García, E. et al. SEVA 4.0: an update of the standard European vector architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res. 51, D1558–D1567 (2023).
Chen, W. et al. CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6, 222–231 (2018).
Cong, L. & Zhang, F. in Chromosomal Mutagenesis (ed. Pruett-Miller, S. M.) 197–217 (Springer, 2015).
Volke, D. C., Friis, L., Wirth, N. T., Turlin, J. & Nikel, P. I. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng. Commun. 10, e00126 (2020).
Li, R., Li, A., Zhang, Y. & Fu, J. The emerging role of recombineering in microbiology. Eng. Microbiol. 3, 100097 (2023).
Green, B., Bouchier, C., Fairhead, C., Craig, N. L. & Cormack, B. P. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3, 3 (2012).
Chang, C.-W., Truong, V. A., Pham, N. N. & Hu, Y.-C. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol. 42, 970–985 (2024).
Wiechert, J., Gätgens, C., Wirtz, A. & Frunzke, J. Inducible expression systems based on xenogeneic silencing and counter-silencing and design of a metabolic toggle switch. ACS Synth. Biol. 9, 2023–2038 (2020).
Saberi, F., Kamali, M., Najafi, A., Yazdanparast, A. & Moghaddam, M. M. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell. Mol. Biol. Lett. 21, 6 (2016).
Carpine, R., Olivieri, G., Hellingwerf, K. J., Pollio, A. & Marzocchella, A. Industrial production of poly-?-hydroxybutyrate from CO2: can Cyanobacteria meet this challenge? Processes 8, 323 (2020).
Rajpurohit, H., Sharma, P., Sharma, S. & Bhandari, A. Polymers for colon targeted drug delivery. Indian. J. Pharm. Sci. 72, 689–696 (2010).
Venegas, F. A. et al. The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci. Rep. 9, 13661 (2019).
Zaykov, A. N., Mayer, J. P. & DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug. Discov. 15, 425–439 (2016).
Knox, C. et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 52, D1265–D1275 (2023).
Precedence Research. Synthetic biology market size to hit USD 148.93 billion by 2033 https://www.precedenceresearch.com/synthetic-biology-market (2025).
Switzer, A., Šusta, L. & Mines, P. Routes to industrial scalability to maximise investment in engineering biology in the UK — a bioplastics small and medium-sized enterprise perspective. Eng. Biol. 8, 41–46 (2024).
Mavrommati, M., Daskalaki, A., Papanikolaou, S. & Aggelis, G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 54, 107795 (2022).
Asin-Garcia, E., Fawcett, J. D., Batianis, C. & Martins Dos Santos, V. A. P. A snapshot of biomanufacturing and the need for enabling research infrastructure. Trends Biotechnol. 43, 1000–1014 (2024).
Acknowledgements
J.P. holds a predoctoral SB scholarship from FWO (grant no. 1S18723N). M.B., M.D.M. and R.L. are supported by a grant from the Special Research Fund (grant no. iBOF/21/092). J.M. and R.L. are supported by a grant from FWO (grant no. G044624N).
Author information
Authors and Affiliations
Contributions
J.P. researched data for the article and contributed to discussion of content and writing. M.B., M.D.M., J.M. and R.L. contributed to discussion and reviewing/editing the manuscript before submission.
Corresponding author
Ethics declarations
Citation diversity statement
We acknowledge that research authored by scholars from historically excluded groups is systematically under-cited. Every attempt has been made to reference relevant research in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Shihui Yang, Joshua Yuan and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Poppeliers, J., Boon, M., De Mey, M. et al. Non-model bacteria as platforms for endogenous gene expression in synthetic biology. Nat Rev Bioeng 4, 67–81 (2026). https://doi.org/10.1038/s44222-025-00354-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44222-025-00354-x


