Abstract
Nano-bio interfaces are crucial points of interaction between synthetic materials and biological systems at the nanoscale, facilitating the exchange of information and access to biological processes. In this Review, we discuss the design and fabrication of nano-bio interfaces, focusing on the materials, topography and surface chemistry that determine their functionality and the information that can be measured. We highlight the design of nano-bio interfaces for bioelectrical signal detection in heart and brain tissue as well as for biochemical signal transduction across the cell membrane to investigate how cells sense and respond to extracellular environments and physical forces at the nanoscale. Finally, we outline key future milestones in the fabrication and application of nano-bio interfaces, emphasizing the need to overcome technical barriers to provide accessible devices.
Key points
-
Nanofabrication techniques, including top-down and bottom-up approaches, enable the creation of nano-bio interfaces with distinct functionalities.
-
The materials, topography, patterning and surface characteristics of nano-bio interfaces can be precisely engineered to probe diverse biological processes.
-
Nano-bio interfaces provide the capability to measure electrical activity at the cellular, tissue and organ levels.
-
Nano-bio interfaces with designed nanotopography or ligand patterning enable new means to study how cells interact with and respond to their surrounding environment and mechanical stimuli at the molecular scale.
-
Future efforts should focus on overcoming translational barriers and making nano-bio interface devices more accessible.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





References
Yang, X. et al. Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 33, 2103208 (2021).
Yang, Y. et al. Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum. Nat. Cell Biol. 26, 1878–1891 (2024).
Jahed, Z. et al. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022).
Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 7, 953–973 (2022).
Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 42, 1836–1843 (2024). This article reports kirigami-inspired spiral and honeycomb electronic patterns that can adopt a 3D basket shape when released from the substrate, allowing their integration with neural organoids and assembloids for long-term organoid electrophysiology.
Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).
Higgins, S. G. et al. High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, e1903862 (2020).
Jiang, Y. et al. The roles of micro- and nanoscale materials in cell-engineering systems. Adv. Mater. 36, e2410908 (2024).
Coulon, P.-M. et al. Displacement Talbot lithography for nano-engineering of III-nitride materials. Microsyst. Nanoeng. 5, 52 (2019).
Elnathan, R. et al. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 25, 7215–7225 (2015).
Harding, F. J. et al. Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection. ACS Appl. Mater. Interfaces 8, 29197–29202 (2016).
Ji, D. et al. Electrospinning of nanofibres. Nat. Rev. Methods Primers 4, 1 (2024).
Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016).
Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
Abbott, J., Ye, T., Ham, D. & Park, H. Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018).
Dipalo, M. et al. Membrane poration mechanisms at the cell-nanostructure interface. Adv. Biosyst. 3, e1900148 (2019).
Fang, Y. et al. Dissecting biological and synthetic soft-hard interfaces for tissue-like systems. Chem. Rev. 122, 5233–5276 (2022).
Li, X. et al. A nanostructure platform for live-cell manipulation of membrane curvature. Nat. Protoc. 14, 1772–1802 (2019).
Sharma, E. et al. Evolution in lithography techniques: microlithography to nanolithography. Nanomaterials 12, 2754 (2022).
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).
Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).
Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).
Pease, A. C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026 (1994).
Culver, J. C. et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24, 2344–2348 (2012).
Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).
Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).
Abu Hatab, N. A., Oran, J. M. & Sepaniak, M. J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2, 377–385 (2008).
Garoli, D., Yamazaki, H., Maccaferri, N. & Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications. Nano Lett. 19, 7553–7562 (2019).
Hanson, L. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562 (2015).
Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).
Elfström, N. et al. Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7, 2608–2612 (2007).
Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).
Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). This article demonstrates the application of metal–oxide–semiconductor nanoelectrode arrays for large-scale intracellular recording in cardiac cultures.
Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).
Chiappini, C. et al. Tutorial: using nanoneedles for intracellular delivery. Nat. Protoc. 16, 4539–4563 (2021).
Buchnev, O. et al. Deep-learning-assisted focused ion beam nanofabrication. Nano Lett. 22, 2734–2739 (2022).
Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).
Cao, Y. et al. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc. Natl. Acad. Sci. USA 114, E1866–E1874 (2017).
Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).
Desbiolles, B. X. E., de Coulon, E., Bertsch, A., Rohr, S. & Renaud, P. Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019).
Xu, A. M. et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014).
Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014).
Hai, A., Shappir, J. & Spira, M. E. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104, 559–568 (2010).
Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).
Ge, J. et al. Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nat. Commun. 12, 3146 (2021).
Shiu, J.-Y., Aires, L., Lin, Z. & Vogel, V. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20, 262–271 (2018). This article reports the use of scalable nanoimprint lithography to engineer nanopillar platforms with high spatial resolution for investigating cellular mechanotransduction.
Strale, P.-O. et al. Multiprotein printing by light-induced molecular adsorption. Adv. Mater. 28, 2024–2029 (2016).
von Erlach, T. C. et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 17, 237–242 (2018).
Lee, S. et al. Simple lithography-free single cell micropatterning using laser-cut stencils. J. Vis. Exp. 158, e60888 (2020).
Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).
Xiang, L. et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1, 237–245 (2018).
Gao, N. et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 113, 14633–14638 (2016).
Lee, J. M. et al. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat. Commun. 14, 7088 (2023).
Zhao, S. et al. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat. Commun. 11, 1788 (2020).
Yu, L. et al. In-plane epitaxial growth of silicon nanowires and junction formation on Si(100) substrates. Nano Lett. 14, 6469–6474 (2014).
Dillen, D. C., Kim, K., Liu, E.-S. & Tutuc, E. Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9, 116–120 (2014).
Qing, Q. et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014).
Zhao, Y. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).
Lee, C.-H., Hu, W.-P. & Chen, W.-Y. Electric-field assisted silicon nanowire field effect transistor for the ultra-low concentration nucleic acid detection. Biosens. Bioelectron. 268, 116909 (2025).
Mu, L. et al. Silicon nanowire field-effect transistors — a versatile class of potentiometric nanobiosensors. IEEE Access. 3, 287–302 (2015).
Gao, N. et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett. 15, 2143–2148 (2015).
Lu, L. et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 19, 1577–1586 (2019).
Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).
Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).
Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735–1735 (2006).
Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2022).
Subedi, S. et al. Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications. NPJ Adv. Manuf. 1, 9 (2024).
O’Halloran, S., Pandit, A., Heise, A. & Kellett, A. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv. Sci. 10, e2204072 (2023).
Ovsianikov, A. et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12, 851–858 (2011).
Ovsianikov, A. et al. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4, 288–299 (2011).
Akolawala, Q. et al. Micro-vessels-like 3D scaffolds for studying the proton radiobiology of glioblastoma-endothelial cells co-culture models. Adv. Healthc. Mater. 13, e2302988 (2024).
Nouri-Goushki, M. et al. 3D printed submicron patterns orchestrate the response of macrophages. Nanoscale 13, 14304–14315 (2021).
Abu Shihada, J. et al. Highly customizable 3D microelectrode arrays for in vitro and in vivo neuronal tissue recordings. Adv. Sci. 11, e2305944 (2024).
Colombo, F. et al. Two-photon laser printing to mechanically stimulate multicellular systems in 3D. Adv. Funct. Mater. 34, 2303601 (2024).
Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).
Yang, X. et al. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat. Biomed. Eng. 7, 1282–1292 (2023).
Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).
Partheniadis, I., Nikolakakis, I., Laidmäe, I. & Heinämäki, J. A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 8, 673 (2020).
Li, M. et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26, 5999–6008 (2005).
Zhang, X., Baughman, C. B. & Kaplan, D. L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29, 2217–2227 (2008).
Baiguera, S. et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35, 1205–1214 (2014).
Tiwari, S. K., Sharma, K., Sharma, V. & Kumar, V. Electrospun Nanofibers: Fabrication, Functionalisation and Applications (Springer Nature, 2021).
Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 1–22 (2021).
Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).
Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).
Yang, X. et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604, 377–383 (2022).
Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).
Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2024).
Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D. & Arias, R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008).
Iachetta, G. et al. Long-term in vitro recording of cardiac action potentials on microelectrode arrays for chronic cardiotoxicity assessment. Arch. Toxicol. 97, 509–522 (2023).
Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).
Shokoohimehr, P. et al. High-aspect-ratio nanoelectrodes enable long-term recordings of neuronal signals with subthreshold resolution. Small 18, e2200053 (2022).
Shukla, S. et al. Supra- and sub-threshold intracellular-like recording of 2D and 3D neuronal networks using nanopillar electrode arrays. Microsyst. Nanoeng. 10, 184 (2024).
Dipalo, M. et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).
Dipalo, M. et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci. Adv. 7, eabd5175 (2021). This review provides an overview of state-of-the-art technologies for neural recording and modulation.
Desbiolles, B. X. E. et al. Nanovolcano microelectrode arrays: toward long-term on-demand registration of transmembrane action potentials by controlled electroporation. Microsyst. Nanoeng. 6, 67 (2020).
Ojovan, S. M. et al. A feasibility study of multi-site, intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes. Sci. Rep. 5, 14100 (2015).
Dipalo, M. et al. Cells adhering to 3D vertical nanostructures: cell membrane reshaping without stable internalization. Nano Lett. 18, 6100–6105 (2018).
Kyndiah, A. et al. Direct recording of action potentials of cardiomyocytes through solution processed planar electrolyte-gated field-effect transistors. Sens. Actuators B Chem. 393, 134227 (2023).
Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010). This article reports a nanoscale FET device that exhibits high pH sensitivity and allows cell penetration for intracellular recordings.
Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).
Floch, P. L. et al. Stretchable mesh nanoelectronics for three-dimensional single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, 2106829 (2022).
Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
Li, T. L. et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials 290, 121825 (2022).
Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).
Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).
Brassard, J. A., Nikolaev, M., Hübscher, T., Hofer, M. & Lutolf, M. P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 20, 22–29 (2021).
Chrisnandy, A., Blondel, D., Rezakhani, S., Broguiere, N. & Lutolf, M. P. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat. Mater. 21, 479–487 (2022).
Lorenzo-Martín, L. F. et al. Patient-derived mini-colons enable long-term modeling of tumor–microenvironment complexity. Nat. Biotechnol. 43, 727–736 (2025).
Kalmykov, A. et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 5, eaax0729 (2019).
Park, Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, eabf9153 (2021).
Fullenkamp, D. E. et al. Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework. Sci. Adv. 10, eado7089 (2024).
Huang, Q. et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci. Adv. 8, eabq5031 (2022).
Martinelli, E. et al. The e-flower: a hydrogel-actuated 3D MEA for brain spheroid electrophysiology. Sci. Adv. 10, eadp8054 (2024).
Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).
Seymour, J. P. & Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594–3607 (2007).
Sharon, A., Jankowski, M. M., Shmoel, N., Erez, H. & Spira, M. E. Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats. Acta Biomater. 158, 292–307 (2023).
Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. Science 360, 1447–1451 (2018).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).
Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).
Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).
Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).
Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013). This article reports the development of ultrathin, injectable optoelectronic devices, representing a substantial advancement in bioelectronics and optogenetics.
Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).
Zhao, C. et al. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).
Creighton, R. L., Phan, J. & Woodrow, K. A. In situ 3D-patterning of electrospun fibers using two-layer composite materials. Sci. Rep. 10, 7949 (2020).
Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4, eaat8131 (2018).
Dalby, M. J., Gadegaard, N. & Oreffo, R. O. C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 13, 558–569 (2014).
Zhang, M. et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials 268, 120543 (2021).
Yang, S. et al. Membrane curvature governs the distribution of piezo1 in live cells. Nat. Commun. 13, 7467 (2022).
Chen, Y., Shokouhi, A.-R., Voelcker, N. H. & Elnathan, R. Nanoinjection: a platform for innovation in ex vivo cell engineering. Acc. Chem. Res. 57, 1722–1735 (2024).
Kumar, A. R. K. et al. Non-viral, high throughput genetic engineering of primary immune cells using nanostraw-mediated transfection. Biomaterials 317, 123079 (2025).
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).
Nunez, D. et al. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12, 1868–1878 (2011).
Willy, N. M. et al. De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev. Cell 56, 3146–3159.e5 (2021).
Cail, R. C., Shirazinejad, C. R. & Drubin, D. G. Induced nanoscale membrane curvature bypasses the essential endocytic function of clathrin. J. Cell Biol. 221, e202109013 (2022). This article demonstrates that induced nanocurvatures can facilitate determination of key proteins involved in curvature evolution in biological processes.
Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, e1806788 (2019).
Moerke, C., Mueller, P. & Nebe, B. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts. Biomaterials 76, 102–114 (2016).
Yoh, H. Z. et al. The influence of dysfunctional actin on polystyrene-nanotube-mediated mRNA nanoinjection into mammalian cells. Nanoscale 15, 7737–7744 (2023).
Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).
Shokouhi, A.-R. et al. Engineering efficient CAR-T cells via electroactive nanoinjection. Adv. Mater. 35, e2304122 (2023).
Lou, H.-Y. et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl. Acad. Sci. USA 116, 23143–23151 (2019).
Li, X. et al. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano Lett. 21, 8518–8526 (2021).
Anselme, K. & Bigerelle, M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 1, 211–222 (2005).
Deligianni, D. D. et al. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22, 1241–1251 (2001).
Zhang, W. et al. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat. Cell Biol. 25, 1453–1464 (2023). This article reports the use of nanopillars to reveal a new type of cell adhesion complex, termed ‘curved adhesion’, in response to induced membrane curvatures generated by matrix fibres.
Fischer, R. S. et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc. Natl. Acad. Sci. USA 118, e2021135118 (2021).
Laude, A. J. & Prior, I. A. Plasma membrane microdomains: organization, function and trafficking. Mol. Membr. Biol. 21, 193–205 (2004).
Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).
Lu, C.-H. et al. Membrane curvature regulates the spatial distribution of bulky glycoproteins. Nat. Commun. 13, 3093 (2022).
Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770 (2019).
Kockelkoren, G. et al. Molecular mechanism of GPCR spatial organization at the plasma membrane. Nat. Chem. Biol. 20, 142–150 (2024).
Rosholm, K. R. et al. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat. Chem. Biol. 13, 724–729 (2017).
Yang, C.-Y., Huang, L.-Y., Shen, T.-L. & Yeh, J. A. Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur. Cell. Mater. 20, 415–430 (2010).
Sun, X. et al. Asymmetric nanotopography biases cytoskeletal dynamics and promotes unidirectional cell guidance. Proc. Natl. Acad. Sci. USA 112, 12557–12562 (2015).
Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526–533 (2012).
Ledoux, B. et al. Plasma membrane nanodeformations promote actin polymerization through CIP4/CDC42 recruitment and regulate type II IFN signaling. Sci. Adv. 9, eade1660 (2023).
Brunetti, R. M. et al. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J. Cell Biol. 221, e202104046 (2022). This article reports the use of nanobeads and nanoridges to provide a molecular model of how motile cells interpret the topographical features of their substrate.
Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).
Carthew, J. et al. Precision surface microtopography regulates cell fate via changes to actomyosin contractility and nuclear architecture. Adv. Sci. 8, 2003186 (2021).
Zeng, Y. et al. Guiding irregular nuclear morphology on nanopillar arrays for malignancy differentiation in tumor cells. Nano Lett. 22, 7724–7733 (2022).
Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381 (2020).
Li, N., Jin, K., Chen, T. & Li, X. A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures. Soft Matter 18, 6638–6644 (2022).
Katiyar, A. et al. The nucleus bypasses obstacles by deforming like a drop with surface tension mediated by Lamin A/C. Adv. Sci. 9, e2201248 (2022).
Liang, H. et al. Microtopography-induced nuclear deformation triggers chromatin reorganization and cytoskeleton remodeling. Chem. Biomed. Imaging 2, 481–489 (2024).
Clapham, D. E. Calcium signaling. Cell 80, 259–268 (1995).
Berridge, M. J. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235–249 (2002).
Li, G. et al. Orai1 mediated store-operated calcium entry contributing to MC3T3-E1 differentiation on titanium implant with micro/nano-textured topography. Biomater. Adv. 133, 112644 (2022).
Previdi, A. et al. Nanotopography and microconfinement impact on primary hippocampal astrocyte morphology, cytoskeleton and spontaneous calcium wave signalling. Cells 12, 293 (2023).
Mengqi, S. et al. Micro/nano topography with altered nanotube diameter differentially trigger endoplasmic reticulum stress to mediate bone mesenchymal stem cell osteogenic differentiation. Biomed. Mater. 16, 015024 (2020).
Shi, M. et al. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells. Acta Biomater. 54, 175–185 (2017).
Al-Aghbar, M. A., Jainarayanan, A. K., Dustin, M. L. & Roffler, S. R. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun. Biol. 5, 40 (2022).
Gawden-Bone, C. et al. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J. Cell Sci. 123, 1427–1437 (2010).
Baranov, M. et al. Podosomes of dendritic cells facilitate antigen sampling. J. Cell Sci. 127, 1052–1064 (2014).
Alapan, Y. & Thomas, S. N. Interfacial T cell engineering. Nat. Rev. Bioeng. 3, 549–564 (2025).
Cai, E. et al. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science 356, eaal3118 (2017).
Aramesh, M. et al. Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc. Natl. Acad. Sci. USA 118, e2107535118 (2021). This article introduces a nanopore-based platform for microvilli formation induction in T cells and subsequent T cell activation and expansion, highlighting the potential of nanotopographical strategies for immunotherapy applications.
Wheatley, B. A. et al. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol. Biol. Cell 33, ar88 (2022).
Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).
Ban, M. & Chen, J. Fabrication of plane-type axon guidance substrates by applying diamond-like carbon thin film deposition. Sci. Rep. 13, 8489 (2023).
Amin, H., Dipalo, M., De Angelis, F. & Berdondini, L. Biofunctionalized 3D nanopillar arrays fostering cell guidance and promoting synapse stability and neuronal activity in networks. ACS Appl. Mater. Interfaces 10, 15207–15215 (2018).
Osaki, T. et al. Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons. Nat. Commun. 15, 2945 (2024).
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Yim, E. K. F., Pang, S. W. & Leong, K. W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313, 1820–1829 (2007).
Luo, J. et al. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix — a review. Bioact. Mater. 15, 145–159 (2022).
Cao, S. & Yuan, Q. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review. Biomater. Transl. 3, 55–64 (2022).
Qian, W. et al. Nanotopographic regulation of human mesenchymal stem cell osteogenesis. ACS Appl. Mater. Interfaces 9, 41794–41806 (2017).
Wang, X. et al. Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micropatterned surfaces. Sci. Rep. 6, 28708 (2016).
McNamara, L. E. et al. Nanotopographical control of stem cell differentiation. J. Tissue Eng. 2010, 120623 (2010).
Shorten, P. R., McMahon, C. D. & Soboleva, T. K. Insulin transport within skeletal muscle transverse tubule networks. Biophys. J. 93, 3001–3007 (2007).
Engel, J. et al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol. Biol. 150, 97–120 (1981).
Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl. Acad. Sci. USA 112, E4864–E4873 (2015).
Cooper, G. The Cell: A Molecular Approach (Sinauer Associates, Sunderland, MA, 2000).
Cebecauer, M., Spitaler, M., Sergé, A. & Magee, A. I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 123, 309–320 (2010).
Zhang, K., Gao, H., Deng, R. & Li, J. Emerging applications of nanotechnology for controlling cell-surface receptor clustering. Angew. Chem. Int. Ed. 58, 4790–4799 (2019).
Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5, 383–388 (2004). This article reports the design of gold nanodot arrays, manufactured by block-copolymer micelle nanolithography, to control the spatial position of individual receptor–ligand interactions.
Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).
Schvartzman, M. et al. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 11, 1306–1312 (2011).
Huang, J. et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9, 1111–1116 (2009).
Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017).
Changede, R., Cai, H., Wind, S. J. & Sheetz, M. P. Integrin nanoclusters can bridge thin matrix fibres to form cell–matrix adhesions. Nat. Mater. 18, 1366–1375 (2019).
Yu, C.-H. & Groves, J. T. Engineering supported membranes for cell biology. Med. Biol. Eng. Comput. 48, 955–963 (2010).
Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997).
Glazier, R. & Salaita, K. Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta Biomembr. 1859, 1465–1482 (2017).
Nair, P. M., Salaita, K., Petit, R. S. & Groves, J. T. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat. Protoc. 6, 523–539 (2011).
Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).
Yu, C.-H. et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 5, 1456–1468 (2013).
Manz, B. N., Jackson, B. L., Petit, R. S., Dustin, M. L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl. Acad. Sci. USA 108, 9089–9094 (2011). This article reports the design of nanopatterned ligand-modified supported lipid bilayers to control the size of signalling complexes down to the single-molecule level.
Iversen, L. et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345, 50–54 (2014).
Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019).
Torres, A. J., Wu, M., Holowka, D. & Baird, B. Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling. Annu. Rev. Biophys. 37, 265–288 (2008).
Chen, Z. et al. Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc. Natl. Acad. Sci. USA 115, E5696–E5705 (2018).
Chen, Z., Oh, D., Biswas, K. H., Zaidel-Bar, R. & Groves, J. T. Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. eLife 10, e67379 (2021).
Oh, D. et al. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys. J. 121, 1897–1908 (2022). This article reports the design of ligand nanopatterns to investigate the interplay between downstream signalling pathways of different receptors.
Freeman, S. A. et al. Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164, 128–140 (2016).
Freeman, S. A. et al. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172, 305–317 (2018).
Biswas, K. H., Zhongwen, C., Dubey, A. K., Oh, D. & Groves, J. T. Multicomponent supported membrane microarray for monitoring spatially resolved cellular signaling reactions. Adv. Biosyst. 2, 1800015 (2018).
Martínez, E., Engel, E., Planell, J. A. & Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 191, 126–135 (2009).
Fajrial, A. K. & Ding, X. Advanced nanostructures for cell membrane poration. Nanotechnology 30, 264002 (2019).
Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).
Shin, S. et al. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy. Nat. Mater. 22, 656–665 (2023).
Ishihara, S. & Haga, H. Matrix stiffness contributes to cancer progression by regulating transcription factors. Cancers 14, 1049 (2022).
Nguyen, T. D. et al. Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires. Nano Lett. 10, 4595–4599 (2010).
Morton, K. J., Nieberg, G., Bai, S. & Chou, S. Y. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19, 345301 (2008).
Cooper, K. Scalable nanomanufacturing — a review. Micromachines 8, 20 (2017).
Huang, Z., Tsui, G. C.-P., Deng, Y. & Tang, C.-Y. Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications. Nanotechnol. Rev. 9, 1118–1136 (2020).
Yang, B., Yu, M. & Yu, H. Azopolymer-based nanoimprint lithography: recent developments in methodology and applications. Chempluschem 85, 2166–2176 (2020).
Liu, R. et al. Ultra-sharp nanowire arrays natively permeate, record, and stimulate intracellular activity in neuronal and cardiac networks. Adv. Funct. Mater. 32, 2108378 (2022).
Rey, B. M. et al. Fully tunable silicon nanowire arrays fabricated by soft nanoparticle templating. Nano Lett. 16, 157–163 (2016).
Chen, Y. et al. Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing. Adv. Mater. 32, e2000036 (2020).
Elnathan, R., Kantaev, R. & Patolsky, F. Synthesis of hybrid multicomponent disklike nanoparticles. Nano Lett. 8, 3964–3972 (2008).
Xue, J., Xie, J., Liu, W. & Xia, Y. Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50, 1976–1987 (2017).
Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).
Acknowledgements
This work was financially supported by the National Institutes of Health (R35GM141598 to B.C.), a Stanford Big Idea Project on Brain Organogenesis (Wu Tsai Neurosciences Institute) (to B.C. and S.P.P.), and a Wu Tsai Neurosciences Institute Interdisciplinary Postdoctoral Scholar Award (to X.Y.).
Author information
Authors and Affiliations
Contributions
X.Y. and B.C. conceptualized the manuscript and outlined the initial format. X.Y., C.-T.T., Y.Y., W.Z., H.Y., C.F., S.P.P. and B.C. wrote the manuscript. B.C. supervised the work.
Corresponding author
Ethics declarations
Citation diversity
The authors acknowledge that research authored by scholars from historically excluded groups is systematically under-cited. Every attempt has been made to reference relevant research in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Roey Elnathan, Viviana Rincón Montes, who co-reviewed with Colin Fernandes, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, X., Tsai, CT., Yang, Y. et al. Nano-bio interfaces for electrical and biochemical signal transduction. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00374-7
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s44222-025-00374-7