Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soft robotics for personalized and sustainable wearables

Abstract

Soft robotic systems prevail in wearable and haptic applications, offering adaptability, safety and comfort. In this Review, we explore the integration of soft robotics in wearable designs for applications in assistance, rehabilitation and haptic sensory stimulation. We outline various types of soft actuators, examining their properties with regard to adjustable stiffness, mechanical responsiveness and sensing capabilities and their integration into wearable devices for health-care applications. We also highlight challenges and opportunities in developing sustainable, self-healing, self-powering and self-actuating soft robots, particularly with regard to achieving efficient energy usage, long-term durability and personalized control. Finally, we examine how machine learning might be explored to optimize the performance and adaptability of soft robotic devices to transform real-time data into actionable insights for personalized experiences.

Key points

  • Soft actuators provide advantages for wearable technologies by supporting mobility and delivering nuanced, responsive haptic feedback.

  • Energy efficiency is essential to improving the portability, autonomy and user experience of wearable devices.

  • Durability and recyclability are crucial to maintaining long-term performance, and biodegradable materials offer promising solutions for short-term or disposable use.

  • Personalized, data-driven design enhances human–robot interaction, improving usability, comfort and user acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soft actuation types for wearable applications.
Fig. 2: Soft actuators.
Fig. 3: Performance metrics of soft actuators.
Fig. 4: Soft wearable robot modules and devices.

Similar content being viewed by others

References

  1. Cappello, L. et al. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J. Neuroeng. Rehabil. 15, 59 (2018).

    Article  Google Scholar 

  2. O’Neill, C. et al. Inflatable soft wearable robot for reducing therapist fatigue during upper extremity rehabilitation in severe stroke. IEEE Robot. Autom. Lett. 5, 3899–3906 (2020).

    Article  Google Scholar 

  3. Walker, S., Firouzeh, A., Robertson, M., Mengüç, Y. & Paik, J. 3D printed motor-sensory module prototype for facial rehabilitation. Soft Robot. 9, 354–363 (2022).

    Article  Google Scholar 

  4. Agarwal, G., Robertson, M. A., Sonar, H. & Paik, J. Design and computational modeling of a modular, compliant robotic assembly for human lumbar unit and spinal cord assistance. Sci. Rep. 7, 14391 (2017).

    Article  Google Scholar 

  5. Thalman, C. M., Hertzell, T. & Lee, H. Toward a soft robotic ankle-foot orthosis (SR-AFO) exosuit for human locomotion: preliminary results in late stance plantarflexion assistance. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 801–807 (IEEE, 2020).

  6. Copaci, D., Cerro, D. S. D., Guadalupe, J. A., Lorente, L. M. & Rojas, D. B. sEMG-controlled soft exo-glove for assistive rehabilitation therapies. IEEE Access12, 43506–43518 (2024).

    Article  Google Scholar 

  7. Feng, M., Yang, D. & Gu, G. High-force fabric-based pneumatic actuators with asymmetric chambers and interference-reinforced structure for soft wearable assistive gloves. IEEE Robot. Autom. Lett. 6, 3105–3111 (2021).

    Article  Google Scholar 

  8. Li, Y. & Hashimoto, M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater. Struct. 26, 125003 (2017).

    Article  Google Scholar 

  9. Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).

    Article  Google Scholar 

  10. Lipomi, D. J., Dhong, C., Carpenter, C. W., Root, N. B. & Ramachandran, V. S. Organic haptics: intersection of materials chemistry and tactile perception. Adv. Funct. Mater. 30, 1906850 (2020). This article discusses the engineering of molecularly controllable materials for emulating the haptic feel of everyday objects.

    Article  Google Scholar 

  11. Lou, J. et al. A new strategy of discretionarily reconfigurable actuators based on self-healing elastomers for diverse soft robots. Adv. Funct. Mater. 31, 2008328 (2021).

    Article  Google Scholar 

  12. Xu, J. et al. Self-healing high-performance dielectric elastomer actuator with novel liquid-solid interpenetrating structure. Compos. A Appl. Sci. Manuf. 149, 106519 (2021).

    Article  Google Scholar 

  13. Tang, W. et al. Customizing a self-healing soft pump for robot. Nat. Commun. 12, 2247 (2021).

    Article  Google Scholar 

  14. Tan, Y. J., Susanto, G. J., Anwar Ali, H. P. & Tee, B. C. K. Progress and roadmap for intelligent self-healing materials in autonomous robotics. Adv. Mater. 33, 2002800 (2021).

    Article  Google Scholar 

  15. Ali, A. et al. Recent progress in energy harvesting systems for wearable technology. Energy Strategy Rev. 49, 101124 (2023).

    Article  Google Scholar 

  16. Zhou, X. et al. 3D printed auxetic structure-assisted piezoelectric energy harvesting and sensing. Adv. Energy Mater. 13, 2301159 (2023).

    Article  Google Scholar 

  17. Ma, B., Xu, C., Cui, L., Zhao, C. & Liu, H. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence. ACS Appl. Mater. Interfaces 13, 5574–5582 (2021).

    Article  Google Scholar 

  18. Firouzeh, A., Salerno, M. & Paik, J. Soft pneumatic actuator with adjustable stiffness layers for multi-DoF actuation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1117–1124 (IEEE, 2015).

  19. Giraud, F. H., Mete, M. & Paik, J. Flexure variable stiffness actuators. Adv. Intell. Syst. 4, 2100282 (2022).

    Article  Google Scholar 

  20. Robertson, M. A., Murakami, M., Felt, W. & Paik, J. A compact modular soft surface with reconfigurable shape and stiffness. IEEE ASME Trans. Mechatron. 24, 16–24 (2019).

    Article  Google Scholar 

  21. Yao, H. et al. Shape memory polymers enable versatile magneto-active structure with 4D printability, variable stiffness, shape-morphing and effective grasping. Smart Mater. Struct. 32, 095005 (2023).

    Article  Google Scholar 

  22. Sonar, H. A., Gerratt, A. P., Lacour, S. P. & Paik, J. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin. Soft Robot. 7, 22–29 (2020).

    Article  Google Scholar 

  23. Gariya, N., Kumar, P., Prasad, B. & Singh, T. Soft pneumatic actuator with an embedded flexible polymeric piezoelectric membrane for sensing bending deformation. Mater. Today Commun. 35, 105910 (2023).

    Article  Google Scholar 

  24. Kellaris, N., Venkata, V. G., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

    Article  Google Scholar 

  25. Janbaz, S. & Coulais, C. Diffusive kinks turn kirigami into machines. Nat. Commun. 15, 1255 (2024). This article reports how diffusive kinks in viscoelastic kirigami can be harnessed for machine-like functions, such as sensing, actuation and object manipulation.

    Article  Google Scholar 

  26. Raeisinezhad, M., Pagliocca, N., Koohbor, B. & Trkov, M. Design Optimization of a pneumatic soft robotic actuator using model-based optimization and deep reinforcement learning. Front. Robot. AI 8, 639102 (2021).

    Article  Google Scholar 

  27. Zolfagharian, A. et al. 4D printing soft robots guided by machine learning and finite element models. Sens. Actuators Phys. 328, 112774 (2021).

    Article  Google Scholar 

  28. Lee, K.-H. et al. Nonparametric online learning control for soft continuum robot: an enabling technique for effective endoscopic navigation. Soft Robot. 4, 324–337 (2017).

    Article  Google Scholar 

  29. Tang, Z. Q., Heung, H. L., Tong, K. Y. & Li, Z. Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system. Int. J. Robot. Res. 40, 256–276 (2021).

    Article  Google Scholar 

  30. Zahedi, F. & Lee, H. Biomechanics-based user-adaptive variable impedance control for enhanced physical human–robot interaction using Bayesian optimization. Adv. Intell. Syst. 7, 2400333 (2025).

    Article  Google Scholar 

  31. Lee, J. et al. Intelligent upper-limb exoskeleton integrated with soft bioelectronics and deep learning for intention-driven augmentation. npj Flex. Electron. 8, 11 (2024).

    Article  Google Scholar 

  32. Alam, U. K. & Haghshenas-Jaryani, M. Learning contact forces in human-wearable-robot interaction using morphological computation. In 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft) 671–677 (IEEE, 2024).

  33. Thalman, C. & Artemiadis, P. A review of soft wearable robots that provide active assistance: trends, common actuation methods, fabrication, and applications. Wearable Technol. 1, e3 (2020).

    Article  Google Scholar 

  34. Tondu, B. & Lopez, P. Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Syst. Mag. 20, 15–38 (2000).

    Article  Google Scholar 

  35. Robertson, M. A. & Paik, J. New soft robots really suck: vacuum-powered systems empower diverse capabilities. Sci. Robot. 2, eaan6357 (2017).

    Article  Google Scholar 

  36. Joshi, S. & Paik, J. Pneumatic supply system parameter optimization for soft actuators. Soft Robot. 8, 152–163 (2021).

    Article  Google Scholar 

  37. Sawicki, G. S. & Ferris, D. P. Mechanics and energetics of level walking with powered ankle exoskeletons. J. Exp. Biol. 211, 1402–1413 (2008).

    Article  Google Scholar 

  38. Robertson, M. A. & Paik, J. Low-inertia vacuum-powered soft pneumatic actuator coil characterization and design methodology. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) 431–436 (IEEE, 2018).

  39. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  Google Scholar 

  40. Connolly, F., Walsh, C. J. & Bertoldi, K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl Acad. Sci. USA 114, 51–56 (2017).

    Article  Google Scholar 

  41. Bishop-Moser, J. & Kota, S. Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot. 31, 536–545 (2015).

    Article  Google Scholar 

  42. Sun, Y., Song, Y. S. & Paik, J. Characterization of silicone rubber based soft pneumatic actuators. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 4446–4453 (IEEE, 2013).

  43. Mosadegh, B. et al. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014).

    Article  Google Scholar 

  44. Agarwal, G., Besuchet, N., Audergon, B. & Paik, J. Stretchable materials for robust soft actuators towards assistive wearable devices. Sci. Rep. 6, 34224 (2016).

    Article  Google Scholar 

  45. Paez, L., Agarwal, G. & Paik, J. Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robot. 3, 109–119 (2016).

    Article  Google Scholar 

  46. Buckner, T. L., Yuen, M. C., Kim, S. Y. & Kramer-Bottiglio, R. Enhanced variable stiffness and variable stretchability enabled by phase-changing particulate additives. Adv. Funct. Mater. 29, 1903368 (2019).

    Article  Google Scholar 

  47. Yang, B. et al. Reprogrammable soft actuation and shape-shifting via tensile jamming. Sci. Adv. 7, eabh2073 (2021).

    Article  Google Scholar 

  48. Song, S., Joshi, S. & Paik, J. CMOS-inspired complementary fluidic circuits for soft robots. Adv. Sci. 8, 2100924 (2021).

    Article  Google Scholar 

  49. Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    Article  Google Scholar 

  50. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  Google Scholar 

  51. Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6, eaay2627 (2021).

    Article  Google Scholar 

  52. Nemitz, M. P. et al. Soft non-volatile memory for non-electronic information storage in soft robots. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 7–12 (IEEE, 2020).

  53. Kikkert, S., Sonar, H. A., Freund, P., Paik, J. & Wenderoth, N. Hand and face somatotopy shown using MRI-safe vibrotactile stimulation with a novel soft pneumatic actuator (SPA)-skin interface. NeuroImage 269, 119932 (2023).

    Article  Google Scholar 

  54. Jung, Y., Kwon, K., Lee, J. & Ko, S. H. Untethered soft actuators for soft standalone robotics. Nat. Commun. 15, 3510 (2024).

    Article  Google Scholar 

  55. Uramune, R. et al. HaPouch: a miniaturized, soft, and wearable haptic display device using a liquid-to-gas phase change actuator. IEEE Access 10, 16830–16842 (2022).

    Article  Google Scholar 

  56. Sanchez, V. et al. Smart thermally actuating textiles. Adv. Mater. Technol. 5, 2000383 (2020). This article introduces thermally actuated textiles that rely on liquid–vapour phase change to enable tetherless wearable soft robots with integrated sensing and closed-loop control.

    Article  Google Scholar 

  57. Lee, J. et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv. Intell. Syst. 4, 2100271 (2022).

    Article  Google Scholar 

  58. Mirvakili, S. M., Sim, D., Hunter, I. W. & Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 5, eaaz4239 (2020).

    Article  Google Scholar 

  59. Firouzeh, A., Mirrazavi Salehian, S. S., Billard, A. & Paik, J. An under actuated robotic arm with adjustable stiffness shape memory polymer joints. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2536–2543 (IEEE, 2015).

  60. Shao, Y. et al. 4D printing light-driven soft actuators based on liquid-vapor phase transition composites with inherent sensing capability. Chem. Eng. J. 454, 140271 (2023).

    Article  Google Scholar 

  61. Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).

    Article  Google Scholar 

  62. Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article  Google Scholar 

  63. Kellaris, N., Venkata, V. G., Rothemund, P. & Keplinger, C. An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mech. Lett. 29, 100449 (2019). This article presents an analytical model for Peano-HASEL actuators, revealing how geometry and material choices enable tuneable performance.

    Article  Google Scholar 

  64. Mitchell, S. K. et al. An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).

    Article  Google Scholar 

  65. Yoder, Z. et al. Design of a high-speed prosthetic finger driven by Peano-HASEL actuators. Front. Robot. AI 7, 586216 (2020).

    Article  Google Scholar 

  66. Purnendu et al. Fingertip wearable high-resolution electrohydraulic interface for multimodal haptics. In 2023 IEEE World Haptics Conference (WHC) 299–305 (IEEE, 2023).

  67. Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E. & Keplinger, C. HASEL artificial muscles for a new generation of lifelike robots — recent progress and future opportunities. Adv. Mater. 33, 2003375 (2021).

    Article  Google Scholar 

  68. Xu, S., Nunez, C. M., Souri, M. & Wood, R. J. A compact DEA-based soft peristaltic pump for power and control of fluidic robots. Sci. Robot. 8, eadd4649 (2023).

    Article  Google Scholar 

  69. Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516–519 (2019).

    Article  Google Scholar 

  70. Gravert, S.-D. et al. Low-voltage electrohydraulic actuators for untethered robotics. Sci. Adv. 10, eadi9319 (2024).

    Article  Google Scholar 

  71. Ji, X. et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021).

    Article  Google Scholar 

  72. Park, W.-H., Shin, E.-J., Yoo, Y., Choi, S. & Kim, S.-Y. Soft haptic actuator based on knitted PVC gel fabric. IEEE Trans. Ind. Electron. 67, 677–685 (2020).

    Article  Google Scholar 

  73. Youn, J.-H., Mun, H. & Kyung, K.-U. A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access 9, 30206–30215 (2021).

    Article  Google Scholar 

  74. Yu, A. et al. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 11, 12764–12771 (2017).

    Article  Google Scholar 

  75. Lee, D.-Y. et al. A wearable textile-embedded dielectric elastomer actuator haptic display. Soft Robot. 9, 1186–1197 (2022).

    Article  Google Scholar 

  76. Yoon, S. H. et al. HapSense: a soft haptic I/O device with uninterrupted dual functionalities of force sensing and vibrotactile actuation. In Proc. The 32nd Annual ACM Symposium on User Interface Software and Technology 949–961 (Association for Computing Machinery, 2019).

  77. Kovacs, G., Düring, L., Michel, S. & Terrasi, G. Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators Phys. 155, 299–307 (2009).

    Article  Google Scholar 

  78. Fook, T. H. T., Jeon, J. H. & Lee, P. S. Transparent flexible polymer actuator with enhanced output force enabled by conductive nanowires interlayer. Adv. Mater. Technol. 5, 1900762 (2020).

    Article  Google Scholar 

  79. Wang, F., Wang, L., Wang, Y. & Wang, D. Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT. Appl. Phys. A 128, 911 (2022).

    Article  Google Scholar 

  80. Wang, F., Xie, C., Qian, L., He, B. & Li, J. Study on the preparation of ionic liquid doped chitosan/cellulose-based electroactive composites. Int. J. Mol. Sci. 20, 6198 (2019).

    Article  Google Scholar 

  81. Nie, R.-P. et al. Surfactant-assisted fabrication of room-temperature self-healable dielectric elastomer toward actuation application. Compos. B Eng. 234, 109655 (2022).

    Article  Google Scholar 

  82. Xu, J. et al. Fabrication and characterization of SMA film actuator array with bias spring for high-power MEMS tactile display. Microelectron. Eng. 227, 111307 (2020).

    Article  Google Scholar 

  83. Loo, S. S. L. et al. Integrating photothermal-responsive shape memory and self-healing polymers in 4D-printed thermally comfortable smart wearables. ACS Appl. Eng. Mater. 2, 2569–2582 (2024).

    Article  Google Scholar 

  84. Roach, D. J. et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 11, 19514–19521 (2019).

    Article  Google Scholar 

  85. Saharan, L., Andrade, M. J. de, Saleem, W., Baughman, R. H. & Tadesse, Y. iGrab: hand orthosis powered by twisted and coiled polymer muscles. Smart Mater. Struct. 26, 105048 (2017).

    Article  Google Scholar 

  86. Zhang, W. et al. Magnetoactive microlattice metamaterials with highly tunable stiffness and fast response rate. NPG Asia Mater. 15, 45 (2023).

    Article  Google Scholar 

  87. Zhakypov, Z., Huang, J.-L. & Paik, J. A novel torsional shape memory alloy actuator: modeling, characterization, and control. IEEE Robot. Autom. Mag. 23, 65–74 (2016).

    Article  Google Scholar 

  88. Huang, X. et al. Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4, 1800540 (2019).

    Article  Google Scholar 

  89. Hamdan, N. A., Wagner, A., Voelker, S., Steimle, J. & Borchers, J. Springlets: expressive, flexible and silent on-skin tactile interfaces. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–14 (Association for Computing Machinery, 2019).

  90. Karaca, H. E. et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys — a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009).

    Article  Google Scholar 

  91. Neville, R. M. et al. A kirigami shape memory polymer honeycomb concept for deployment. Smart Mater. Struct. 26, 05LT03 (2017).

    Article  Google Scholar 

  92. Xie, H., Yang, K.-K. & Wang, Y.-Z. Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers. Prog. Polym. Sci. 95, 32–64 (2019).

    Article  Google Scholar 

  93. Xue, J. et al. Photoprogrammable moisture-responsive actuation of a shape memory polymer film. ACS Appl. Mater. Interfaces 14, 10836–10843 (2022).

    Article  Google Scholar 

  94. Firouzeh, A., Salerno, M. & Paik, J. Stiffness control with shape memory polymer in underactuated robotic origamis. IEEE Trans. Robot. 33, 765–777 (2017).

    Article  Google Scholar 

  95. Wang, Y., Sun, J., Liao, W. & Yang, Z. Liquid crystal elastomer twist fibers toward rotating microengines. Adv. Mater. 34, 2107840 (2022).

    Article  Google Scholar 

  96. Kurylo, I., van der Tol, J., Colonnese, N., Broer, D. J. & Liu, D. Photo-responsive liquid crystal network-based material with adaptive modulus for haptic application. Sci. Rep. 12, 19512 (2022).

    Article  Google Scholar 

  97. Fowler, H. E., Rothemund, P., Keplinger, C. & White, T. J. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv. Mater. 33, 2103806 (2021).

    Article  Google Scholar 

  98. Ambulo, C. P. et al. Processing advances in liquid crystal elastomers provide a path to biomedical applications. J. Appl. Phys. 128, 140901 (2020).

    Article  Google Scholar 

  99. Suzuki, M. & Kamamichi, N. Control of twisted and coiled polymer actuator with anti-windup compensator. Smart Mater. Struct. 27, 075014 (2018).

    Article  Google Scholar 

  100. Forman, J. et al. ModiFiber: two-way morphing soft thread actuators for tangible interaction. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–11 (Association for Computing Machinery, 2019).

  101. Yang, X., Wang, W. & Miao, M. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl. Mater. Interfaces 10, 32256–32264 (2018).

    Article  Google Scholar 

  102. Aziz, S., Martinez, J. G., Salahuddin, B., Persson, N.-K. & Jager, E. W. H. Fast and high-strain electrochemically driven yarn actuators in twisted and coiled configurations. Adv. Funct. Mater. 31, 2008959 (2021).

    Article  Google Scholar 

  103. Li, H., Go, G., Ko, S. Y., Park, J.-O. & Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25, 027001 (2016).

    Article  Google Scholar 

  104. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  Google Scholar 

  105. Sratong-on, P., Chernenko, V. A., Feuchtwanger, J. & Hosoda, H. Magnetic field-induced rubber-like behavior in Ni-Mn-Ga particles/polymer composite. Sci. Rep. 9, 3443 (2019).

    Article  Google Scholar 

  106. Zhang, J. et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater. 33, 2006191 (2021).

    Article  Google Scholar 

  107. Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

    Article  Google Scholar 

  108. Gong, X.-L. et al. pH- and thermal-responsive multishape memory hydrogel. ACS Appl. Mater. Interfaces 8, 27432–27437 (2016).

    Article  Google Scholar 

  109. Wang, Z., Guo, Y., Cai, S. & Yang, J. Three-dimensional printing of liquid crystal elastomers and their applications. ACS Appl. Polym. Mater. 4, 3153–3168 (2022).

    Article  Google Scholar 

  110. Shaha, R. K. et al. Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J. Mech. Behav. Biomed. Mater. 107, 103757 (2020).

    Article  Google Scholar 

  111. Wu, J. et al. Liquid crystal elastomer metamaterials with giant biaxial thermal shrinkage for enhancing skin regeneration. Adv. Mater. 33, 2106175 (2021).

    Article  Google Scholar 

  112. Kongahage, D., Spinks, G. M. & Foroughi, J. Twisted and coiled multi-ply yarns artificial muscles. Sens. Actuators Phys. 318, 112490 (2021).

    Article  Google Scholar 

  113. Haines, C. S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).

    Article  Google Scholar 

  114. Lai, J. et al. Design and evaluation of a bidirectional soft glove for hand rehabilitation-assistance tasks. IEEE Trans. Med. Robot. Bionics 5, 730–740 (2023).

    Article  Google Scholar 

  115. Wang, W., Rodrigue, H. & Ahn, S.-H. Smart soft composite actuator with shape retention capability using embedded fusible alloy structures. Compos. B Eng. 78, 507–514 (2015).

    Article  Google Scholar 

  116. Akbari, S., Sakhaei, A. H., Panjwani, S., Kowsari, K. & Ge, Q. Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation. Sens. Actuators Phys. 321, 112598 (2021).

    Article  Google Scholar 

  117. Terentjev, E. M. Liquid crystal elastomers: 30 years after. Macromolecules 58, 2792–2806 (2025).

    Article  Google Scholar 

  118. Liao, W. & Yang, Z. The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots. Adv. Mater. Technol. 7, 2101260 (2022). This article reports liquid-crystal elastomer–liquid-metal coaxial fibres that integrate actuation and sensing via electrically triggered Joule heating and resistance feedback, while enhancing resilience.

    Article  Google Scholar 

  119. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015).

    Article  Google Scholar 

  120. Shull, P. B. & Damian, D. D. Haptic wearables as sensory replacement, sensory augmentation and trainer — a review. J. Neuroeng. Rehabil. 12, 59 (2015).

    Article  Google Scholar 

  121. Zhu, M. et al. Soft, wearable robotics and haptics: technologies, trends, and emerging applications. Proc. IEEE 110, 246–272 (2022).

    Article  Google Scholar 

  122. Park, S. J. & Park, C. H. Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci. Rep. 9, 9157 (2019).

    Article  Google Scholar 

  123. Das, S. & Kurita, Y. ForceArm: a wearable pneumatic gel muscle (PGM)-based assistive suit for the upper limb. IEEE Trans. Med. Robot. Bionics 2, 269–281 (2020).

    Article  Google Scholar 

  124. Sy, L. et al. M-SAM: miniature and soft artificial muscle-driven wearable robotic fabric exosuit for upper limb augmentation. In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft) (IEEE, 2021).

  125. Sharma, B. et al. A soft robotic textile-actuated anthropomorphic artificial shoulder mechanism. Adv. Intell. Syst. 7, 2400807 (2025).

    Article  Google Scholar 

  126. Ohno, A., Nabae, H. & Suzumori, K. Static analysis of powered low-back orthosis driven by thin pneumatic artificial muscles considering body surface deformation. In 2015 IEEE/SICE International Symposium on System Integration (SII) 39–44 (IEEE, 2015).

  127. Kim, C. et al. Shape memory alloy actuator-embedded smart clothes for ankle assistance. Smart Mater. Struct. 29, 055003 (2020).

    Article  Google Scholar 

  128. Liu, S. et al. A compact soft robotic wrist brace with origami actuators. Front. Robot. AI 8, 614623 (2021).

    Article  Google Scholar 

  129. Tiziani, L. et al. Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices. Int. J. Robot. Res. 36, 1391–1413 (2017).

    Article  Google Scholar 

  130. Duanmu, D., Wang, X., Li, X., Wang, Z. & Hu, Y. Design of guided bending bellows actuators for soft hand function rehabilitation gloves. Actuators 11, 346 (2022).

    Article  Google Scholar 

  131. Connolly, F., Wagner, D. A., Walsh, C. J. & Bertoldi, K. Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots. Extreme Mech. Lett. 27, 52–58 (2019).

    Article  Google Scholar 

  132. Li, X. et al. Design, modeling and experiments of a variable stiffness soft robotic glove for stroke patients with clenched fist deformity. IEEE Robot. Autom. Lett. 8, 4044–4051 (2023).

    Article  Google Scholar 

  133. Robertson, M. A., Sadeghi, H., Florez, J. M. & Paik, J. Soft pneumatic actuator fascicles for high force and reliability. Soft Robot. 4, 23–32 (2017).

    Article  Google Scholar 

  134. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article  Google Scholar 

  135. Lee, S.-M., Jung, W.-K., Park, J. & Ahn, S.-H. Development of a 4D hand gripping aid using a knitted shape memory alloy and evaluation of finger-bending angles in elderly women. Fash. Text. 9, 11 (2022).

    Article  Google Scholar 

  136. Kwon, J. et al. Selectively stiffening garments enabled by cellular composites. Adv. Mater. Technol. 7, 2101543 (2022).

    Article  Google Scholar 

  137. Hauser, S., Robertson, M., Ijspeert, A. & Paik, J. JammJoint: a variable stiffness device based on granular jamming for wearable joint support. IEEE Robot. Autom. Lett. 2, 849–855 (2017).

    Article  Google Scholar 

  138. Proietti, T. et al. Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation. IEEE Robot. Autom. Lett. 6, 2381–2388 (2021).

    Article  Google Scholar 

  139. O’Neill, C. T., Phipps, N. S., Cappello, L., Paganoni, S. & Walsh, C. J. A soft wearable robot for the shoulder: design, characterization, and preliminary testing. In 2017 International Conference on Rehabilitation Robotics (ICORR) 1672–1678 (IEEE, 2017).

  140. Maldonado-Mejía, J. C. et al. A fabric-based soft hand exoskeleton for assistance: the ExHand exoskeleton. Front. Neurorobot. 17, 1091827 (2023).

    Article  Google Scholar 

  141. Campioni, L. et al. Preliminary evaluation of a soft wearable robot for shoulder movement assistance. IEEE Trans. Med. Robot. Bionics 7, 315–324 (2025).

    Article  Google Scholar 

  142. Jeong, J. et al. Soft wearable robot with shape memory alloy (SMA)-based artificial muscle for assisting with elbow flexion and forearm supination/pronation. IEEE Robot. Autom. Lett. 7, 6028–6035 (2022).

    Article  Google Scholar 

  143. Park, W.-H., Shin, E.-J., Yun, S. & Kim, S.-Y. An enhanced soft vibrotactile actuator based on ePVC gel with silicon dioxide nanoparticles. IEEE Trans. Haptics 11, 22–29 (2018).

    Article  Google Scholar 

  144. Mun, S. et al. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 11, 15–21 (2018).

    Article  Google Scholar 

  145. Grasso, G., Rosset, S. & Shea, H. Fully 3D-printed, stretchable, and conformable haptic interfaces. Adv. Funct. Mater. 33, 2213821 (2023).

    Article  Google Scholar 

  146. Firouzeh, A., Mizutani, A., Groten, J., Zirkl, M. & Shea, H. PopTouch: a submillimeter thick dynamically reconfigured haptic interface with pressable buttons. Adv. Mater. 36, 2307636 (2024).

    Article  Google Scholar 

  147. Zhu, M. et al. PneuSleeve: in-fabric multimodal actuation and sensing in a soft, compact, and expressive haptic sleeve. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–12 (Association for Computing Machinery, 2020).

  148. Sonar, H. A., Huang, J.-L. & Paik, J. Soft touch using soft pneumatic actuator–skin as a wearable haptic feedback device. Adv. Intell. Syst. 3, 2000168 (2021).

    Article  Google Scholar 

  149. Young, E. M., Memar, A. H., Agarwal, P. & Colonnese, N. Bellowband: a pneumatic wristband for delivering local pressure and vibration. In 2019 IEEE World Haptics Conference (WHC) 55–60 (IEEE, 2019).

  150. Mete, M., Jeong, H., Wang, W. D. & Paik, J. SORI: a softness-rendering interface to unravel the nature of softness perception. Proc. Natl Acad. Sci. USA 121, e2314901121 (2024). This article reports a haptic device that decouples kinaesthetic forces and cutaneous feedback experienced through contact area of the fingertip for accurate softness perception.

    Article  Google Scholar 

  151. Robertson, M. A., Kara, O. C. & Paik, J. Soft pneumatic actuator-driven origami-inspired modular robotic “pneumagami”. Int. J. Robot. Res. 40, 72–85 (2021).

    Article  Google Scholar 

  152. Mete, M. & Paik, J. Closed-loop position control of a self-sensing 3-DoF origami module with pneumatic actuators. IEEE Robot. Autom. Lett. 6, 8213–8220 (2021).

    Article  Google Scholar 

  153. Lu, J., Liu, Z., Brooks, J. & Lopes, P. Chemical haptics: rendering haptic sensations via topical stimulants. In The 34th Annual ACM Symposium on User Interface Software and Technology 239–257 (Association for Computing Machinery, 2021).

  154. Smith, M., Cacucciolo, V. & Shea, H. Fiber pumps for wearable fluidic systems. Science 379, 1327–1332 (2023).

    Article  Google Scholar 

  155. Liu, D., Liu, L., Onck, P. R. & Broer, D. J. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. Proc. Natl Acad. Sci. USA 112, 3880–3885 (2015).

    Article  Google Scholar 

  156. Ohzono, T., Norikane, Y., Saed, M. O. & Terentjev, E. M. Light-driven dynamic adhesion on photosensitized nematic liquid crystalline elastomers. ACS Appl. Mater. Interfaces 12, 31992–31997 (2020).

    Article  Google Scholar 

  157. Chossat, J.-B., Chen, D. K. Y., Park, Y.-L. & Shull, P. B. Soft wearable skin-stretch device for haptic feedback using twisted and coiled polymer actuators. IEEE Trans. Haptics 12, 521–532 (2019).

    Article  Google Scholar 

  158. Leroy, E. & Shea, H. Hydraulically amplified electrostatic taxels (HAXELs) for full body haptics. Adv. Mater. Technol. 8, 2300242 (2023).

    Article  Google Scholar 

  159. Yu, M. et al. A self-sensing soft pneumatic actuator with closed-loop control for haptic feedback wearable devices. Mater. Des. 223, 111149 (2022).

    Article  Google Scholar 

  160. Lee, J. et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30, 1909171 (2020).

    Article  Google Scholar 

  161. Oh, J. et al. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31, 2007772 (2021).

    Article  Google Scholar 

  162. Kim, S., Kim, P., Park, C.-Y. & Choi, S.-B. A new tactile device using magneto-rheological sponge cells for medical applications: experimental investigation. Sens. Actuators Phys. 239, 61–69 (2016).

    Article  Google Scholar 

  163. Mintchev, S., Salerno, M., Cherpillod, A., Scaduto, S. & Paik, J. A portable three-degrees-of-freedom force feedback origami robot for human–robot interactions. Nat. Mach. Intell. 1, 584–593 (2019).

    Article  Google Scholar 

  164. Giraud, F. H., Joshi, S. & Paik, J. Haptigami: a fingertip haptic interface with vibrotactile and 3-DoF cutaneous force feedback. IEEE Trans. Haptics 15, 131–141 (2022).

    Article  Google Scholar 

  165. Salerno, M., Firouzeh, A. & Paik, J. A low profile electromagnetic actuator design and model for an origami parallel platform. J. Mech. Robot. 9, 041005 (2017).

    Article  Google Scholar 

  166. Carpenter, C. W. et al. Healable thermoplastic for kinesthetic feedback in wearable haptic devices. Sens. Actuators Phys. 288, 79–85 (2019).

    Article  Google Scholar 

  167. Zuliani, F. & Paik, J. Electromagnetic actuator design for distributed stiffness. Smart Mater. Struct. 31, 115023 (2022).

    Article  Google Scholar 

  168. Miruchna, V. et al. GelTouch: localized tactile feedback through thin, programmable gel. In Proc. The 28th Annual ACM Symposium on User Interface Software & Technology 3–10 (Association for Computing Machinery, 2015).

  169. Mazursky, A., Koo, J.-H. & Yang, T.-H. A compact and compliant electrorheological actuator for generating a wide range of haptic sensations. Smart Mater. Struct. 29, 055028 (2020).

    Article  Google Scholar 

  170. Wang, Z. et al. A three-fingered force feedback glove using fiber-reinforced soft bending actuators. IEEE Trans. Ind. Electron. 67, 7681–7690 (2020).

    Article  Google Scholar 

  171. Hinchet, R. & Shea, H. High force density textile electrostatic clutch. Adv. Mater. Technol. 5, 1900895 (2020).

    Article  Google Scholar 

  172. Jiang, Y. et al. Compact pneumatic clutch with integrated stiffness variation and position feedback. IEEE Robot. Autom. Lett. 6, 5697–5704 (2021).

    Article  Google Scholar 

  173. Kishishita, Y. et al. Muscleblazer: force-feedback suit for immersive experience. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 1813–1818 (IEEE, 2019).

  174. Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33, 2004413 (2021). This article discusses sustainable solutions in soft robotics, showcasing how eco-friendly designs can reduce environmental impact.

    Article  Google Scholar 

  175. Han, L. et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13, 1601916 (2017).

    Article  Google Scholar 

  176. Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).

    Article  Google Scholar 

  177. Zhang, C., Lu, X., Wang, Z. & Xia, H. Progress in utilizing dynamic bonds to fabricate structurally adaptive self-healing, shape memory, and liquid crystal polymers. Macromol. Rapid Commun. 43, 2100768 (2022).

    Article  Google Scholar 

  178. Terryn, S. et al. A review on self-healing polymers for soft robotics. Mater. Today 47, 187–205 (2021).

    Article  Google Scholar 

  179. Koh, L.-D. et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015).

    Article  Google Scholar 

  180. Thomas, B. et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625 (2018).

    Article  Google Scholar 

  181. Kim, H. C. et al. Renewable smart materials. Smart Mater. Struct. 25, 073001 (2016).

    Article  MathSciNet  Google Scholar 

  182. Lv, P., Lu, X., Wang, L. & Feng, W. Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Adv. Funct. Mater. 31, 2104991 (2021).

    Article  Google Scholar 

  183. Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020). This article introduces a fully biodegradable, gelatin-based biogel that is highly resilient while exhibiting elastic characteristics.

    Article  Google Scholar 

  184. Rumley, E. H. et al. Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023).

    Article  Google Scholar 

  185. Belke, C. H. & Paik, J. Mori: a modular origami robot. IEEE ASME Trans. Mechatron. 22, 2153–2164 (2017).

    Article  Google Scholar 

  186. Zhang, C., Zhu, P., Lin, Y., Jiao, Z. & Zou, J. Modular soft robotics: modular units, connection mechanisms, and applications. Adv. Intell. Syst. 2, 1900166 (2020).

    Article  Google Scholar 

  187. Jiao, P., Mueller, J., Raney, J. R., Zheng, X. R. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

    Article  Google Scholar 

  188. Tao, R. et al. Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications. Appl. Mater. Today 29, 101596 (2022).

    Article  Google Scholar 

  189. Mokhtari, F. et al. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. 5, 1900900 (2020).

    Article  Google Scholar 

  190. Quinsaat, J. E. Q. et al. Stretchable piezoelectric elastic composites for sensors and energy generators. Compos. B Eng. 198, 108211 (2020).

    Article  Google Scholar 

  191. Dong, K., Peng, X. & Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32, 1902549 (2020).

    Article  Google Scholar 

  192. He, X. et al. Three-dimensional flexible thermoelectric fabrics for smart wearables. Nat. Commun. 16, 2523 (2025).

    Article  Google Scholar 

  193. Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).

    Article  Google Scholar 

  194. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y.-C. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).

    Article  Google Scholar 

  195. Onal, C. D., Chen, X., Whitesides, G. M. & Rus, D. Soft mobile robots with on-board chemical pressure generation. In Robotics Research: The 15th International Symposium ISRR (eds Christensen, H. I. & Khatib, O.) 525–540 (Springer, 2017).

  196. Qu, Y. et al. Programmable chemical reactions enable ultrastrong soft pneumatic actuation. Adv. Mater. 36, 2403954 (2024). This article explores programmable chemical reactions for soft pneumatic actuation to generate high-pressure gas in a portable, controllable and silent manner.

    Article  Google Scholar 

  197. Chun, S. & Park, Y.-J. Air-Able: fabrication and experiments of effervescent fabric chamber inflation with various shape of structures and wearables. Int. J. Precis. Eng. Manuf. 26, 477–485 (2025).

    Article  Google Scholar 

  198. Villeda-Hernandez, M., Baker, B. C., Romero, C., Rossiter, J. M. & Faul, C. F. Soft alchemy: a comprehensive guide to chemical reactions for pneumatic soft actuation. Soft Sci. https://doi.org/10.20517/ss.2023.52 (2024).

  199. Loepfe, M., Schumacher, C. M., Lustenberger, U. B. & Stark, W. J. An untethered, jumping roly-poly soft robot driven by combustion. Soft Robot. 2, 33–41 (2015).

    Article  Google Scholar 

  200. Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    Article  Google Scholar 

  201. Fusi, G., Del Giudice, D., Skarsetz, O., Di Stefano, S. & Walther, A. Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, 2209870 (2023).

    Article  Google Scholar 

  202. Wang, T., Fan, X., Koh, J. J., He, C. & Yeow, C.-H. Self-healing approach toward catalytic soft robots. ACS Appl. Mater. Interfaces 14, 40590–40598 (2022).

    Article  Google Scholar 

  203. Yoon, J. E. et al. Evaluation of gait-assistive soft wearable robot designs for wear comfort, focusing on electroencephalogram and satisfaction. IEEE Robot. Autom. Lett. 9, 8834–8841 (2024).

    Article  Google Scholar 

  204. Saifi, S. et al. An ultraflexible energy harvesting-storage system for wearable applications. Nat. Commun. 15, 6546 (2024).

    Article  Google Scholar 

  205. Rajappan, A. et al. Logic-enabled textiles. Proc. Natl Acad. Sci. USA 119, e2202118119 (2022).

    Article  Google Scholar 

  206. Picella, S., van Riet, C. M. & Overvelde, J. T. B. Pneumatic coding blocks enable programmability of electronics-free fluidic soft robots. Sci. Adv. 10, eadr2433 (2024). This article introduces analogue pneumatic coding blocks to mimic software control statements for electronics-free soft robots to make autonomous decisions based on environmental interactions.

    Article  Google Scholar 

  207. Wu, Q., Chen, B. & Wu, H. Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance. Mechatronics 63, 102279 (2019).

    Article  Google Scholar 

  208. Torricelli, D. et al. Benchmarking wearable robots: challenges and recommendations from functional, user experience, and methodological perspectives. Front. Robot. AI 7, 561774 (2020).

    Article  Google Scholar 

  209. Meattini, R. et al. Robotic muscular assistance-as-needed for physical and training/rehabilitation tasks: design and experimental validation of a closed-loop myoelectric control in grounded and wearable applications. In Human-Friendly Robotics 2020: 13th International Workshop 16–30 (Springer, 2021).

  210. Reinkensmeyer, D. J. et al. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J. Neuroeng. Rehabil. 13, 42 (2016).

    Article  Google Scholar 

  211. Jin, T. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020).

    Article  Google Scholar 

  212. Hwang, T., Frank, Z., Neubauer, J. & Kim, K. J. High-performance polyvinyl chloride gel artificial muscle actuator with graphene oxide and plasticizer. Sci. Rep. 9, 9658 (2019).

    Article  Google Scholar 

  213. Yip, M. C. & Niemeyer, G. High-performance robotic muscles from conductive nylon sewing thread. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2313–2318 (IEEE, 2015).

  214. Paternò, L. & Lorenzon, L. Soft robotics in wearable and implantable medical applications: translational challenges and future outlooks. Front. Robot. AI https://doi.org/10.3389/frobt.2023.1075634 (2023).

  215. Kapeller, A., Felzmann, H., Fosch-Villaronga, E. & Hughes, A.-M. A taxonomy of ethical, legal and social implications of wearable robots: an expert perspective. Sci. Eng. Ethics 26, 3229–3247 (2020).

    Article  Google Scholar 

  216. Won, P. et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33, 2002397 (2021).

    Article  Google Scholar 

  217. Barclay, C. J. in Muscle and Exercise Physiology (ed. Zoladz, J. A.) Ch. 6, 111–127 (Academic, 2019).

Download references

Acknowledgements

This article has been supported in part by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions (grant number 899987).

Author information

Authors and Affiliations

Authors

Contributions

J.P. and A.v.O. conceptualized the focus of the Review. A.v.O. and M.A.R. conducted the literature search and analysis. All authors contributed to the writing and critical revision of the manuscript.

Corresponding author

Correspondence to Jamie Paik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Seung Hwan Ko, Cristina Santos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Oosterhout, A., Robertson, M.A. & Paik, J. Soft robotics for personalized and sustainable wearables. Nat Rev Bioeng 4, 30–46 (2026). https://doi.org/10.1038/s44222-025-00359-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00359-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing