Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Engineering redox-active electrochemically mediated carbon dioxide capture systems

Abstract

With ever-increasing atmospheric carbon dioxide concentrations and commitments to limit global temperatures to less than 1.5 °C above pre-industrial levels, the need for versatile, low-cost carbon dioxide capture technologies is paramount. Electrochemically mediated carbon dioxide separation systems promise low energetics, modular scalability and ease of implementation, with direct integration to renewable energy for net-negative carbon dioxide operations. For these systems to be cost-competitive, key factors around their operation, stability and scaling need to be addressed. Energy penalties associated with redox-active species transport, gas transport and bubble formation limit the volumetric productivity and scaling potential due to their cost and footprint. Here we highlight the importance of engineering approaches towards enhancing the performance of redox-active electrochemically mediated carbon dioxide capture systems to enable their widespread implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of electrochemically mediated cycles for CO2 capture and the typical molecules employed in the direct cycle.
Fig. 2: Process configurations leveraging the electrochemical reversibility of CO2 sorption with accompanying thermodynamic cycles and ideal work of separation.
Fig. 3: The electrochemically mediated amine regeneration process flow, chemistry and cell energetics.
Fig. 4: Representation of transport processes in various cell configurations.
Fig. 5: CO2 gas generated during cell operation, strategies to reduce or avoid bubbles, and embodiments of scaled electrochemical cells.

Similar content being viewed by others

References

  1. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  2. Halliday, C. & Hatton, T. A. Sorbents for the capture of CO2 and other acid gases: a review. Ind. Eng. Chem. Res. 60, 9313–9346 (2021).

    Article  CAS  Google Scholar 

  3. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor - Supporting Information. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, W. et al. Electrochemically regenerated amine for CO2 capture driven by a proton-coupled electron transfer reaction. Ind. Eng. Chem. Res. 61, 13578–13588 (2022).

    Article  CAS  Google Scholar 

  5. Liu, Y., Lucas, É., Sullivan, I., Li, X. & Xiang, C. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 25, 105153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article  CAS  Google Scholar 

  7. Kang, J. S., Kim, S. & Hatton, T. A. Redox-responsive sorbents and mediators for electrochemically based CO2 capture. Curr. Opin. Green Sustain. Chem. 31, 100504 (2021).

    Article  CAS  Google Scholar 

  8. Gurkan, B. et al. Perspective and challenges in electrochemical approaches for reactive CO2 separations. iScience 24, 103422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zito, A. M. et al. Electrochemical carbon dioxide capture and concentration. Chem. Rev. 123, 8069–8098 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Barlow, J. M. et al. Molecular design of redox carriers for electrochemical CO2 capture and concentration. Chem. Soc. Rev. 51, 8415–8433 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Sullivan, B. P., Krist. K. & Guard, H. E. (eds) Electrochemical and Electrocatalytic Reactions of Carbon Dioxide (Elsevier, 1993).

  12. Barlow, J. M. & Yang, J. Y. Oxygen-stable electrochemical CO2 capture and concentration with quinones using alcohol additives. J. Am. Chem. Soc. 144, 14161–14169 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Van Daele, S. et al. How flue gas impurities affect the electrochemical reduction of CO2 to CO and formate. Appl. Catal. B Environ. 341, 123345 (2024).

    Article  Google Scholar 

  14. Gurkan, B., Simeon, F. & Hatton, T. A. Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustainable Chem. Eng. 3, 1394–1405 (2015).

    Article  CAS  Google Scholar 

  15. Diederichsen, K. M., DeWitt, S. J. A. & Hatton, T. A. Electrochemically facilitated transport of CO2 between gas diffusion electrodes in flat and hollow fiber geometries. ACS ES&T Eng. 3, 1001–1012 (2023).

    Article  CAS  Google Scholar 

  16. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article  CAS  Google Scholar 

  17. Hemmatifar, A., Kang, J. S., Ozbek, N., Tan, K. J. & Hatton, T. A. Electrochemically mediated direct CO2 capture by a stackable bipolar cell. ChemSusChem 15, e202102533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y. et al. Electrochemically mediated gating membrane with dynamically controllable gas transport. Sci. Adv. 6, 22–24 (2020).

    Article  Google Scholar 

  19. Shaw, R. A. & Hatton, T. A. Electrochemical CO2 capture thermodynamics. Int. J. Greenh. Gas Control 95, 102878 (2020).

    Article  CAS  Google Scholar 

  20. Clarke, L. E., Leonard, M. E., Hatton, T. A. & Brushett, F. R. Thermodynamic modeling of CO2 separation systems with soluble, redox-active capture species. Ind. Eng. Chem. Res. 61, 10531–10546 (2022).

    Article  CAS  Google Scholar 

  21. Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Prim. 2, 2354–2374 (2022).

    Google Scholar 

  22. Wang, M., Hariharan, S., Shaw, R. A. & Hatton, T. A. Energetics of electrochemically mediated amine regeneration process for flue gas CO2 capture. Int. J. Greenh. Gas Control 82, 48–58 (2019).

    Article  CAS  Google Scholar 

  23. Wang, M. & Hatton, T. A. Flue gas CO2 capture via electrochemically mediated amine regeneration: desorption unit design and analysis. Ind. Eng. Chem. Res. 59, 10120–10129 (2020).

    Article  CAS  Google Scholar 

  24. Wang, M., Shaw, R., Gencer, E. & Hatton, T. A. Technoeconomic analysis of the electrochemically mediated amine regeneration CO2 capture process. Ind. Eng. Chem. Res. 59, 14085–14095 (2020).

    Article  CAS  Google Scholar 

  25. Xu, Y. et al. Assessing the kinetics of quinone-CO2 adduct formation for electrochemically mediated carbon capture. ACS Sustain. Chem. Eng. 11, 11333–11341 (2023).

    Article  CAS  Google Scholar 

  26. Gurkan, B., Simeon, F. & Hatton, T. A. Quinone reduction in ionic liquids for electrochemical CO2 separation - supporting information. ACS Sustain. Chem. Eng. 3, 1394–1405 (2015).

    Article  CAS  Google Scholar 

  27. Wang, M. et al. Flue gas CO2 capture via electrochemically mediated amine regeneration: system design and performance. Appl. Energy 255, 113879 (2019).

    Article  CAS  Google Scholar 

  28. Diederichsen, K. M., Liu, Y., Ozbek, N., Seo, H. & Hatton, T. A. Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. Joule 6, 221–239 (2022).

    Article  CAS  Google Scholar 

  29. Rahimi, M. et al. Carbon dioxide capture using an electrochemically driven proton concentration process. Cell Rep. Phys. Sci. 1, 100033 (2020).

    Article  Google Scholar 

  30. Rahimi, M., Catalini, G., Puccini, M. & Hatton, T. A. Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process. RSC Adv. 10, 16832–16843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seo, H., Rahimi, M. & Hatton, T. A. Electrochemical carbon dioxide capture and release with a redox-active amine. J. Am. Chem. Soc. 144, 2164–2170 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Seo, H. & Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material. Nat. Commun. 14, 313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy Environ. Sci. 13, 3706–3722 (2020).

    Article  CAS  Google Scholar 

  34. Jin, S., Wu, M., Jing, Y., Gordon, R. G. & Aziz, M. J. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nat. Commun. 13, 2140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leitz, F. B. & Marinčić, L. Enhanced mass transfer in electrochemical cells using turbulence promoters. J. Appl. Electrochem. 7, 473–484 (1977).

    Article  CAS  Google Scholar 

  36. Ke, X. et al. Rechargeable redox flow batteries: flow fields, stacks and design considerations. Chem. Soc. Rev. 47, 8721–8743 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Quentmeier, M., Schmid, B., Tempel, H., Kungl, H. & Eichel, R. A. Toward a stackable CO2-to-CO electrolyzer cell design─impact of media flow optimization. ACS Sustain. Chem. Eng. 11, 679–688 (2023).

    Article  CAS  Google Scholar 

  38. Pérez-Gallent, E. et al. Overcoming mass transport limitations in electrochemical reactors with a pulsating flow electrolyzer. Ind. Eng. Chem. Res. 59, 5648–5656 (2020).

    Article  Google Scholar 

  39. Pei, S., You, S. & Zhang, J. Application of pulsed electrochemistry to enhanced water decontamination. ACS ES&T Eng. 1, 1502–1508 (2021).

    Article  CAS  Google Scholar 

  40. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  CAS  Google Scholar 

  41. Jeon, H. S. et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 143, 7578–7587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Compton, R. G., Eklund, J. C., Page, S. D., Mason, T. J. & Walton, D. J. Voltammetry in the presence of ultrasound: mass transport effects. J. Appl. Electrochem. 26, 775–784 (1996).

    Article  CAS  Google Scholar 

  43. Xie, X. et al. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat. Commun. 14, 4289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, Y. H. et al. Controlled synthesis of metal-organic frameworks in scalable open-porous contactor for maximizing carbon capture efficiency. JACS Au 1, 1198–1207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, W. H. et al. Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption. Joule 7, 1241–1259 (2023).

    Article  CAS  Google Scholar 

  46. Singh, S., Stechel, E. B. & Buttry, D. A. Transient modeling of electrochemically assisted CO2 capture and release. J. Electroanal. Chem. 799, 156–166 (2017).

    Article  CAS  Google Scholar 

  47. Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    Article  CAS  Google Scholar 

  48. He, Y. et al. Strategies for bubble removal in electrochemical systems. Energy Rev. 2, 100015 (2023).

    Article  Google Scholar 

  49. Leonard, M. E. et al. Editors’ Choice—Flooded by success: on the role of electrode wettability in CO2 electrolyzers that generate liquid products. J. Electrochem. Soc. 167, 124521 (2020).

    Article  CAS  Google Scholar 

  50. Lake, J. R., Soto, Á. M. & Varanasi, K. K. Impact of bubbles on electrochemically active surface area of microtextured gas-evolving electrodes. Langmuir 38, 3276–3283 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Rahimi, M., Zucchelli, F., Puccini, M. & Hatton, T. A. Improved CO2 capture performance of electrochemically mediated amine regeneration processes with ionic surfactant additives. ACS Appl. Energy Mater. 3, 10823–10830 (2020).

    Article  CAS  Google Scholar 

  52. Gendel, Y., Roth, H., Rommerskirchen, A., David, O. & Wessling, M. A microtubular all CNT gas diffusion electrode. Electrochem. Commun. 46, 44–47 (2014).

    Article  CAS  Google Scholar 

  53. Hatton, T. A., Shaw, R. A., Wang, M. & Voskian, S. Methods and systems for removing CO2 from a feed gas. US patent US11446604B2 (2019).

  54. Rahimi, M. et al. An electrochemically mediated amine regeneration process with a mixed absorbent for postcombustion CO2 capture. Environ. Sci. Technol. 54, 8999–9007 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, M., Herzog, H. J. & Hatton, T. A. CO2 capture using electrochemically mediated amine regeneration. Ind. Eng. Chem. Res. 59, 7087–7096 (2020).

    Article  CAS  Google Scholar 

  56. Stern, M. C. & Hatton, T. A. Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration. RSC Adv. 4, 5906–5914 (2014).

    Article  CAS  Google Scholar 

  57. Sabatino, F. et al. Evaluation of a direct air capture process combining wet scrubbing and bipolar membrane electrodialysis. Ind. Eng. Chem. Res. 59, 7007–7020 (2020).

    Article  CAS  Google Scholar 

  58. Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. A general technoeconomic model for evaluating emerging electrolytic processes. Energy Technol. 8, 1900994 (2020).

    Article  Google Scholar 

  59. Zhang, J. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 14, 1298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  61. Reyes, A. et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett. 5, 1612–1618 (2020).

    Article  CAS  Google Scholar 

  62. Verma, S., Kim, B., Jhong, H. R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Kohl, A. L. & Nielsen, R. B. Gas Purification (Gulf Publishing Company, 1997).

  64. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Memb. Sci. 359, 126–139 (2010).

    Article  CAS  Google Scholar 

  66. Wu, Y. et al. A submillimeter bundled microtubular flow battery cell with ultrahigh volumetric power density. Proc. Natl Acad. Sci. USA 120, e2213528120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diederichsen, K. M. & Hatton, T. A. Nondimensional analysis of a hollow fiber membrane contactor for direct air capture. Ind. Eng. Chem. Res. 61, 11964–11976 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M.-H., K.M.D. and T.A.H. contributed to conceptualization, writing of the original draft, and review and editing of the manuscript.

Corresponding author

Correspondence to T. Alan Hatton.

Ethics declarations

Competing interests

T.A.H. is a co-founder and Scientific Advisory Board member of Verdox, Inc.

Peer review

Peer review information

Nature Chemical Engineering thanks Klaus Lackner and Chang-Ha Lee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massen-Hane, M., Diederichsen, K.M. & Hatton, T.A. Engineering redox-active electrochemically mediated carbon dioxide capture systems. Nat Chem Eng 1, 35–44 (2024). https://doi.org/10.1038/s44286-023-00003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-023-00003-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing