Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microrobots for pulmonary drug delivery

Abstract

Pulmonary drug delivery offers several advantages over systemic administration, including localized targeting of diseased lung tissue, rapid absorption through the extensive alveolar surface area, and minimized systemic side effects owing to reduced off-target distribution. These benefits make it a promising approach for treating a range of respiratory and systemic conditions. However, mucociliary clearance, immune surveillance and enzymatic degradation pose major challenges to drug retention in the lungs. In this Review, we discuss microrobotic delivery systems for tackling the challenges of pulmonary drug delivery. We first outline key considerations for the design of microrobots for pulmonary delivery, including propulsion systems, targeting, controlled drug release, overcoming of biological barriers, delivery routes and clearance, and we then highlight applications for lung-related conditions. In particular, we outline biohybrid platforms based on green algae and inhalable platforms for the treatment of pneumonia and lung metastasis. Finally, we examine the engineering of microrobotic swarms and survey future opportunities and milestones for microrobotic pulmonary delivery.

Key points

  • Pulmonary drug delivery enables localized treatment of lung diseases, rapid drug absorption through the alveolar surface, and reduced systemic side effects owing to limited off-target distribution.

  • Biological barriers, such as mucociliary clearance, immune responses and enzymatic degradation, hinder effective drug retention and delivery in the lungs.

  • Microrobotic delivery systems can be designed to overcome these challenges, focusing on propulsion, targeting, controlled release, biological barrier navigation and clearance mechanisms.

  • Biohybrid microrobots and inhalable platforms can be engineered for treating pneumonia and lung metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pulmonary delivery history and administration routes.
Fig. 2: Challenges in pulmonary delivery.
Fig. 3: Microrobots for pulmonary drug delivery applications.
Fig. 4: Applications of microrobotic pulmonary drug delivery.
Fig. 5: Multifunctional smart microrobots.

Similar content being viewed by others

References

  1. Shi, W., Bellusci, S. & Warburton, D. Lung development and adult lung diseases. Chest 132, 651–656 (2007).

    Article  Google Scholar 

  2. Hsia, C. C., Hyde, D. M. & Weibel, E. R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol. 6, 827–895 (2016).

    Article  Google Scholar 

  3. Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).

    Article  Google Scholar 

  4. Zazara, D. E., Belios, I., Lücke, J., Zhang, T. & Giannou, A. D. Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin. Immunopathol. 44, 827–854 (2022).

    Article  Google Scholar 

  5. Cookson, W. O., Cox, M. J. & Moffatt, M. F. New opportunities for managing acute and chronic lung infections. Nat. Rev. Microbiol. 16, 111–120 (2018).

    Article  Google Scholar 

  6. Long, M. E., Mallampalli, R. K. & Horowitz, J. C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. 136, 747–769 (2022).

    Article  Google Scholar 

  7. Traber, K. E. & Mizgerd, J. P. The integrated pulmonary immune response to pneumonia. Annu. Rev. Immunol. 43, 545–569 (2025).

    Article  Google Scholar 

  8. Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017).

    Article  Google Scholar 

  9. Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018). This review discusses biological characteristics and management of non-small cell lung cancer, providing an important reference for lung cancer research and clinical practice.

    Article  Google Scholar 

  10. Lambrecht, B. N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45–56 (2015).

    Article  Google Scholar 

  11. Holgate, S. T. et al. Asthma. Nat. Rev. Dis. Prim. 1, 15025 (2015).

    Article  Google Scholar 

  12. Houghton, A. M. Mechanistic links between COPD and lung cancer. Nat. Rev. Cancer 13, 233–245 (2013).

    Article  Google Scholar 

  13. Stolz, D. et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 400, 921–972 (2022). This article proposes a comprehensive strategy for the elimination of COPD.

    Article  Google Scholar 

  14. Richeldi, L. et al. Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952 (2017).

    Article  Google Scholar 

  15. Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).

    Article  Google Scholar 

  16. Javanian, M. et al. A brief review of influenza virus infection. J. Med. Virol. 93, 4638–4646 (2021).

    Article  Google Scholar 

  17. Torres, A. et al. Pneumonia. Nat. Rev. Dis. Prim. 7, 25 (2021).

    Article  Google Scholar 

  18. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

    Article  Google Scholar 

  19. Schittny, J. C. Development of the lung. Cell Tissue Res. 367, 427–444 (2017).

    Article  Google Scholar 

  20. Roth, D. et al. Structure and function relationships of mucociliary clearance in human and rat airways. Nat. Commun. 16, 2446 (2025).

    Article  Google Scholar 

  21. Agarwal, R. et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat. Biomed. Eng. 2, 841–849 (2018).

    Article  Google Scholar 

  22. Patton, J. S. & Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007).

    Article  Google Scholar 

  23. Gelfand, M. L. Administration of cortisone by the aerosol method in the treatment of bronchial asthma. N. Engl. J. Med. 245, 293–294 (1951).

    Article  Google Scholar 

  24. Stein, S. W. & Thiel, C. G. The history of therapeutic aerosols: a chronological review. J. Aerosol Med. Pulm. Drug Deliv. 30, 20–41 (2017).

    Article  Google Scholar 

  25. Fuchs, H. J. et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331, 637–642 (1994).

    Article  Google Scholar 

  26. Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1872 (1997). This article reports large porous particles for pulmonary drug delivery as a new route for lung-targeted administration.

    Article  Google Scholar 

  27. Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).

    Article  Google Scholar 

  28. Jani, R., Curtis, T., Charles, R. & DeFronzo, R. A. First approved inhaled insulin therapy for diabetes mellitus. Expert Opin. Drug Deliv. 4, 63–76 (2007).

    Article  Google Scholar 

  29. Åkerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    Article  Google Scholar 

  30. Park, J. H. et al. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Sci. Adv. 7, eabf7820 (2021).

    Article  Google Scholar 

  31. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  Google Scholar 

  32. Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    Article  Google Scholar 

  33. Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10, 5108 (2019).

    Article  Google Scholar 

  34. Henry, B. D. et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 33, 81–88 (2015).

    Article  Google Scholar 

  35. Wang, Y. et al. Realveolarization with inhalable mucus-penetrating lipid nanoparticles for the treatment of pulmonary fibrosis in mice. Sci. Adv. 10, eado4791 (2024).

    Article  Google Scholar 

  36. Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Nat. Biotechnol. 43, 1445–1457 (2024).

    Article  Google Scholar 

  37. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  Google Scholar 

  38. Peng, W. C. et al. Inhalable nanocatalytic therapeutics for viral pneumonia. Nat. Mater. 24, 637–648 (2025).

    Article  Google Scholar 

  39. Mei, X. et al. An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection. Nat. Mater. 22, 903–912 (2023).

    Google Scholar 

  40. Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024).

    Article  Google Scholar 

  41. Bobba, C. M. et al. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat. Commun. 12, 289 (2021).

    Article  Google Scholar 

  42. Bai, X. et al. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat. Commun. 15, 6844 (2024).

    Article  Google Scholar 

  43. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  Google Scholar 

  44. Dolovich, M. B. & Dhand, R. Aerosol drug delivery: developments in device design and clinical use. Lancet 377, 1032–1045 (2011).

    Article  Google Scholar 

  45. Iacovacci, V., Diller, E., Ahmed, D. & Menciassi, A. Medical microrobots. Annu. Rev. Biomed. Eng. 26, 561–591 (2024).

    Article  Google Scholar 

  46. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017). This review discusses the principles and advances of microscale robots, laying the foundation for their biomedical applications.

    Article  Google Scholar 

  47. Wang, J. Nanomachines: fundamentals and applications (Wiley, 2013).

  48. Oral, C. M. & Pumera, M. In vivo applications of micro/nanorobots. Nanoscale 15, 8491–8507 (2023).

    Article  Google Scholar 

  49. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  Google Scholar 

  50. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  Google Scholar 

  51. Sznitman, J. Revisiting airflow and aerosol transport phenomena in the deep lungs with microfluidics. Chem. Rev. 122, 7182–7204 (2021).

    Article  Google Scholar 

  52. Bhattacharya, J. & Matthay, M. A. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75, 593–615 (2013).

    Article  Google Scholar 

  53. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022). This article reports the first in vivo demonstration of nanoparticle-functionalized algae-based microrobots for targeted pulmonary antibiotic delivery.

    Article  Google Scholar 

  54. Li, Z. et al. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat. Commun. 16, 666 (2025). This article reports the first demonstration of non-invasive nebulization delivery of living biohybrid microrobots for lung treatment.

    Article  Google Scholar 

  55. Yan, X. H. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Article  Google Scholar 

  56. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward of synthetic motors. ACS Nano 9, 117–123 (2015). This article reports the first in vivo demonstration of artificial micromotors in live animals.

    Article  Google Scholar 

  57. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  Google Scholar 

  58. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  Google Scholar 

  59. Zhang, G. et al. Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis. Nat. Biomed. Eng. 6, 867–881 (2022).

    Article  Google Scholar 

  60. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  Google Scholar 

  61. Myerson, J. W. et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat. Nanotechnol. 17, 86–97 (2022).

    Article  Google Scholar 

  62. Li, B. et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. 19, 834–845 (2024).

    Article  Google Scholar 

  63. Zhou, J. et al. Nanotoxoid vaccination protects against opportunistic bacterial infections arising from immunodeficiency. Sci. Adv. 8, eabq5492 (2022).

    Article  Google Scholar 

  64. Shah, K., Chan, L. W. & Wong, T. W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv. 24, 1631–1647 (2017).

    Article  Google Scholar 

  65. Liu, S. et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 15, 9471 (2024).

    Article  Google Scholar 

  66. Kwon, E. J. et al. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of lung infections. Adv. Mater. 29, 1701527 (2017).

    Article  Google Scholar 

  67. Gordon, A., Li, B., Witten, J., Nguyen, H. & Anderson, D. G. Inhalable dry powders for lung mRNA delivery. Adv. Healthc. Mater. 13, 2400509 (2024).

    Article  Google Scholar 

  68. Barnes, P. J. & Hansel, T. T. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet 364, 985–996 (2004).

    Article  Google Scholar 

  69. Bahmani, B. et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun. 12, 1999 (2021).

    Article  Google Scholar 

  70. Zhao, Z., Ukidve, A., Gao, Y., Kim, J. & Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 5, eaax9250 (2019).

    Article  Google Scholar 

  71. Wang, H., Wu, L. & Sun, X. Intratracheal delivery of nano-and microparticles and hyperpolarized gases: a promising strategy for the imaging and treatment of respiratory disease. Chest 157, 1579–1590 (2020).

    Article  Google Scholar 

  72. Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).

    Article  Google Scholar 

  73. Guo, X. et al. Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J. Drug Target. 22, 421–427 (2014).

    Article  Google Scholar 

  74. Guo, X. et al. PLGA-based micro/nanoparticles: an overview of their applications in respiratory diseases. Int. J. Mol. Sci. 24, 4333 (2023).

    Article  Google Scholar 

  75. El-Sherbiny, I. M., El-Baz, N. M. & Yacoub, M. H. Inhaled nano-and microparticles for drug delivery. Glob. Cardiol. Sci. Pract. 2015, 2 (2015).

    Article  Google Scholar 

  76. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018). This review discusses cell-membrane coating nanotechnology in pulmonary applications.

    Article  Google Scholar 

  77. He, Z., Zhang, Y. & Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater. Sci. Eng. 106, 110298 (2020).

    Article  Google Scholar 

  78. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015). This article reports cell membrane-cloaked nanoparticles as a platform for therapeutic applications.

    Article  Google Scholar 

  79. Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023).

    Article  Google Scholar 

  80. Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    Article  Google Scholar 

  81. Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).

    Article  Google Scholar 

  82. Yong, T. Y. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).

    Article  Google Scholar 

  83. Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article  Google Scholar 

  84. Jobe, A. H. Pulmonary surfactant therapy. N. Engl. J. Med. 328, 861–868 (1993).

    Article  Google Scholar 

  85. Harrell, C. R., Jovicic, N., Djonov, V., Arsenijevic, N. & Volarevic, V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 8, 1605 (2019).

    Article  Google Scholar 

  86. Jiang, L., Vader, P. & Schiffelers, R. M. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther. 24, 157–166 (2017).

    Article  Google Scholar 

  87. Keklikoglou, I. et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol. 21, 190–202 (2019).

    Article  Google Scholar 

  88. Khalaj, K., Figueira, R. L., Antounians, L., Lauriti, G. & Zani, A. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J. Extracell. Vesicles 9, 1795365 (2020).

    Article  Google Scholar 

  89. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  Google Scholar 

  90. Gattinoni, L. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 354, 1775–1786 (2006).

    Article  Google Scholar 

  91. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    Article  Google Scholar 

  92. Cui, Z. et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat. Chem. Biol. 18, 1056–1064 (2022).

    Article  Google Scholar 

  93. Sago, C. D. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat. Biomed. Eng. 6, 157–167 (2022).

    Article  Google Scholar 

  94. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  Google Scholar 

  95. Wang, Q., Xie, P., Chen, J. & Liang, G. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52, 721–727 (2008).

    Article  Google Scholar 

  96. Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).

    Article  Google Scholar 

  97. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  Google Scholar 

  98. Brain, J. D. Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diabetes Technol. Ther. 9, S4–S15 (2007).

    Article  Google Scholar 

  99. Sanders, M. Inhalation therapy: an historical review. Prim. Care Respir. J. 16, 71–81 (2007).

    Article  Google Scholar 

  100. Barnes, P. J. Inhaled glucocorticoids for asthma. N. Engl. J. Med. 332, 868–875 (1995).

    Article  Google Scholar 

  101. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Article  Google Scholar 

  102. Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023).

    Article  Google Scholar 

  103. Ruiz-González, N., Esporrín-Ubieto, D., Kim, I.-D., Wang, J. & Sánchez, S. Micro- and nanomotors: engineered tools for targeted and efficient biomedicine. ACS Nano 19, 8411–8432 (2025).

    Article  Google Scholar 

  104. Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  Google Scholar 

  105. Li, J. et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018).

    Article  Google Scholar 

  106. Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).

    Article  Google Scholar 

  107. Deng, Y., Paskert, A., Zhang, Z., Wittkowski, R. & Ahmed, D. An acoustically controlled helical microrobot. Sci. Adv. 9, eadh5260 (2023).

    Article  Google Scholar 

  108. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  Google Scholar 

  109. Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article  Google Scholar 

  110. Bunea, A. I. et al. Light-powered microrobots: challenges and opportunities for hard and soft responsive microswimmers. Adv. Intell. Syst. 3, 2000256 (2021).

    Article  Google Scholar 

  111. Zhang, F. et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10, eadn6157 (2024).

    Article  Google Scholar 

  112. Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Article  Google Scholar 

  113. Wang, H. & Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015).

    Article  Google Scholar 

  114. Abbasi, S. A. et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 6, 92–105 (2024).

    Article  Google Scholar 

  115. McNeill, J. M. & Mallouk, T. E. Acoustically powered nano-and microswimmers: from individual to collective behavior. ACS Nanosci. Au 3, 424–440 (2023).

    Article  Google Scholar 

  116. Li, Z., Liu, T., Sun, X., Zhou, Q. & Yan, X. Natural algae-inspired microrobots for emerging biomedical applications and beyond. Cell Rep. Phys. Sci. 5, 101979 (2024).

    Article  Google Scholar 

  117. Xing, G. et al. Macrophages-based biohybrid microrobots for breast cancer photothermal immunotherapy by inducing pyroptosis. Small 20, 2305526 (2024).

    Article  Google Scholar 

  118. Gong, D., Celi, N., Zhang, D. & Cai, J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl. Mater. Interfaces 14, 6320–6330 (2022).

    Article  Google Scholar 

  119. Zhu, S. et al. Biohybrid magnetic microrobots: an intriguing and promising platform in biomedicine. Acta Biomater. 169, 88–106 (2023).

    Article  Google Scholar 

  120. Park, J., Kim, J. Y., Pané, S., Nelson, B. J. & Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 10, 2001096 (2021).

    Article  Google Scholar 

  121. Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

    Article  Google Scholar 

  122. Chen, H. et al. Active microgel particle swarms for intrabronchial targeted delivery. Sci. Adv. 11, eadr3356 (2025).

    Article  Google Scholar 

  123. Li, Z. et al. Picoeukaryote-based biohybrid microrobots for active delivery in the kidney. Sci. Adv. 11, eadw8578 (2025).

    Article  Google Scholar 

  124. Esteban-Fernández de Avila, B. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

    Article  Google Scholar 

  125. Newman, S. P. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv. 8, 647–661 (2017).

    Article  Google Scholar 

  126. Pangeni, R. et al. Airway mucus in pulmonary diseases: muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int. J. Pharm. 634, 122661 (2023).

    Article  Google Scholar 

  127. Fan, Z. et al. Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production. Nat. Commun. 13, 5828 (2022).

    Article  Google Scholar 

  128. Nguyen, K. T. et al. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval. Adv. Healthc. Mater. 10, 2001681 (2021).

    Article  Google Scholar 

  129. Yan, X. & Sha, X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics 15, 2457 (2023).

    Article  Google Scholar 

  130. Karra, N., Swindle, E. & Morgan, H. Drug delivery for traditional and emerging airway models. Organs Chip 1, 100002 (2019).

    Article  Google Scholar 

  131. Donahue, N. D., Acar, H. & Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Article  Google Scholar 

  132. Ebrahimi, S., Shamloo, A., Alishiri, M., Mofrad, Y. M. & Akherati, F. Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: a patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. Int. J. Pharm. 609, 121133 (2021).

    Article  Google Scholar 

  133. Zhang, Y. et al. A chemotactic microrobot with integrated iridescent surface for optical-tracking. Chem. Eng. J. 472, 144222 (2023).

    Article  Google Scholar 

  134. Patino, T. et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19, 3440–3447 (2019).

    Article  Google Scholar 

  135. Lozo Vukovac, E. et al. Bronchoalveolar pH and inflammatory biomarkers in patients with acute exacerbation of chronic obstructive pulmonary disease. J. Int. Med. Res. 47, 791–802 (2019).

    Article  Google Scholar 

  136. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  Google Scholar 

  137. Noël, A., Jost, M. & Maquoi, E. Matrix metalloproteinases at cancer tumor–host interface. Semin. Cell Dev. Biol. 19, 52–60 (2008).

    Article  Google Scholar 

  138. Jahromi, L. P., Shahbazi, M. A., Maleki, A., Azadi, A. & Santos, H. A. Chemically engineered immune cell-derived microrobots and biomimetic nanoparticles: emerging biodiagnostic and therapeutic tools. Adv. Sci. 8, 2002499 (2021).

    Article  Google Scholar 

  139. Bezerra, F. S. et al. Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 12, 548 (2023).

    Article  Google Scholar 

  140. Shen, H., Cai, S., Wang, Z., Ge, Z. & Yang, W. Magnetically driven microrobots: recent progress and future development. Mater. Des. 227, 111735 (2023).

    Article  Google Scholar 

  141. Xuan, M., Shao, J., Dai, L., Li, J. & He, Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 8, 9610–9618 (2016).

    Article  Google Scholar 

  142. Darmawan, B. A. et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuators B 324, 128752 (2020).

    Article  Google Scholar 

  143. Soon, R. H. et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023).

    Article  Google Scholar 

  144. Sanwal, R., Joshi, K., Ditmans, M., Tsai, S. S. & Lee, W. L. Ultrasound and microbubbles for targeted drug delivery to the lung endothelium in ARDS: cellular mechanisms and therapeutic opportunities. Biomedicines 9, 803 (2021).

    Article  Google Scholar 

  145. Marttin, E., Schipper, N. G., Verhoef, J. C. & Merkus, F. W. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 29, 13–38 (1998).

    Article  Google Scholar 

  146. Chen, Y. et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2, eaao5619 (2017).

    Article  Google Scholar 

  147. Yao, T. et al. Nematic colloidal micro-robots as physically intelligent systems. Adv. Funct. Mater. 32, 2205546 (2022).

    Article  Google Scholar 

  148. Niu, J., Liu, C., Yang, X., Liang, W. & Wang, Y. Construction of micro-nano robots: living cells and functionalized biological cell membranes. Front. Bioeng. Biotechnol. 11, 1277964 (2023).

    Article  Google Scholar 

  149. Li, Y. et al. Magnetically powered immunogenic macrophage microrobots for targeted multimodal cancer therapy. Small 19, 2301489 (2023).

    Article  Google Scholar 

  150. Mohammed, Y. et al. Advances and future perspectives in epithelial drug delivery. Adv. Drug Deliv. Rev. 186, 114293 (2022).

    Article  Google Scholar 

  151. Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  Google Scholar 

  152. Prasher, P. et al. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem. Biol. Interact. 365, 110048 (2022).

    Article  Google Scholar 

  153. Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2021).

    Article  Google Scholar 

  154. Loira-Pastoriza, C., Todoroff, J. & Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev. 75, 81–91 (2014).

    Article  Google Scholar 

  155. Zimmermann, C. J. et al. Delivery and actuation of aerosolized microbots. Nano Sel. 3, 1185–1191 (2022).

    Article  Google Scholar 

  156. Kuzmov, A. & Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release 219, 500–518 (2015).

    Article  Google Scholar 

  157. Wang, B. et al. Pulmonary inhalation for disease treatment: basic research and clinical translations. Mater. Today Bio 25, 100966 (2024).

    Article  Google Scholar 

  158. Driscoll, K. E. et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol. Sci. 55, 24–35 (2000).

    Article  Google Scholar 

  159. Itagaki, K. et al. Intratracheal instillation of neutrophils rescues bacterial overgrowth initiated by trauma damage-associated molecular patterns. J. Trauma Acute Care Surg. 82, 853–860 (2017).

    Article  Google Scholar 

  160. Wei, Y. & Zhao, L. Passive lung-targeted drug delivery systems via intravenous administration. Pharm. Dev. Technol. 19, 129–136 (2014).

    Article  Google Scholar 

  161. Dhand, C. et al. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Adv. 4, 32673–32689 (2014).

    Article  Google Scholar 

  162. Bustamante-Marin, X. M. & Ostrowski, L. E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 9, a028241 (2017).

    Article  Google Scholar 

  163. Dickey, B. F. Chair’s summary: secreted mucins in lung diseases. Ann. Am. Thorac. Soc. 15, S140–S142 (2018).

    Article  Google Scholar 

  164. Allard, B., Panariti, A. & Martin, J. G. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front. Immunol. 9, 1777 (2018).

    Article  Google Scholar 

  165. Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J. & Schmidt, O. G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).

    Article  Google Scholar 

  166. Lea-Henry, T. N., Carland, J. E., Stocker, S. L., Sevastos, J. & Roberts, D. M. Clinical pharmacokinetics in kidney disease: fundamental principles. Clin. J. Am. Soc. Nephrol. 13, 1085–1095 (2018).

    Article  Google Scholar 

  167. Wang, Y., Chen, J., Su, G., Mei, J. & Li, J. A review of single-cell microrobots: classification, driving methods and applications. Micromachines 14, 1710 (2023).

    Article  Google Scholar 

  168. Li, N. et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 9, eadh8702 (2024).

    Article  Google Scholar 

  169. Chen, S. et al. Biodegradable microrobots for DNA vaccine delivery. Adv. Healthc. Mater. 2, e2202921 (2023).

    Article  Google Scholar 

  170. Llacer-Wintle, J. et al. Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 33, 2102049 (2021).

    Article  Google Scholar 

  171. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  Google Scholar 

  172. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Article  Google Scholar 

  173. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapies. Nat. Nanotechnol. 2, 751–760 (2007). This review discusses the potential of nanocarriers in cancer therapy.

    Article  Google Scholar 

  174. Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  Google Scholar 

  175. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).

    Article  Google Scholar 

  176. Brambilla, M., Ferrante, E., Birattari, M. & Dorigo, M. Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013).

    Article  Google Scholar 

  177. Go, G. et al. Multifunctional microrobot with real-time MRI guidance for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).

    Article  Google Scholar 

  178. Brenner, J. S., Mitragotri, S. & Muzykantov, V. R. Red blood cell hitchhiking: a novel approach for vascular delivery of nanocarriers. Annu. Rev. Biomed. Eng. 23, 225–248 (2021).

    Article  Google Scholar 

  179. Kang, T. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11, 1397–1411 (2017).

    Article  Google Scholar 

  180. Chen, C. et al. Transient micromotors that disappear when no longer needed. ACS Nano 10, 10389–10396 (2016).

    Article  Google Scholar 

  181. Prakasam, M. et al. Biodegradable materials and metallic implants — a review. J. Funct. Biomater. 8, 44 (2017).

    Article  Google Scholar 

  182. Ates, H. C. et al. On-site therapeutic drug monitoring. Trends Biotechnol. 38, 1262–1277 (2020).

    Article  Google Scholar 

  183. Raviv, S. A. et al. Lung targeted liposomes for treating ARDS. J. Control. Release 346, 421–433 (2022).

    Article  Google Scholar 

  184. Lin, C. C. et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 25, 256–266 (2018).

    Article  Google Scholar 

  185. Alton, E. W. et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5, 135–142 (1993).

    Article  Google Scholar 

  186. Dames, P. et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2, 495–499 (2007).

    Article  Google Scholar 

  187. Meshanni, J. A. et al. Targeted delivery of TGF-β mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus dendrimers. Nat. Commun. 16, 1806 (2025).

    Article  Google Scholar 

  188. Shao, S. Q. et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat. Biomed. Eng. 1, 745–757 (2017).

    Article  Google Scholar 

  189. Li, Z. et al. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci. Robot. 9, eadl2007 (2024).

    Article  Google Scholar 

  190. Gao, Y. X. et al. Magnetically manipulated optoelectronic hybrid microrobots for optically targeted non-genetic neuromodulation. Adv. Mater. 36, 2305632 (2024).

    Article  Google Scholar 

  191. Chen, H. et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 14, 941 (2023).

    Article  Google Scholar 

  192. Zhang, H. Y. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, eaaz9519 (2021).

    Article  Google Scholar 

  193. Choi, H. et al. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat. Commun. 15, 9934 (2024).

    Article  Google Scholar 

  194. Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024).

    Article  Google Scholar 

  195. Han, H. et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci. Robot. 9, eadp3593 (2024).

    Article  Google Scholar 

  196. Ju, X., Javorková, E., Michalička, J. & Pumera, M. Single-atom colloidal nanorobotics enhanced stem cell therapy for corneal injury repair. ACS Nano 19, 19095–19115 (2025).

    Article  Google Scholar 

  197. Wu, Z. G. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Article  Google Scholar 

  198. Ullrich, F. et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest. Ophthalmol. Vis. Sci. 54, 2853–2863 (2013).

    Article  Google Scholar 

  199. Arqué, X. et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano 16, 7547–7558 (2022).

    Article  Google Scholar 

  200. Reeder, W. H. & Mackey, G. S. Nebulized cortisone in bacterial pneumonia. Dis. Chest 18, 528–534 (1950).

    Article  Google Scholar 

  201. Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

  202. Zhang, F. et al. Biohybrid microalgae robots: design, fabrication, materials, and applications. Adv. Mater. 36, 2303714 (2024).

    Article  Google Scholar 

  203. Saha, T. et al. Wearable electrochemical glucose sensors in diabetes management: a comprehensive review. Chem. Rev. 123, 7854–7889 (2023).

    Article  Google Scholar 

  204. Gouveia, B. G. et al. Good manufacturing practices for medicinal products for human use. J. Pharm. Bioallied Sci. 7, 87–96 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.L., L.Z. and J.W. conceptualized the topic and developed the outline. Z.L., H.L., Z.F., S.D., R.K., R.H.F., L.Z. and J.W. wrote the manuscript. All authors reviewed, edited and approved the paper.

Corresponding authors

Correspondence to Liangfang Zhang or Joseph Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Ke Cheng and Daniel Ahmed for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Luan, H., Fang, Z. et al. Microrobots for pulmonary drug delivery. Nat Rev Bioeng (2026). https://doi.org/10.1038/s44222-025-00381-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44222-025-00381-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research