Abstract
Pulmonary drug delivery offers several advantages over systemic administration, including localized targeting of diseased lung tissue, rapid absorption through the extensive alveolar surface area, and minimized systemic side effects owing to reduced off-target distribution. These benefits make it a promising approach for treating a range of respiratory and systemic conditions. However, mucociliary clearance, immune surveillance and enzymatic degradation pose major challenges to drug retention in the lungs. In this Review, we discuss microrobotic delivery systems for tackling the challenges of pulmonary drug delivery. We first outline key considerations for the design of microrobots for pulmonary delivery, including propulsion systems, targeting, controlled drug release, overcoming of biological barriers, delivery routes and clearance, and we then highlight applications for lung-related conditions. In particular, we outline biohybrid platforms based on green algae and inhalable platforms for the treatment of pneumonia and lung metastasis. Finally, we examine the engineering of microrobotic swarms and survey future opportunities and milestones for microrobotic pulmonary delivery.
Key points
-
Pulmonary drug delivery enables localized treatment of lung diseases, rapid drug absorption through the alveolar surface, and reduced systemic side effects owing to limited off-target distribution.
-
Biological barriers, such as mucociliary clearance, immune responses and enzymatic degradation, hinder effective drug retention and delivery in the lungs.
-
Microrobotic delivery systems can be designed to overcome these challenges, focusing on propulsion, targeting, controlled release, biological barrier navigation and clearance mechanisms.
-
Biohybrid microrobots and inhalable platforms can be engineered for treating pneumonia and lung metastasis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Shi, W., Bellusci, S. & Warburton, D. Lung development and adult lung diseases. Chest 132, 651–656 (2007).
Hsia, C. C., Hyde, D. M. & Weibel, E. R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol. 6, 827–895 (2016).
Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).
Zazara, D. E., Belios, I., Lücke, J., Zhang, T. & Giannou, A. D. Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin. Immunopathol. 44, 827–854 (2022).
Cookson, W. O., Cox, M. J. & Moffatt, M. F. New opportunities for managing acute and chronic lung infections. Nat. Rev. Microbiol. 16, 111–120 (2018).
Long, M. E., Mallampalli, R. K. & Horowitz, J. C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. 136, 747–769 (2022).
Traber, K. E. & Mizgerd, J. P. The integrated pulmonary immune response to pneumonia. Annu. Rev. Immunol. 43, 545–569 (2025).
Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017).
Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018). This review discusses biological characteristics and management of non-small cell lung cancer, providing an important reference for lung cancer research and clinical practice.
Lambrecht, B. N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45–56 (2015).
Holgate, S. T. et al. Asthma. Nat. Rev. Dis. Prim. 1, 15025 (2015).
Houghton, A. M. Mechanistic links between COPD and lung cancer. Nat. Rev. Cancer 13, 233–245 (2013).
Stolz, D. et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 400, 921–972 (2022). This article proposes a comprehensive strategy for the elimination of COPD.
Richeldi, L. et al. Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952 (2017).
Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).
Javanian, M. et al. A brief review of influenza virus infection. J. Med. Virol. 93, 4638–4646 (2021).
Torres, A. et al. Pneumonia. Nat. Rev. Dis. Prim. 7, 25 (2021).
Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).
Schittny, J. C. Development of the lung. Cell Tissue Res. 367, 427–444 (2017).
Roth, D. et al. Structure and function relationships of mucociliary clearance in human and rat airways. Nat. Commun. 16, 2446 (2025).
Agarwal, R. et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat. Biomed. Eng. 2, 841–849 (2018).
Patton, J. S. & Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007).
Gelfand, M. L. Administration of cortisone by the aerosol method in the treatment of bronchial asthma. N. Engl. J. Med. 245, 293–294 (1951).
Stein, S. W. & Thiel, C. G. The history of therapeutic aerosols: a chronological review. J. Aerosol Med. Pulm. Drug Deliv. 30, 20–41 (2017).
Fuchs, H. J. et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331, 637–642 (1994).
Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1872 (1997). This article reports large porous particles for pulmonary drug delivery as a new route for lung-targeted administration.
Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).
Jani, R., Curtis, T., Charles, R. & DeFronzo, R. A. First approved inhaled insulin therapy for diabetes mellitus. Expert Opin. Drug Deliv. 4, 63–76 (2007).
Åkerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).
Park, J. H. et al. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Sci. Adv. 7, eabf7820 (2021).
Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).
Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).
Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10, 5108 (2019).
Henry, B. D. et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 33, 81–88 (2015).
Wang, Y. et al. Realveolarization with inhalable mucus-penetrating lipid nanoparticles for the treatment of pulmonary fibrosis in mice. Sci. Adv. 10, eado4791 (2024).
Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Nat. Biotechnol. 43, 1445–1457 (2024).
Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).
Peng, W. C. et al. Inhalable nanocatalytic therapeutics for viral pneumonia. Nat. Mater. 24, 637–648 (2025).
Mei, X. et al. An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection. Nat. Mater. 22, 903–912 (2023).
Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024).
Bobba, C. M. et al. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat. Commun. 12, 289 (2021).
Bai, X. et al. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat. Commun. 15, 6844 (2024).
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
Dolovich, M. B. & Dhand, R. Aerosol drug delivery: developments in device design and clinical use. Lancet 377, 1032–1045 (2011).
Iacovacci, V., Diller, E., Ahmed, D. & Menciassi, A. Medical microrobots. Annu. Rev. Biomed. Eng. 26, 561–591 (2024).
Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017). This review discusses the principles and advances of microscale robots, laying the foundation for their biomedical applications.
Wang, J. Nanomachines: fundamentals and applications (Wiley, 2013).
Oral, C. M. & Pumera, M. In vivo applications of micro/nanorobots. Nanoscale 15, 8491–8507 (2023).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
Sznitman, J. Revisiting airflow and aerosol transport phenomena in the deep lungs with microfluidics. Chem. Rev. 122, 7182–7204 (2021).
Bhattacharya, J. & Matthay, M. A. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75, 593–615 (2013).
Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022). This article reports the first in vivo demonstration of nanoparticle-functionalized algae-based microrobots for targeted pulmonary antibiotic delivery.
Li, Z. et al. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat. Commun. 16, 666 (2025). This article reports the first demonstration of non-invasive nebulization delivery of living biohybrid microrobots for lung treatment.
Yan, X. H. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).
Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward of synthetic motors. ACS Nano 9, 117–123 (2015). This article reports the first in vivo demonstration of artificial micromotors in live animals.
Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).
Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).
Zhang, G. et al. Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis. Nat. Biomed. Eng. 6, 867–881 (2022).
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Myerson, J. W. et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat. Nanotechnol. 17, 86–97 (2022).
Li, B. et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. 19, 834–845 (2024).
Zhou, J. et al. Nanotoxoid vaccination protects against opportunistic bacterial infections arising from immunodeficiency. Sci. Adv. 8, eabq5492 (2022).
Shah, K., Chan, L. W. & Wong, T. W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv. 24, 1631–1647 (2017).
Liu, S. et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 15, 9471 (2024).
Kwon, E. J. et al. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of lung infections. Adv. Mater. 29, 1701527 (2017).
Gordon, A., Li, B., Witten, J., Nguyen, H. & Anderson, D. G. Inhalable dry powders for lung mRNA delivery. Adv. Healthc. Mater. 13, 2400509 (2024).
Barnes, P. J. & Hansel, T. T. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet 364, 985–996 (2004).
Bahmani, B. et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun. 12, 1999 (2021).
Zhao, Z., Ukidve, A., Gao, Y., Kim, J. & Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 5, eaax9250 (2019).
Wang, H., Wu, L. & Sun, X. Intratracheal delivery of nano-and microparticles and hyperpolarized gases: a promising strategy for the imaging and treatment of respiratory disease. Chest 157, 1579–1590 (2020).
Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).
Guo, X. et al. Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J. Drug Target. 22, 421–427 (2014).
Guo, X. et al. PLGA-based micro/nanoparticles: an overview of their applications in respiratory diseases. Int. J. Mol. Sci. 24, 4333 (2023).
El-Sherbiny, I. M., El-Baz, N. M. & Yacoub, M. H. Inhaled nano-and microparticles for drug delivery. Glob. Cardiol. Sci. Pract. 2015, 2 (2015).
Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018). This review discusses cell-membrane coating nanotechnology in pulmonary applications.
He, Z., Zhang, Y. & Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater. Sci. Eng. 106, 110298 (2020).
Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015). This article reports cell membrane-cloaked nanoparticles as a platform for therapeutic applications.
Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023).
Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).
Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).
Yong, T. Y. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).
Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).
Jobe, A. H. Pulmonary surfactant therapy. N. Engl. J. Med. 328, 861–868 (1993).
Harrell, C. R., Jovicic, N., Djonov, V., Arsenijevic, N. & Volarevic, V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 8, 1605 (2019).
Jiang, L., Vader, P. & Schiffelers, R. M. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther. 24, 157–166 (2017).
Keklikoglou, I. et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol. 21, 190–202 (2019).
Khalaj, K., Figueira, R. L., Antounians, L., Lauriti, G. & Zani, A. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J. Extracell. Vesicles 9, 1795365 (2020).
Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).
Gattinoni, L. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 354, 1775–1786 (2006).
Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).
Cui, Z. et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat. Chem. Biol. 18, 1056–1064 (2022).
Sago, C. D. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat. Biomed. Eng. 6, 157–167 (2022).
Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).
Wang, Q., Xie, P., Chen, J. & Liang, G. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52, 721–727 (2008).
Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).
Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).
Brain, J. D. Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diabetes Technol. Ther. 9, S4–S15 (2007).
Sanders, M. Inhalation therapy: an historical review. Prim. Care Respir. J. 16, 71–81 (2007).
Barnes, P. J. Inhaled glucocorticoids for asthma. N. Engl. J. Med. 332, 868–875 (1995).
Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).
Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023).
Ruiz-González, N., Esporrín-Ubieto, D., Kim, I.-D., Wang, J. & Sánchez, S. Micro- and nanomotors: engineered tools for targeted and efficient biomedicine. ACS Nano 19, 8411–8432 (2025).
Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).
Li, J. et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018).
Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).
Deng, Y., Paskert, A., Zhang, Z., Wittkowski, R. & Ahmed, D. An acoustically controlled helical microrobot. Sci. Adv. 9, eadh5260 (2023).
Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).
Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).
Bunea, A. I. et al. Light-powered microrobots: challenges and opportunities for hard and soft responsive microswimmers. Adv. Intell. Syst. 3, 2000256 (2021).
Zhang, F. et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10, eadn6157 (2024).
Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).
Wang, H. & Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015).
Abbasi, S. A. et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 6, 92–105 (2024).
McNeill, J. M. & Mallouk, T. E. Acoustically powered nano-and microswimmers: from individual to collective behavior. ACS Nanosci. Au 3, 424–440 (2023).
Li, Z., Liu, T., Sun, X., Zhou, Q. & Yan, X. Natural algae-inspired microrobots for emerging biomedical applications and beyond. Cell Rep. Phys. Sci. 5, 101979 (2024).
Xing, G. et al. Macrophages-based biohybrid microrobots for breast cancer photothermal immunotherapy by inducing pyroptosis. Small 20, 2305526 (2024).
Gong, D., Celi, N., Zhang, D. & Cai, J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl. Mater. Interfaces 14, 6320–6330 (2022).
Zhu, S. et al. Biohybrid magnetic microrobots: an intriguing and promising platform in biomedicine. Acta Biomater. 169, 88–106 (2023).
Park, J., Kim, J. Y., Pané, S., Nelson, B. J. & Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 10, 2001096 (2021).
Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).
Chen, H. et al. Active microgel particle swarms for intrabronchial targeted delivery. Sci. Adv. 11, eadr3356 (2025).
Li, Z. et al. Picoeukaryote-based biohybrid microrobots for active delivery in the kidney. Sci. Adv. 11, eadw8578 (2025).
Esteban-Fernández de Avila, B. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).
Newman, S. P. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv. 8, 647–661 (2017).
Pangeni, R. et al. Airway mucus in pulmonary diseases: muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int. J. Pharm. 634, 122661 (2023).
Fan, Z. et al. Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production. Nat. Commun. 13, 5828 (2022).
Nguyen, K. T. et al. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval. Adv. Healthc. Mater. 10, 2001681 (2021).
Yan, X. & Sha, X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics 15, 2457 (2023).
Karra, N., Swindle, E. & Morgan, H. Drug delivery for traditional and emerging airway models. Organs Chip 1, 100002 (2019).
Donahue, N. D., Acar, H. & Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).
Ebrahimi, S., Shamloo, A., Alishiri, M., Mofrad, Y. M. & Akherati, F. Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: a patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. Int. J. Pharm. 609, 121133 (2021).
Zhang, Y. et al. A chemotactic microrobot with integrated iridescent surface for optical-tracking. Chem. Eng. J. 472, 144222 (2023).
Patino, T. et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19, 3440–3447 (2019).
Lozo Vukovac, E. et al. Bronchoalveolar pH and inflammatory biomarkers in patients with acute exacerbation of chronic obstructive pulmonary disease. J. Int. Med. Res. 47, 791–802 (2019).
Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).
Noël, A., Jost, M. & Maquoi, E. Matrix metalloproteinases at cancer tumor–host interface. Semin. Cell Dev. Biol. 19, 52–60 (2008).
Jahromi, L. P., Shahbazi, M. A., Maleki, A., Azadi, A. & Santos, H. A. Chemically engineered immune cell-derived microrobots and biomimetic nanoparticles: emerging biodiagnostic and therapeutic tools. Adv. Sci. 8, 2002499 (2021).
Bezerra, F. S. et al. Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants 12, 548 (2023).
Shen, H., Cai, S., Wang, Z., Ge, Z. & Yang, W. Magnetically driven microrobots: recent progress and future development. Mater. Des. 227, 111735 (2023).
Xuan, M., Shao, J., Dai, L., Li, J. & He, Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 8, 9610–9618 (2016).
Darmawan, B. A. et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuators B 324, 128752 (2020).
Soon, R. H. et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023).
Sanwal, R., Joshi, K., Ditmans, M., Tsai, S. S. & Lee, W. L. Ultrasound and microbubbles for targeted drug delivery to the lung endothelium in ARDS: cellular mechanisms and therapeutic opportunities. Biomedicines 9, 803 (2021).
Marttin, E., Schipper, N. G., Verhoef, J. C. & Merkus, F. W. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 29, 13–38 (1998).
Chen, Y. et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2, eaao5619 (2017).
Yao, T. et al. Nematic colloidal micro-robots as physically intelligent systems. Adv. Funct. Mater. 32, 2205546 (2022).
Niu, J., Liu, C., Yang, X., Liang, W. & Wang, Y. Construction of micro-nano robots: living cells and functionalized biological cell membranes. Front. Bioeng. Biotechnol. 11, 1277964 (2023).
Li, Y. et al. Magnetically powered immunogenic macrophage microrobots for targeted multimodal cancer therapy. Small 19, 2301489 (2023).
Mohammed, Y. et al. Advances and future perspectives in epithelial drug delivery. Adv. Drug Deliv. Rev. 186, 114293 (2022).
Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).
Prasher, P. et al. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem. Biol. Interact. 365, 110048 (2022).
Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2021).
Loira-Pastoriza, C., Todoroff, J. & Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev. 75, 81–91 (2014).
Zimmermann, C. J. et al. Delivery and actuation of aerosolized microbots. Nano Sel. 3, 1185–1191 (2022).
Kuzmov, A. & Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release 219, 500–518 (2015).
Wang, B. et al. Pulmonary inhalation for disease treatment: basic research and clinical translations. Mater. Today Bio 25, 100966 (2024).
Driscoll, K. E. et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol. Sci. 55, 24–35 (2000).
Itagaki, K. et al. Intratracheal instillation of neutrophils rescues bacterial overgrowth initiated by trauma damage-associated molecular patterns. J. Trauma Acute Care Surg. 82, 853–860 (2017).
Wei, Y. & Zhao, L. Passive lung-targeted drug delivery systems via intravenous administration. Pharm. Dev. Technol. 19, 129–136 (2014).
Dhand, C. et al. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Adv. 4, 32673–32689 (2014).
Bustamante-Marin, X. M. & Ostrowski, L. E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 9, a028241 (2017).
Dickey, B. F. Chair’s summary: secreted mucins in lung diseases. Ann. Am. Thorac. Soc. 15, S140–S142 (2018).
Allard, B., Panariti, A. & Martin, J. G. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front. Immunol. 9, 1777 (2018).
Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J. & Schmidt, O. G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).
Lea-Henry, T. N., Carland, J. E., Stocker, S. L., Sevastos, J. & Roberts, D. M. Clinical pharmacokinetics in kidney disease: fundamental principles. Clin. J. Am. Soc. Nephrol. 13, 1085–1095 (2018).
Wang, Y., Chen, J., Su, G., Mei, J. & Li, J. A review of single-cell microrobots: classification, driving methods and applications. Micromachines 14, 1710 (2023).
Li, N. et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 9, eadh8702 (2024).
Chen, S. et al. Biodegradable microrobots for DNA vaccine delivery. Adv. Healthc. Mater. 2, e2202921 (2023).
Llacer-Wintle, J. et al. Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 33, 2102049 (2021).
Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).
Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapies. Nat. Nanotechnol. 2, 751–760 (2007). This review discusses the potential of nanocarriers in cancer therapy.
Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).
Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).
Brambilla, M., Ferrante, E., Birattari, M. & Dorigo, M. Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013).
Go, G. et al. Multifunctional microrobot with real-time MRI guidance for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).
Brenner, J. S., Mitragotri, S. & Muzykantov, V. R. Red blood cell hitchhiking: a novel approach for vascular delivery of nanocarriers. Annu. Rev. Biomed. Eng. 23, 225–248 (2021).
Kang, T. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11, 1397–1411 (2017).
Chen, C. et al. Transient micromotors that disappear when no longer needed. ACS Nano 10, 10389–10396 (2016).
Prakasam, M. et al. Biodegradable materials and metallic implants — a review. J. Funct. Biomater. 8, 44 (2017).
Ates, H. C. et al. On-site therapeutic drug monitoring. Trends Biotechnol. 38, 1262–1277 (2020).
Raviv, S. A. et al. Lung targeted liposomes for treating ARDS. J. Control. Release 346, 421–433 (2022).
Lin, C. C. et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 25, 256–266 (2018).
Alton, E. W. et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5, 135–142 (1993).
Dames, P. et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2, 495–499 (2007).
Meshanni, J. A. et al. Targeted delivery of TGF-β mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus dendrimers. Nat. Commun. 16, 1806 (2025).
Shao, S. Q. et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat. Biomed. Eng. 1, 745–757 (2017).
Li, Z. et al. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci. Robot. 9, eadl2007 (2024).
Gao, Y. X. et al. Magnetically manipulated optoelectronic hybrid microrobots for optically targeted non-genetic neuromodulation. Adv. Mater. 36, 2305632 (2024).
Chen, H. et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 14, 941 (2023).
Zhang, H. Y. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, eaaz9519 (2021).
Choi, H. et al. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat. Commun. 15, 9934 (2024).
Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024).
Han, H. et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci. Robot. 9, eadp3593 (2024).
Ju, X., Javorková, E., Michalička, J. & Pumera, M. Single-atom colloidal nanorobotics enhanced stem cell therapy for corneal injury repair. ACS Nano 19, 19095–19115 (2025).
Wu, Z. G. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).
Ullrich, F. et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest. Ophthalmol. Vis. Sci. 54, 2853–2863 (2013).
Arqué, X. et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano 16, 7547–7558 (2022).
Reeder, W. H. & Mackey, G. S. Nebulized cortisone in bacterial pneumonia. Dis. Chest 18, 528–534 (1950).
Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).
Zhang, F. et al. Biohybrid microalgae robots: design, fabrication, materials, and applications. Adv. Mater. 36, 2303714 (2024).
Saha, T. et al. Wearable electrochemical glucose sensors in diabetes management: a comprehensive review. Chem. Rev. 123, 7854–7889 (2023).
Gouveia, B. G. et al. Good manufacturing practices for medicinal products for human use. J. Pharm. Bioallied Sci. 7, 87–96 (2015).
Author information
Authors and Affiliations
Contributions
Z.L., L.Z. and J.W. conceptualized the topic and developed the outline. Z.L., H.L., Z.F., S.D., R.K., R.H.F., L.Z. and J.W. wrote the manuscript. All authors reviewed, edited and approved the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Ke Cheng and Daniel Ahmed for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, Z., Luan, H., Fang, Z. et al. Microrobots for pulmonary drug delivery. Nat Rev Bioeng (2026). https://doi.org/10.1038/s44222-025-00381-8
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s44222-025-00381-8


