Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modeling the impact of structure and coverage on the reactivity of realistic heterogeneous catalysts

Abstract

Adsorbates often cover the surfaces of catalysts densely as they carry out reactions, dynamically altering their structure and reactivity. Understanding adsorbate-induced phenomena and harnessing them in our broader quest for improved catalysts is a substantial challenge that is only beginning to be addressed. Here we chart a path toward a deeper understanding of such phenomena by focusing on emerging in silico modeling methodologies, which will increasingly incorporate machine learning techniques. We first examine how adsorption on catalyst surfaces can lead to local and even global structural changes spanning entire nanoparticles, and how this affects their reactivity. We then evaluate current efforts and the remaining challenges in developing robust and predictive simulations for modeling such behavior. Last, we provide our perspectives in four critical areas—integration of artificial intelligence, building robust catalysis informatics infrastructure, synergism with experimental characterization, and adaptive modeling frameworks—that we believe can help surmount the remaining challenges in rationally designing catalysts in light of these complex phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural transformations catalysts can undergo.
Fig. 2: Explaining the skyhook effect.
Fig. 3: Equilibrium-based and dynamic approaches for the prediction of catalyst morphology in the presence of adsorbates.
Fig. 4: Phase diagram of Pd(100) in the presence of CO(g) and O2(g).
Fig. 5: Mapping of the reaction network of glucose pyrolysis via NN potential-accelerated SSW-based global optimization.
Fig. 6: MLIPs for accelerating the exploration of vast configurational spaces.
Fig. 7: Structure- and coverage-consistent framework capable of accounting for adsorbate-induced reconstruction when modeling catalytic reactivity.

Similar content being viewed by others

References

  1. Gao, F. & Goodman, D. W. Model catalysts: simulating the complexities of heterogeneous catalysts. Annu. Rev. Phys. Chem. 63, 265–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Groppo, E., Rojas-Buzo, S. & Bordiga, S. The role of in situ/operando IR spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis. Chem. Rev. 123, 12135–12169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, L. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

  7. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  8. Piccolo, L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal. Today 373, 80–97 (2021).

    Article  CAS  Google Scholar 

  9. Liu, J., Hibbitts, D. & Iglesia, E. Dense CO adlayers as enablers of CO hydrogenation turnovers on Ru surfaces. J. Am. Chem. Soc. 139, 11789–11802 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Ojeda, M. et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis. J. Catal. 272, 287–297 (2010).

    Article  CAS  Google Scholar 

  11. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  12. Imbihl, R. & Ertl, G. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995).

    Article  CAS  Google Scholar 

  13. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, Y., Wang, J., Chu, H., Chu, Y.-C. & Chen, H. M. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020).

    Article  CAS  Google Scholar 

  15. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  16. Grajciar, L. et al. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 47, 8307–8348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    Article  CAS  Google Scholar 

  19. Liu, Y., Wang, S., Li, Z., Chu, H. & Zhou, W. Insight into the surface-reconstruction of metal-organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 484, 215117 (2023).

    Article  CAS  Google Scholar 

  20. Horch, S. et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999).

    Article  CAS  Google Scholar 

  21. Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y.-G., Mei, D., Glezakou, V.-A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, L. et al. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 380, 70–76 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Auer, A. et al. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nat. Catal. 3, 797–803 (2020).

    Article  CAS  Google Scholar 

  25. Tao, F. F. et al. Formation of second-generation nanoclusters on metal nanoparticles driven by reactant gases. Nano Lett. 16, 5001–5009 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kumari, G., Kamarudheen, R., Zoethout, E. & Baldi, A. Photocatalytic surface restructuring in individual silver nanoparticles. ACS Catal. 11, 3478–3486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo, Z., Zhao, G., Pan, H. & Sun, W. Strong metal–support interaction in heterogeneous catalysts. Adv. Energy Mater. 12, 2201395 (2022).

    Article  CAS  Google Scholar 

  30. Beck, A. et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 11, 3220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. He, Y., Zhang, J., Polo-Garzon, F. & Wu, Z. Adsorbate-induced strong metal-support interactions: implications for catalyst design. J. Phys. Chem. Lett. 14, 524–534 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Li, D. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 5, 99–108 (2022).

    Article  CAS  Google Scholar 

  35. Chen, P. C. et al. Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 10116–10125 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Andersson, K. J., Calle-Vallejo, F., Rossmeisl, J. & Chorkendorff, I. Adsorption-driven surface segregation of the less reactive alloy component. J. Am. Chem. Soc. 131, 2404–2407 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Price, C. C., Singh, A., Frey, N. C. & Shenoy, V. B. Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy. Sci. Adv. 8, eabq5944 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Somorjai, G. A. Surface reconstruction and catalysis. Annu. Rev. Phys. Chem. 45, 721–751 (1994).

    Article  CAS  Google Scholar 

  40. Trunschke, A. et al. Towards experimental handbooks in catalysis. Top. Catal. 63, 1683–1699 (2020).

    Article  CAS  Google Scholar 

  41. Gruznev, D. V., Zotov, A. V. & Saranin, A. A. Tailoring of spin-split metallic surface-state bands on silicon. J. Electron Spectros. Relat. Phenomena 201, 81–87 (2015).

    Article  CAS  Google Scholar 

  42. Bondarenko, L. V. et al. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces. Sci. Rep. 3, 1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghosh, T. et al. Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction. Nat. Commun. 13, 6176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gao, F. et al. Solvent‐mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for robust C1 and C2 alcohol electrocatalysis. Small 17, 2101428 (2021).

    Article  CAS  Google Scholar 

  46. Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    Article  Google Scholar 

  47. Zeng, R. et al. Origins of enhanced oxygen reduction activity of transition metal nitrides. Nat. Mater. 23, 1695–1703 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y. et al. Dynamic evolution of copper nanowires during CO2 reduction probed by operando electrochemical 4D-STEM and X-ray spectroscopy. J. Am. Chem. Soc. 146, 23398–23405 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    Article  CAS  Google Scholar 

  50. Liu, Q. Y., Shang, C. & Liu, Z. P. In situ active site for CO activation in Fe-catalyzed Fischer-Tropsch synthesis from machine learning. J. Am. Chem. Soc. 143, 11109–11120 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 340, 1590–1593 (2013).

    Article  Google Scholar 

  52. Luo, S. et al. Light-induced dynamic restructuring of Cu active sites on TiO2 for low-temperature H2 production from methanol and water. J. Am. Chem. Soc. 145, 20530–20538 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, H. First-principles approaches for strongly correlated materials: a theoretical chemistry perspective. Int. J. Quantum Chem. 115, 722–730 (2015).

    Article  CAS  Google Scholar 

  54. Liao, X. et al. Density functional theory for electrocatalysis. Energy Environ. Mater. 5, 157–185 (2022).

    Article  CAS  Google Scholar 

  55. Samanta, B. et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 51, 3794–3818 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Sauer, J. The future of computational catalysis. J. Catal. 433, 115482 (2024).

    Article  CAS  Google Scholar 

  57. Chen, B. W. J., Xu, L. & Mavrikakis, M. Computational methods in heterogeneous catalysis. Chem. Rev. 121, 1007–1048 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Rogal, J., Reuter, K. & Scheffler, M. First-principles statistical mechanics study of the stability of a subnanometer thin surface oxide in reactive environments: CO oxidation at Pd(100). Phys. Rev. Lett. 98, 046101 (2007).

    Article  PubMed  Google Scholar 

  59. Gossenberger, F., Roman, T. & Groß, A. Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim. Acta 216, 152–159 (2016).

    Article  CAS  Google Scholar 

  60. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  61. Li, W.-X., Stampfl, C. & Scheffler, M. Why is a noble metal catalytically active? The role of the O-Ag interaction in the function of silver as an oxidation catalyst. Phys. Rev. Lett. 90, 256102 (2003).

    Article  PubMed  Google Scholar 

  62. Wang, S. & Hensley, A. J. R. Probing the nanoscale driving forces for adsorbate-induced Rh50Pd50 nanoparticle reconstruction via mean-field models of multi-faceted nanoparticles. Catal. Sci. Technol. 14, 1122–1137 (2023).

    Article  Google Scholar 

  63. Bajpai, A., Mehta, P., Frey, K., Lehmer, A. M. & Schneider, W. F. Benchmark first-principles calculations of adsorbate free energies. ACS Catal. 8, 1945–1954 (2018).

    Article  CAS  Google Scholar 

  64. Sprowl, L. H., Campbell, C. T. & Árnadóttir, L. Hindered translator and hindered rotor models for adsorbates: partition functions and entropies. J. Phys. Chem. C 120, 9719–9731 (2016).

    Article  CAS  Google Scholar 

  65. Wulf, G. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung von Krystallflächen. Z. Krist. 34, 449–530 (1901).

    Google Scholar 

  66. Jiang, Z., Qin, P. & Fang, T. Decomposition mechanism of formic acid on Cu(111) surface: a theoretical study. Appl. Surf. Sci. 396, 857–864 (2017).

    Article  CAS  Google Scholar 

  67. Du, J., Meng, J., Li, X.-Y., Zhu, B. & Gao, Y. Multiscale atomistic simulation of metal nanoparticles under working conditions. Nanoscale Adv. 1, 2478–2484 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chee, S. W., Arce-Ramos, J. M., Li, W., Genest, A. & Mirsaidov, U. Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat. Commun. 11, 2133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheula, R., Soon, A. & Maestri, M. Prediction of morphological changes of catalyst materials under reaction conditions by combined: ab initio thermodynamics and microkinetic modelling. Catal. Sci. Technol. 8, 3493–3503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheula, R., Maestri, M. & Mpourmpakis, G. Modeling morphology and catalytic activity of nanoparticle ensembles under reaction conditions. ACS Catal. 10, 6149–6158 (2020).

    Article  CAS  Google Scholar 

  71. Bussi, G. & Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2, 200–212 (2020).

    Article  Google Scholar 

  72. Zhang, X.-J., Shang, C. & Liu, Z.-P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: a revisit to the mechanism of water-gas shift reaction on Cu. J. Chem. Phys. 147, 152706 (2017).

    Article  PubMed  Google Scholar 

  73. Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article  CAS  Google Scholar 

  74. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

    Article  Google Scholar 

  75. Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic prediction of surface phase diagrams using ab initio grand canonical Monte Carlo. J. Phys. Chem. C 123, 2321–2328 (2019).

    Article  CAS  Google Scholar 

  76. Zhou, Y., Zhu, C., Scheffler, M. & Ghiringhelli, L. M. Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects: the example of hydrogen at Si(100). Phys. Rev. Lett. 128, 246101 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Du, X. et al. Machine-learning-accelerated simulations to enable automatic surface reconstruction. Nat. Comput. Sci. 3, 1034–1044 (2023).

    Article  PubMed  Google Scholar 

  78. Ronne, N., Aspuru-Guzik, A. & Hammer, B. Generative diffusion model for surface structure discovery. Phys. Rev. B 110, 235427 (2024).

    Article  Google Scholar 

  79. Groß, A. Challenges for ab initio molecular dynamics simulations of electrochemical interfaces. Curr. Opin. Electrochem. 40, 101345 (2023).

    Article  Google Scholar 

  80. Papanikolaou, K. G., Darby, M. T. & Stamatakis, M. Engineering the surface architecture of highly dilute alloys: an ab initio Monte Carlo approach. ACS Catal. 10, 1224–1236 (2020).

    Article  CAS  Google Scholar 

  81. Foppa, L., Iannuzzi, M., Copéret, C. & Comas-Vives, A. Adlayer dynamics drives CO activation in Ru-catalyzed Fischer-Tropsch synthesis. ACS Catal. 8, 6983–6992 (2018).

    Article  CAS  Google Scholar 

  82. Sun, J.-J. & Cheng, J. Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nat. Commun. 10, 5400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Z., Zandkarimi, B. & Alexandrova, A. N. Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces. Acc. Chem. Res. 53, 447–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Almithn, A. S. & Hibbitts, D. D. Supra-monolayer coverages on small metal clusters and their effects on H2 chemisorption particle size estimates. AIChE J. 64, 3109–3120 (2018).

    Article  CAS  Google Scholar 

  85. Yang, Y., Shen, X. & Han, Y. F. Diffusion mechanisms of metal atoms in Pd-Au bimetallic catalyst under CO atmosphere based on ab initio molecular dynamics. Appl. Surf. Sci. 483, 991–1005 (2019).

    Article  CAS  Google Scholar 

  86. Mager-Maury, C., Bonnard, G., Chizallet, C., Sautet, P. & Raybaud, P. H2-induced reconstruction of supported Pt clusters: metal–support interaction versus surface hydride. ChemCatChem 3, 200–207 (2011).

  87. Chen, B. W. J., Zhang, X. & Zhang, J. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials. Chem. Sci. 14, 8338–8354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan, X. et al. A collaborative diffusion mechanism of multiple atoms during Cu-Ag bimetal surface reconstruction. Phys. Chem. Chem. Phys. 25, 10405–10416 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Owen, C. J. et al. Unraveling the catalytic effect of hydrogen adsorption on Pt nanoparticle shape-change. Preprint at https://arxiv.org/abs/2306.00901 (2023).

  90. Lim, J. S., Molinari, N., Duanmu, K., Sautet, P. & Kozinsky, B. Automated detection and characterization of surface restructuring events in bimetallic catalysts. J. Phys. Chem. C 123, 16332–16344 (2019).

    Article  CAS  Google Scholar 

  91. Tappan, B. A., Barim, G., Kwok, J. C. & Brutchey, R. L. Utilizing diselenide precursors toward rationally controlled synthesis of metastable CuInSe2 nanocrystals. Chem. Mater. 30, 5704–5713 (2018).

    Article  CAS  Google Scholar 

  92. Mou, T., Han, X., Zhu, H. & Xin, H. Machine learning of lateral adsorbate interactions in surface reaction kinetics. Curr. Opin. Chem. Eng. 36, 100825 (2022).

    Article  Google Scholar 

  93. Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat. Commun. 13, 5788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mou, T. et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 6, 122–136 (2023).

    Article  Google Scholar 

  95. Wang, Y., Su, Y. Q., Hensen, E. J. M. & Vlachos, D. G. Insights into supported subnanometer catalysts exposed to CO via machine-learning-enabled multiscale modeling. Chem. Mater. 34, 1611–1619 (2022).

    Article  CAS  Google Scholar 

  96. Piccinin, S. & Stamatakis, M. CO oxidation on Pd(111): a first-principles-based kinetic Monte Carlo study. ACS Catal. 4, 2143–2152 (2014).

    Article  CAS  Google Scholar 

  97. Sumaria, V., Nguyen, L., Tao, F. F. & Sautet, P. Atomic-scale mechanism of platinum catalyst restructuring under a pressure of reactant gas. J. Am. Chem. Soc. 145, 392–401 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, G. & Sautet, P. Metastable structures in cluster catalysis from first-principles: structural ensemble in reaction conditions and metastability triggered reactivity. J. Am. Chem. Soc. 140, 2812–2820 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Owen, C. J., Xie, Y., Johansson, A., Sun, L. & Kozinsky, B. Low-index mesoscopic surface reconstructions of Au surfaces using Bayesian force fields. Nat. Commun. 15, 3790 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Unke, O. T. et al. Learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 12, 7273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, 6457 (2019).

    Article  Google Scholar 

  102. Jain, M. et al. GFlowNets for AI-driven scientific discovery. Digit. Discov. 2, 557–577 (2023).

    Article  CAS  Google Scholar 

  103. Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative adversarial networks for crystal structure prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zeni, C. et al. A generative model for inorganic materials design. Nature https://doi.org/10.1038/s41586-025-08628-5 (2025).

  105. Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    Article  CAS  Google Scholar 

  106. Otor, H. O., Steiner, J. B., García-Sancho, C. & Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: a review. ACS Catal. 10, 7630–7656 (2020).

    Article  CAS  Google Scholar 

  107. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Tuinier, R. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  Google Scholar 

  111. Mufan Li et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1410–1414 (2016).

    Google Scholar 

  112. Zhao, S. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020).

    Article  CAS  Google Scholar 

  113. Ding, H., Liu, H., Chu, W., Wu, C. & Xie, Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121, 13174–13212 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Li, T. et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1, 300–305 (2018).

    Article  Google Scholar 

  115. Sun, H. et al. Hierarchical structure of CuO nanowires decorated with Ni(OH)2 supported on Cu foam for hydrogen production via urea electrocatalysis. Small Methods 6, 1–11 (2022).

    Article  Google Scholar 

  116. Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    Article  CAS  Google Scholar 

  117. Zandkarimi, B. & Alexandrova, A. N. Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis. J. Phys. Chem. Lett. 10, 460–467 (2019).

    Article  PubMed  Google Scholar 

  118. Löffler, T., Ludwig, A., Rossmeisl, J. & Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60, 26894–26903 (2021).

  119. Cepitis, R., Ivaništšev, V., Rossmeisl, J. & Kongi, N. Bypassing the scaling relations in oxygen electrocatalysis with geometry-adaptive catalysts. Catal. Sci. Technol. 14, 2105–2113 (2024).

    Article  CAS  Google Scholar 

  120. Li, J. et al. Self-adaptive dual-metal-site pairs in metal–organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021).

  121. Szilvási, T., Chen, B. W. J. & Mavrikakis, M. Identification of stable adsorption sites and diffusion paths on nanocluster surfaces: an automated scanning algorithm. npj Comput. Mater. 5, 101 (2019).

  122. Boes, J. R., Mamun, O., Winther, K. & Bligaard, T. Graph theory approach to high-throughput surface adsorption structure generation. J. Phys. Chem. A 123, 2281–2285 (2019).

  123. Kolluru, A. & Kitchin, J. R. AdsorbDiff: adsorbate placement via conditional denoising diffusion. Proc. Mach. Learn. Res. 235, 25042–25057 (2024).

    Google Scholar 

  124. Lan, J. et al. AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials. npj Comput. Mater. 9, 172 (2023).

  125. Margraf, J. T., Jung, H., Scheurer, C. & Reuter, K. Exploring catalytic reaction networks with machine learning. Nat. Catal. 6, 112–121 (2023).

    Article  Google Scholar 

  126. Choksi, T. S., Roling, L. T., Streibel, V. & Abild-Pedersen, F. Predicting adsorption properties of catalytic descriptors on bimetallic nanoalloys with site-specific precision. J. Phys. Chem. Lett. 10, 1852–1859 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Article  PubMed  Google Scholar 

  128. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Ma, X. & Xin, H. Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys. Rev. Lett. 118, 036101 (2017).

    Article  PubMed  Google Scholar 

  130. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    Article  CAS  Google Scholar 

  131. Schumann, J., Stamatakis, M., Michaelides, A. & Réocreux, R. Ten-electron count rule for the binding of adsorbates on single-atom alloy catalysts. Nat. Chem. 16, 749–754 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, B. W. J. & Mavrikakis, M. Formic acid: a hydrogen-bonding cocatalyst for formate decomposition. ACS Catal. 10, 10812–10825 (2020).

    Article  CAS  Google Scholar 

  133. Martínez-Suarez, L., Siemer, N., Frenzel, J. & Marx, D. Reaction network of methanol synthesis over Cu/ZnO nanocatalysts. ACS Catal. 5, 4201–4218 (2015).

    Article  Google Scholar 

  134. Yang, X., Bhowmik, A., Vegge, T. & Hansen, H. A. Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au-water interfaces. Chem. Sci. 14, 3913–3922 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kim, S., Woo, J. & Kim, W. Y. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nat. Commun. 15, 341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Foscato, M. & Jensen, V. R. Automated in silico design of homogeneous catalysts. ACS Catal. 10, 2354–2377 (2020).

    Article  CAS  Google Scholar 

  137. Xu, L. & Henkelman, G. Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129, 114104 (2008).

    Article  PubMed  Google Scholar 

  138. Zhang, X. J., Shang, C. & Liu, Z. P. Double-ended surface walking method for pathway building and transition state location of complex reactions. J. Chem. Theory Comput. 9, 5745–5753 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Kang, P. L., Shang, C. & Liu, Z. P. Glucose to 5-hydroxymethylfurfural: origin of site-selectivity resolved by machine learning based reaction sampling. J. Am. Chem. Soc. 141, 20525–20536 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Kang, P. L., Shi, Y. F., Shang, C. & Liu, Z. P. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity. Chem. Sci. 13, 8148–8160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shayesteh Zadeh, A., Khan, S. A., Vandervelden, C. & Peters, B. Site-averaged ab initio kinetics: importance learning for multistep reactions on amorphous supports. J. Chem. Theory Comput. 19, 2873–2886 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Sun, G., Fuller, J. T., Alexandrova, A. N. & Sautet, P. Global activity search uncovers reaction induced concomitant catalyst restructuring for alkane dissociation on model Pt catalysts. ACS Catal. 11, 1877–1885 (2021).

    Article  CAS  Google Scholar 

  143. Chen, D., Shang, C. & Liu, Z.-P. Machine-learning atomic simulation for heterogeneous catalysis. npj Comput. Mater. 9, 2 (2023).

  144. Schilter, O., Vaucher, A., Schwaller, P. & Laino, T. Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions. Digit. Discov. 2, 728–735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peng, J. et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7, 991–1009 (2022).

    Article  Google Scholar 

  146. Bort, W. et al. Discovery of novel chemical reactions by deep generative recurrent neural network. Sci. Rep. 11, 3178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  148. Weng, B. et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat. Commun. 11, 3513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miyazaki, R., Belthle, K. S., Tüysüz, H., Foppa, L. & Scheffler, M. Materials genes of CO2 hydrogenation on supported cobalt catalysts: an artificial intelligence approach integrating theoretical and experimental data. J. Am. Chem. Soc. 146, 5433–5444 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  Google Scholar 

  151. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  PubMed  Google Scholar 

  152. Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C. & Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. In Proc. Advances in Neural Information Processing Systems Vol. 35 (eds Koyejo, S. et al.) 11423–11436 (Curran Associates, 2022).

  153. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. General-purpose machine learning potentials capturing nonlocal charge transfer. Acc. Chem. Res. 54, 808–817 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gubler, M., Finkler, J. A., Schäfer, M. R., Behler, J. & Goedecker, S. Accelerating fourth-generation machine learning potentials using quasi-linear scaling particle mesh charge equilibration. J. Chem. Theory Comput. 20, 7264–7271 (2015).

    Google Scholar 

  157. Frank, J. T., Unke, O. T. & Müller, K. R. So3krates: equivariant attention for interactions on arbitrary length-scales in molecular systems. In Proc. Advances in Neural Information Processing Systems Vol. 35 (eds Koyejo, S. et al.) 29400–29413 (Curran Associates, 2022).

  158. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schimka, L. et al. Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater. 9, 741–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Big data meets quantum chemistry approximations: the Δ-machine learning approach. J. Chem. Theory Comput. 11, 2087–2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Zaverkin, V., Holzmüller, D., Bonfirraro, L. & Kästner, J. Transfer learning for chemically accurate interatomic neural network potentials. Phys. Chem. Chem. Phys. 25, 5383–5396 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Kim, J. et al. Data-efficient multi-fidelity training for high-fidelity machine learning interatomic potentials. J. Am. Chem. Soc. 147, 1042–1054 (2025).

    Article  PubMed  Google Scholar 

  163. Zhao, Z. J. et al. Importance of metal–oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic and experimental study of water-gas shift on Au/MgO. J. Catal. 345, 157–169 (2017).

    Article  CAS  Google Scholar 

  164. Bergmann, A. & Roldan Cuenya, B. Operando insights into nanoparticle transformations during catalysis. ACS Catal. 9, 10020–10043 (2019).

    Article  CAS  Google Scholar 

  165. Santos, K. et al. Breaking the molecular dynamics timescale barrier using a wafer-scale system. In Proc. SC24: International Conference for High Performance Computing, Networking, Storage and Analysis 8 (IEEE, 2024).

  166. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Article  Google Scholar 

  167. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. In Proc. ICLR 202210th International Conference on Learning Representations (OpenReview.net, 2021).

  168. Zhao, Y. et al. Physics guided deep learning for generative design of crystal materials with symmetry constraints. npj Comput. Mater. 9, 38 (2023).

  169. Su, Y. et al. Automation and machine learning augmented by large language models in a catalysis study. Chem. Sci. 15, 12200–12233 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ock, J., Guntuboina, C. & Barati Farimani, A. Catalyst energy prediction with CatBERTa: unveiling feature exploration strategies through large language models. ACS Catal. 13, 16032–16044 (2023).

    Article  CAS  Google Scholar 

  171. Qi, J., Ko, T. W., Wood, B. C., Pham, T. A. & Ong, S. P. Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling. npj Comput. Mater. 10, 43 (2024).

  172. Montes de Oca Zapiain, D. et al. Training data selection for accuracy and transferability of interatomic potentials. npj Comput. Mater. 8, 189 (2022).

  173. Bernstein, N., Csányi, G. & Deringer, V. L. De novo exploration and self-guided learning of potential-energy surfaces. npj Comput. Mater. 5, 99 (2019).

  174. van der Oord, C., Sachs, M., Kovács, D. P., Ortner, C. & Csányi, G. Hyperactive learning for data-driven interatomic potentials. npj Comput. Mater. 9, 168 (2023).

  175. Schwalbe-Koda, D., Tan, A. R. & Gómez-Bombarelli, R. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks. Nat. Commun. 12, 5104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hirschfeld, L., Swanson, K., Yang, K., Barzilay, R. & Coley, C. W. Uncertainty quantification using neural networks for molecular property prediction. J. Chem. Inf. Model. 60, 3770–3780 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Tan, A. R., Urata, S., Goldman, S., Dietschreit, J. C. B. & Gómez-Bombarelli, R. Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles. npj Comput. Mater. 9, 225 (2023).

  178. Xu, L. & Mavrikakis, M. Structure sensitivity in adsorbate-induced adatom formation on FCC transition-metal surfaces. J. Catal. 431, 115373 (2024).

    Article  CAS  Google Scholar 

  179. Evans, M. L. et al. Developments and applications of the OPTIMADE API for materials discovery, design and data exchange. Digit. Discov. 3, 1509–1533 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 2021, 6059–6072 (2020).

    Google Scholar 

  181. Draxl, C. & Scheffler, M. The NOMAD Laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article  CAS  Google Scholar 

  182. Winther, K. T. et al. Catalysis-Hub.Org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 64, 36–44 (2019).

    Google Scholar 

  184. Burte, A. et al. CatTestHub: a benchmarking database of experimental heterogeneous catalysis for evaluating advanced materials. J. Catal. 442, 115902 (2025).

  185. Salmeron, M. & Eren, B. High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962–1006 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6, 1421–1430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, M. et al. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J. 461, 141939 (2023).

    Article  CAS  Google Scholar 

  188. Frenkel, A. I. et al. Critical review: effects of complex interactions on structure and dynamics of supported metal catalysts. J. Vac. Sci. Technol. A 32, 020801 (2014).

  189. Lim, J. S. et al. Evolution of metastable structures at bimetallic surfaces from microscopy and machine-learning molecular dynamics. J. Am. Chem. Soc. 142, 15907–15916 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Meldgaard, S. A., Mortensen, H. L., Jørgensen, M. S. & Hammer, B. Structure prediction of surface reconstructions by deep reinforcement learning. J. Phys. Condens. Matter 32, 404005 (2020).

    Article  CAS  Google Scholar 

  191. Kwon, H. et al. Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion models. Mach. Learn. Sci. Technol 5, 045037 (2024).

    Article  Google Scholar 

  192. Bhandari, S., Rangarajan, S. & Mavrikakis, M. Combining computational modeling with reaction kinetics experiments for elucidating the in situ nature of the active site in catalysis. Acc. Chem. Res. 53, 1893–1904 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Sabadell-Rendón, A. et al. Automated multiscale simulation environment. Digit. Discov. 2, 1721–1732 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Bruix, A., Margraf, J. T., Andersen, M. & Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 2, 659–670 (2019).

    Article  CAS  Google Scholar 

  195. Matera, S. et al. Evidence for the active phase of heterogeneous catalysts through in situ reaction product imaging and multiscale modeling. ACS Catal. 5, 4514–4518 (2015).

    Article  CAS  Google Scholar 

  196. Matera, S., Maestri, M., Cuoci, A. & Reuter, K. Predictive-quality surface reaction chemistry in real reactor models: integrating first-principles kinetic Monte Carlo simulations into computational fluid dynamics. ACS Catal. 4, 4081–4092 (2014).

    Article  CAS  Google Scholar 

  197. Wehinger, G. D. et al. Quo vadis multiscale modeling in reaction engineering? A perspective. Chem. Eng. Res. Des. 184, 39–58 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.W.J.C. is grateful for support by the A*STAR SERC Central Research Fund award. Work at UW-Madison was supported by the US Department of Energy, Basic Energy Sciences (DOE-BES), Division of Chemical Sciences, Catalysis Science Program, grant number DE-FG02-05ER15731. We used resources at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231 using NERSC award number BES-ERCAP0032205.

Author information

Authors and Affiliations

Authors

Contributions

B.W.J.C. and M.M. contributed to the conceptualization and writing of the original draft, and review and editing of the final paper.

Corresponding authors

Correspondence to Benjamin W. J. Chen or Manos Mavrikakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Hongliang Xin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B.W.J., Mavrikakis, M. Modeling the impact of structure and coverage on the reactivity of realistic heterogeneous catalysts. Nat Chem Eng 2, 181–197 (2025). https://doi.org/10.1038/s44286-025-00179-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00179-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing