Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tandem reactors and reactions for CO2 conversion

Abstract

Carbon dioxide (CO2) valorization is a promising pathway for mitigating greenhouse gas emissions from the chemical sector and reducing the reliance of chemical manufacturing on fossil fuel feedstocks. This Perspective discusses tandem catalytic paradigms for sustainable CO2 conversion that have potential advantages over processes using single-functional catalysts. Recent progress is discussed for tandem catalysis using multifunctional catalysts in a single reactor, as well as tandem reactors involving multiple catalysts. Opportunities for further developing these tandem strategies for thermochemical and electrochemical processes in various configurations are presented to encourage research in this burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An illustration of the different catalyst mixing scales relevant to tandem catalysis and tandem reactors.
Fig. 2: Tandem thermocatalytic strategies for CO2 conversion.
Fig. 3: Tandem electrocatalytic strategies for CO2 conversion.
Fig. 4: Tandem EC–TC and TC–EC reactors for CO2 conversion.
Fig. 5: An illustration of progress in and opportunities for CO2 upgrading by single reactor tandem catalysis and tandem reactors.

Similar content being viewed by others

References

  1. Technology Roadmap—Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (IEA, 2013); https://www.iea.org/reports/technology-roadmap-energy-and-ghg-reductions-in-the-chemical-industry-via-catalytic-processes

  2. The Future of Petrochemicals (IEA, 2018); https://www.iea.org/reports/the-future-of-petrochemicals

  3. Ritchie, H., Roser, M. & Rosado, P. CO2 and greenhouse gas emissions. Our World In Data https://ourworldindata.org/co2-and-greenhouse-gas-emissions (2020).

  4. Biswas, A. N., Winter, L. R., Xie, Z. & Chen, J. G. Utilizing CO2 as a reactant for C3 oxygenate production via tandem reactions. JACS Au 3, 293–305 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tackett, B. M., Gomez, E. & Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381–386 (2019).

    CAS  Google Scholar 

  6. Overa, S., Feric, T. G., Park, A.-H. A. & Jiao, F. Tandem and hybrid processes for carbon dioxide utilization. Joule 5, 8–13 (2021).

    Google Scholar 

  7. Zheng, W. et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew. Chem. Int. Ed. 62, e202307283 (2023).

    CAS  Google Scholar 

  8. Gioria, E. et al. Rational design of tandem catalysts using a core–shell structure approach. Nanoscale Adv. 3, 3454–3459 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin, K. et al. Conversion of CO2 to gasoline over tandem Fe/C and HZSM-5 catalysts. Sustain. Energy Fuels 7, 1265–1272 (2023).

    CAS  Google Scholar 

  10. Xie, C. et al. Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).

    ADS  CAS  PubMed  Google Scholar 

  11. Gomez, E., Nie, X., Lee, J. H., Xie, Z. & Chen, J. G. Tandem reactions of CO2 reduction and ethane aromatization. J. Am. Chem. Soc. 141, 17771–17782 (2019).

    CAS  PubMed  Google Scholar 

  12. Xu, D., Yang, H., Hong, X., Liu, G. & Edman Tsang, S. C. Tandem catalysis of direct CO2 hydrogenation to higher alcohols. ACS Catal. 11, 8978–8984 (2021).

    CAS  Google Scholar 

  13. Li, Z. et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule 3, 570–583 (2019).

    CAS  Google Scholar 

  14. Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    CAS  PubMed  Google Scholar 

  15. Wei, X., Li, Y., Hua, Z., Chen, L. & Shi, J. One-pot synthesized nickel-doped hierarchically porous beta zeolite for enhanced methanol electrocatalytic oxidation activity. ChemCatChem 12, 6285–6290 (2020).

    CAS  Google Scholar 

  16. Xie, Z. et al. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 11, 1887 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saad, J. M. & Williams, P. T. Pyrolysis-catalytic-dry reforming of waste plastics and mixed waste plastics for syngas production. Energy Fuels 30, 3198–3204 (2016).

    CAS  Google Scholar 

  18. Iyengar, P., Kolb, M. J., Pankhurst, J., Calle-Vallejo, F. & Buonsanti, R. Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects. ACS Catal. 11, 13330–13336 (2021).

    CAS  Google Scholar 

  19. Xiong, W. et al. Morphology and composition dependence of multicomponent Cu-based nanoreactor for tandem electrocatalysis CO2 reduction. Appl. Catal. B 314, 121498 (2022).

    CAS  Google Scholar 

  20. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  PubMed  Google Scholar 

  21. Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    CAS  Google Scholar 

  22. Lee, C. W. et al. Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 30, 1704717 (2018).

    ADS  Google Scholar 

  23. Chen, C. et al. Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    CAS  Google Scholar 

  24. Lin, Y.-R. et al. Vapor-fed electrolyzers for carbon dioxide reduction using tandem electrocatalysts: cuprous oxide coupled with nickel-coordinated nitrogen-doped carbon. Adv. Funct. Mater. 32, 2113252 (2022).

    CAS  Google Scholar 

  25. Guzmán, H. et al. CO2 conversion to alcohols over Cu/ZnO catalysts: prospective synergies between electrocatalytic and thermocatalytic routes. ACS Appl. Mater. Interfaces 14, 517–530 (2022).

    PubMed  Google Scholar 

  26. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    CAS  Google Scholar 

  27. Akter, T., Pan, H. & Barile, C. J. Tandem electrocatalytic CO2 reduction inside a membrane with enhanced selectivity for ethylene. J. Phys. Chem. C 126, 10045–10052 (2022).

    CAS  Google Scholar 

  28. Zhang, T. et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022).

    CAS  Google Scholar 

  29. Cao, B., Li, F.-Z. & Gu, J. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. https://doi.org/10.1021/acscatal.2c02579 (2022).

  30. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    CAS  Google Scholar 

  31. Zhang, T., Li, Z., Ummireddi, A. K. & Wu, J. Navigating CO utilization in tandem electrocatalysis of CO2. Trends Chem. 5, 252–266 (2023).

    CAS  Google Scholar 

  32. Yin, Z. et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022).

    CAS  PubMed  Google Scholar 

  33. De Luna, P. et al. Metal–organic framework thin films on high-curvature nanostructures toward tandem electrocatalysis. ACS Appl. Mater. Interfaces 10, 31225–31232 (2018).

    PubMed  Google Scholar 

  34. Cheng, N., Ren, L., Xu, X., Du, Y. & Dou, S. X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 8, 1801257 (2018).

    Google Scholar 

  35. Vasić, M. et al. Efficient hydrogen evolution electrocatalysis in alkaline medium using Pd-modified zeolite X. Electrochim. Acta 259, 882–892 (2018).

    Google Scholar 

  36. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    CAS  Google Scholar 

  37. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    CAS  Google Scholar 

  38. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    ADS  Google Scholar 

  39. Wang, X. et al. Efficient upgrading of CO to C3fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 5186 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  40. Hann, E. C. et al. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nat. Food 3, 461–471 (2022).

    CAS  PubMed  Google Scholar 

  41. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    CAS  PubMed  Google Scholar 

  42. Garg, S., Biswas, A. N. & Chen, J. G. Opportunities for CO2 upgrading to C3 oxygenates using tandem electrocatalytic-thermocatalytic processes. Carbon Future 1, 9200002 (2023).

    Google Scholar 

  43. Tackett, B. M., Lee, J. H. & Chen, J. G. Electrochemical conversion of CO2 to syngas with palladium-based electrocatalysts. Acc. Chem. Res. 53, 1535–1544 (2020).

    CAS  PubMed  Google Scholar 

  44. Uslamin, E. A. et al. Aromatization of ethylene over zeolite-based catalysts. Catal. Sci. Technol. 10, 2774–2785 (2020).

    CAS  Google Scholar 

  45. Bonnin, A. et al. Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts. Appl. Catal. Gen. 611, 117974 (2021).

    CAS  Google Scholar 

  46. Biswas, A. N. et al. Tandem electrocatalytic–thermocatalytic reaction scheme for CO2 conversion to C3 oxygenates. ACS Energy Lett. 7, 2904–2910 (2022).

    CAS  Google Scholar 

  47. Lee, M. G. et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat. Catal. https://doi.org/10.1038/s41929-023-00937-0 (2023).

  48. Ponsard, L. et al. Coupling electrocatalytic CO2 reduction with thermocatalysis enables the formation of a lactone monomer. ChemSusChem 14, 2198–2204 (2021).

    CAS  PubMed  Google Scholar 

  49. Li, Z. et al. Recent advances in process and catalyst for CO2 reforming of methane. Renew. Sustain. Energy Rev. 134, 110312 (2020).

    CAS  Google Scholar 

  50. Pham, T. T. P. et al. Microwave-assisted dry reforming of methane for syngas production: a review. Environ. Chem. Lett. 18, 1987–2019 (2020).

    CAS  Google Scholar 

  51. Xie, Z. et al. CO2 fixation into carbon nanofibres using electrochemical–thermochemical tandem catalysis. Nat. Catal. https://doi.org/10.1038/s41929-023-01085-1 (2024).

  52. Küngas, R. Electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    ADS  Google Scholar 

  53. Song, Y. et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    CAS  Google Scholar 

  54. Wang, Y., Liu, T., Lei, L. & Chen, F. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Process. Technol. 161, 248–258 (2017).

    CAS  Google Scholar 

  55. Yuan, L., Qi, M.-Y., Tang, Z.-R. & Xu, Y.-J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 60, 21150–21172 (2021).

    CAS  Google Scholar 

  56. Xia, Y.-S. et al. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 13, 2964 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, L. et al. Direct coupling of thermo- and photocatalysis for conversion of CO2–H2O into fuels. ChemSusChem 10, 4709–4714 (2017).

    CAS  PubMed  Google Scholar 

  58. Crandall, B. S., Overa, S., Shin, H. & Jiao, F. Turning carbon dioxide into sustainable food and chemicals: how electrosynthesized acetate is paving the way for fermentation innovation. Acc. Chem. Res. 56, 1505–1516 (2023).

    CAS  PubMed  Google Scholar 

  59. Martín-Espejo, J. L., Gandara-Loe, J., Odriozola, J. A., Reina, T. R. & Pastor-Pérez, L. Sustainable routes for acetic acid production: traditional processes vs a low-carbon, biogas-based strategy. Sci. Total Environ. 840, 156663 (2022).

    ADS  PubMed  Google Scholar 

  60. Budsberg, E., Morales-Vera, R., Crawford, J. T., Bura, R. & Gustafson, R. Production routes to bio-acetic acid: life cycle assessment. Biotechnol. Biofuels 13, 154 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    CAS  Google Scholar 

  62. Kutscha, R. & Pflügl, S. Microbial upgrading of acetate into value-added products—examining microbial diversity, bioenergetic constraints and metabolic engineering approaches. Int. J. Mol. Sci. 21, 8777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, S., Ding, Y., Liu, M., Xian, M. & Zhao, G. Comparison of glucose, acetate and ethanol as carbon resource for production of poly(3-hydroxybutyrate) and other acetyl-CoA derivatives. Front. Bioeng. Biotechnol. 8, 833 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Gong, G. et al. Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals. Eng. Microbiol. 2, 100036 (2022).

    CAS  Google Scholar 

  65. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS  Google Scholar 

  66. Luc, W., Jouny, M., Rosen, J. & Jiao, F. Carbon dioxide splitting using an electro-thermochemical hybrid looping strategy. Energy Environ. Sci. 11, 2928–2934 (2018).

    CAS  Google Scholar 

  67. Bajracharya, S. et al. Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J. Power Sources 356, 256–273 (2017).

    ADS  CAS  Google Scholar 

  68. Liu, S., Winter, L. R. & Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO2 and CH4. ACS Catal. 10, 2855–2871 (2020).

    CAS  Google Scholar 

  69. Bogaerts, A. & Neyts, E. C. Plasma technology: an emerging technology for energy storage. ACS Energy Lett. 3, 1013–1027 (2018).

    CAS  Google Scholar 

  70. Biswas, A. N. et al. Oxygenate production from plasma-activated reaction of CO2 and ethane. ACS Energy Lett. 7, 236–241 (2022).

    CAS  Google Scholar 

  71. Gómez-Ramírez, A., Rico, V. J., Cotrino, J., González-Elipe, A. R. & Lambert, R. M. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catal. 4, 402–408 (2014).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support by the US Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-FG02-13ER16381 and contract no. DE-SC0012704). S.G. acknowledges support by the National Science Foundation Graduate Research Fellowship under grant no. DGE-2036197.

Author information

Authors and Affiliations

Authors

Contributions

S.G., Z.X. and J.G.C. conceived the concept of this paper. All authors participated in writing the paper. J.G.C. and Z.X. supervised the project.

Corresponding authors

Correspondence to Zhenhua Xie or Jingguang G. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Yizhi Xiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Xie, Z. & Chen, J.G. Tandem reactors and reactions for CO2 conversion. Nat Chem Eng 1, 139–148 (2024). https://doi.org/10.1038/s44286-023-00020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-023-00020-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing