Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memristors on ‘edge of chaos’

A Publisher Correction to this article was published on 05 September 2024

This article has been updated

Abstract

Rather than echoing the vision and perspectives proffered by numerous previous publications, this Review focuses on the recent resolution of four unsolved classic problems — Galvani’s ‘irritability’, the Hodgkin–Huxley ‘all-or-none’ mystery, the Turing instability and the Smale paradox — the oldest dating back 243 years to Galvani in 1781. Unlike advances reported previously, which tend to be ephemeral, our resolution of these problems is timeless, because they are a manifestation of a new law of nature, called the ‘principle of local activity’, which, within a certain relatively small parameter space, could harbour a physical state dubbed the ‘edge of chaos’. In this Review, we provide an explicit formula for calculating, via matrix algebra, the precise parameter range where a nonlinear device, or system, is locally active or operating on the edge of chaos. Unlike numerous unsuccessful attempts by luminaries, such as Boltzmann’s assay for decreasing entropy, Schrödinger’s futile search for negentropy, Prigogine’s quest for the ‘instability of the homogeneous’ and Gell-Mann’s musing on ‘amplification of fluctuations’, the principle of local activity provides an explicit formula to identify the parameter space where the edge of chaos reigns supreme.

Key points

  • The Hodgkin–Huxley circuit model for neurons is poised near the edge of chaos.

  • The time-varying sodium and potassium conductances in the Hodgkin–Huxley circuit model are time-invariant sodium and potassium memristors, respectively.

  • Galvani discovered in 1781 that a frog’s leg contracts on application of an almost completely discharged Leyden jar. He searched in vain for an elucidating physical principle, which was identified by Chua in 2005 as the local activity principle.

  • When a biological neuron enters the edge-of-chaos operating regime, it is endowed with the capability to generate an ‘all-or-none’ spike, known as the action potential, which enables synaptic adaptations essential for the development of intelligence in the brain.

  • The edge of chaos is essential for generating the Turing instability observed in reaction–diffusion systems, which puzzled Alan Turing, the father of artificial intelligence.

  • The local activity principle is essential for resolving the celebrated Smale paradox, in which two identical mathematically ‘dead’ biological cells (resting in their equilibrium state) became alive by oscillating across the homogeneous cellular medium when allowed to interact via a diffusion process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploiting dynamic route maps.
Fig. 2: Galvani’s lab inspires Hodgkin–Huxley and Mackinnon.
Fig. 3: Neurons function near the edge of chaos.
Fig. 4: Turing instability emerges from the edge of chaos.
Fig. 5: Smale paradox springs from the edge of chaos.
Fig. 6: Chua riddle as example par excellence of the edge of chaos.
Fig. 7: A variety of neuromorphic phenomena from the Chua corsage memristor.

Similar content being viewed by others

Change history

References

  1. Beck, A., Bednorz, J., Gerber, C., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000).

    Article  Google Scholar 

  2. Chua, L. Five non-volatile memristor enigmas solved. Appl. Phys. A https://doi.org/10.1007/s00339-018-1971-0 (2018). This paper selects five, among many, unexplained mysteries observed from non-volatile memristors made from different materials and uncovers the nonlinear dynamical mechanisms responsible for these enigmas.

  3. Pickett, M. D. et al. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508–074516 (2009).

    Article  Google Scholar 

  4. Chua, L. O. Local activity is the origin of complexity. Int. J. Bifurc. Chaos 15, 3435–3456 (2005). This article provides the mathematical theory and formula for calculating the parameter domain dubbed the ‘edge of chaos’, where unsolved complex phenomena such as the Hodgkin–Huxley action potential, Turing instability and Smale paradox might emerge.

    Article  MathSciNet  Google Scholar 

  5. Chua, L. The Chua Lectures: From Memristors and Cellular Nonlinear Networks to the Edge of Chaos Vol. III. Chaos: Chua’s Circuit and Complex Nonlinear Phenomena (World Scientific, 2021).

  6. Chua, L. The Chua Lectures: From Memristors and Cellular Nonlinear Networks to the Edge of Chaos Vol. IV. Local Activity Principle: Chua’s Riddle, Turing Machine, and Universal Computing Rule 137 (World Scientific, 2021). This series of lectures presents a colourful tutorial on the local activity principle and the edge of chaos, which provides the missing foundation for nanoelectronics and AI technology, and enables the definitive resolution of age-old problems from complexity theory, including the elusive Hodgkin–Huxley ‘all-or-none’ action potential, the Turing instability and the Smale paradox.

  7. Chua, L. O. CNN: A Paradigm for Complexity (World Scientific, 1998).

  8. Brown, T. D. et al. Electro‐thermal characterization of dynamical VO2 memristors via local activity modeling. Adv. Mater. 35, 2205451 (2023).

    Article  Google Scholar 

  9. Chua, L. Hodgkin–Huxley equations implies edge of chaos kernel. Jpn. J. Appl. Phys. 61, SM0805 (2022). This article exposes Hodgkin-Huxley’s time-varying conductance as an ill-conceived conceptual blunder and identifies a fundamentally new physical concept termed ‘edge of chaos kernel’ as nature’s optimal mechanism for creating an ‘action potential’, thereby resolving Galvani’s 243-years old enigma on the physical mechanism, which gives rise to a near abrupt all-or-none phenomenon triggered by a global saddle-node bifurcation in which a stable and an unstable periodic orbit grow in size while evolving their shape, ever so gently, so as to morph onto each other, until they became a single orbit, in four-dimensional state-space.

    Article  Google Scholar 

  10. Ascoli, A., Demirkol, A. S., Tetzlaff, R. & Chua, L. Edge of chaos is sine qua non for Turing instability. IEEE Trans. Circ. Syst. I Reg. Pap. 69, 4596–4609 (2022).

    Article  Google Scholar 

  11. Ascoli, A., Demirkol, A. S., Tetzlaff, R. & Chua, L. Edge of chaos theory resolves Smale paradox. IEEE Trans. Circ. Syst. I Reg. Pap. 69, 1252–1265 (2022).

    Article  Google Scholar 

  12. Mainzer, K. Thinking in Complexity: The Complex Dynamics of Matter, Mind, and Mankind (Springer, 1997).

  13. Schrödinger, E. What Is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, 1944).

  14. Prigogine, I. From Being to Becoming: Time and Complexity in the Physical Sciences (Freeman, 1980).

  15. Haken, H. Synergetics: An Introduction (Springer, 1983).

  16. Packard, N. H. Adaptation toward the edge of chaos. Dyn. Patterns Complex Syst. 212, 293–301 (1988).

    MathSciNet  Google Scholar 

  17. Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42, 12–37 (1990).

    Article  MathSciNet  Google Scholar 

  18. Chua, L. O. CNN: a vision of complexity. Int. J. Bifurc. Chaos 7, 2219–2425 (1997).

    Article  MathSciNet  Google Scholar 

  19. Lindley, D. Boltzmann’s Atom: The Great Debate That Launched a Revolution in Physics (Simon and Schuster, 2001).

  20. Turing, A. M. The chemical basis of morphogenesis.Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952). This classic article by Alan Turing, father of computing and artificial intelligence, is a must-read on complexity theory.

    Article  MathSciNet  Google Scholar 

  21. von Neumann, J. Theory of Self-Reproducing Automata (Univ. Illinois Press, 1966).

  22. Ilachinski, A. Cellular Automata: A Discrete Universe (World Scientific, 2001).

  23. Ulam, S. On some mathematical problems connected with growth of patterns. Proc. Symp. Appl. Math. 14, 215–224 (1962).

    Article  Google Scholar 

  24. Berlekamp, E. R., Conway, J. H. & Guy, R. K. Winning Ways for Your Mathematical Plays (Academic, 1982).

  25. Kauffman, S. A. At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford Univ. Press, 1995).

  26. Wolfram, S. Theory and Applications of Cellular Automata (World Scientific, 1986).

  27. Chua, L. A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Vols I–VI (World Scientific, 2006, 2007, 2009, 2011–2013).

  28. Chua, L., Sbitnev, V. & Kim, H. Neurons are poised near the edge of chaos. Int. J. Bifurc. Chaos 22, 1250098 (2012).

    Article  Google Scholar 

  29. Marsden, J., McCracken, M. & Smale, S. in The Hopf Bifurcation and Its Applications, 354–367 (Springer, 1976). Inspired by the Turing instability, 1996 Fields medallist Stephen Smale ups the ante in this paper with the question ‘How can two mathematical dead cells become alive by a dissipative coupling via diffusion?’

  30. Chua, L. O., Shilnikov, L. P., Shilnikov, A. L. & Turaev, D. V. Methods of Qualitative Theory in Nonlinear Dynamics (Part I) (World Scientific, 1998).

  31. Chua, L. O., Shilnikov, L. P., Shilnikov, A. L. & Turaev, D. V. Methods of Qualitative Theory in Nonlinear Dynamics (Part II) (World Scientific, 2001).

  32. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, 2003).

  33. Pickett, M. D. & Williams, R. S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012).

    Article  Google Scholar 

  34. Ascoli, A., Slesazeck, S., Mähne, H., Tetzlaff, R. & Mikolajick, T. Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circ. Syst. I Reg. Pap. 62, 1165–1174 (2015).

    Article  MathSciNet  Google Scholar 

  35. Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article  Google Scholar 

  36. Messaris, I. et al. NbO2-Mott memristor: a circuit-theoretic investigation. IEEE Trans. Circ. Syst. I Reg. Pap. 68, 4979–4992 (2021).

    Article  Google Scholar 

  37. Demirkol, A. S., Ascoli, A., Messaris, I. & Tetzlaff, R. Pattern formation dynamics in a memristor cellular nonlinear network structure with a numerically stable VO2 memristor model. Jpn. J. Appl. Phys. 61, SM0807 (2022).

    Article  Google Scholar 

  38. Chua, L., Sbitnev, V. & Kim, H. Hodgkin–Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012). This article shows that the time-dependent sodium conductance, and the time-dependent potassium conductance, in the classic Hodgkin–Huxley circuit model are in fact time-invariant memristors, thereby resolving the anomalous impedance that had perplexed generations of neurophysiologists.

    Article  Google Scholar 

  39. Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro-thermal memristors: negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 011308 (2022).

    Article  Google Scholar 

  40. Ascoli, A. et al. On local activity and edge of chaos in a NaMLab memristor. Front. Neurosci. 15, 651452 (2021).

    Article  Google Scholar 

  41. Ascoli, A., Demirkol, A. S., Schmitt, N., Tetzlaff, R. & Chua, L. O. Edge of chaos behind bistability of the inhomogeneous in homogeneous cellular media. In 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 193–198 (IEEE, 2022).

  42. Prigogine, I. & Nicolis, G. On symmetry‐breaking instabilities in dissipative systems. J. Chem. Phys. 46, 3542–3550 (1967).

    Article  Google Scholar 

  43. Stengers, I. & Prigogine, I. Order out of Chaos: Man’s New Dialogue with Nature (Verso, 2018).

  44. Boyd, S. & Chua, L. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circ. Syst. 32, 1150–1161 (1985).

    Article  MathSciNet  Google Scholar 

  45. Ascoli, A., Tetzlaff, R. & Chua, L. O. The first ever real bistable memristors — Part I: theoretical insights on local fading memory. IEEE Trans. Circ. Syst. II Express Briefs 63, 1091–1095 (2016).

    Google Scholar 

  46. Ascoli, A., Tetzlaff, R. & Chua, L. O. The first ever real bistable memristors — Part II: design and analysis of a local fading memory system. IEEE Trans. Circ. Syst. II Express Briefs 63, 1096–1100 (2016).

    Google Scholar 

  47. Ascoli, A., Tetzlaff, R., Chua, L. O., Strachan, J. P. & Williams, R. S. History erase effect in a non-volatile memristor. IEEE Trans. Circ. Syst. I Reg. Pap. 63, 389–400 (2016).

    Article  MathSciNet  Google Scholar 

  48. Schmitt, N. et al. Theoretico-experimental analysis of bistability in the oscillatory response of a TaOx ReRAM to pulse train stimuli. Front. Nanotechnol. 6, 1301320 (2024).

    Article  Google Scholar 

  49. Ascoli, A. et al. An analytical approach to engineer multistability in the oscillatory response of a pulse-driven ReRAM. Sci. Rep. 14, 5626 (2024).

    Article  Google Scholar 

  50. Ascoli, A. et al. The state change per cycle map: a novel system-theoretic analysis tool for periodically-driven ReRAM cells. Front. Electron. Mater. 3, 1228899 (2023).

    Article  Google Scholar 

  51. Ascoli, A. et al. A deep study of resistance switching phenomena in TaOx ReRAM cells: system‐theoretic dynamic route map analysis and experimental verification. Adv. Electron. Mater. 8, 2200182 (2022).

    Article  Google Scholar 

  52. Chua, L. Introduction to Network Theory (McGraw-Hill, 1969).

  53. Maldonado, D. et al. Experimental evaluation of the dynamic route map in the reset transition of memristive ReRAMs. Chaos Soliton. Fract. 139, 110288 (2020).

    Article  MathSciNet  Google Scholar 

  54. Picos, R., Al Chawa, M. M., De Benito, C., Stavrinides, S. G. & Chua, L. O. Using self-heating resistors as a case study for memristor compact modeling. IEEE J. Electron. Devices Soc. 10, 466–473 (2022).

    Article  Google Scholar 

  55. Marrone, F. et al. Experimental validation of state equations and dynamic route maps for phase change memristive devices. Sci. Rep. 12, 6488 (2022).

    Article  Google Scholar 

  56. Chua, L. O. Homemade US $10 Chua corsage memristor: use it to make the poor man’s biomimetic neurons. IEEE Electron. Devices Mag. 1(issue 2), 10–22 (2023). This article presents a poor man’s memristor, built from cheap off-the-shelf electronic components, which mimics a biological neuron when connected across a capacitor–inductor–battery circuit.

    Article  Google Scholar 

  57. Galvani, L. De viribus electricitatis in motu musculari. Commentarius. De Bonoiensi Scientiarum et Artium Instituto atque Academia Commentarii 7, 363–418 (1791).

    Google Scholar 

  58. Su, K. L. Active Network Synthesis (McGraw-Hill, 1965).

  59. Izhikevich, E. M. Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000).

    Article  MathSciNet  Google Scholar 

  60. Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004).

    Article  Google Scholar 

  61. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    Article  Google Scholar 

  62. Gibson, G. A. et al. An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108, 023505 (2016).

    Article  Google Scholar 

  63. Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article  Google Scholar 

  64. Kumar, S. et al. Physical origins of current and temperature controlled negative differential resistances in NbO2. Nat. Commun. 8, 658 (2017).

    Article  Google Scholar 

  65. Andrews, J. L., Santos, D. A., Meyyappan, M., Williams, R. S. & Banerjee, S. Building brain-inspired logic circuits from dynamically switchable transition-metal oxides. Trends Chem. 1, 711–726 (2019).

    Article  Google Scholar 

  66. Kennedy, M. P. Three steps to chaos. I. Evolution. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 40, 640–656 (1993).

    MathSciNet  Google Scholar 

  67. Kennedy, M. P. Three steps to chaos. II. A Chua’s circuit primer. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 40, 657–674 (1993).

    MathSciNet  Google Scholar 

  68. Krestinskaya, O., James, A. P. & Chua, L. O. Neuromemristive circuits for edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2019).

    Article  MathSciNet  Google Scholar 

  69. Premsankar, G., Di Francesco, M. & Taleb, T. Edge computing for the Internet of Things: a case study. IEEE Internet Things J. 5, 1275–1284 (2018).

    Article  Google Scholar 

  70. Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).

    Article  Google Scholar 

  71. Hodgkin, A. L. Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952. J. Physiol. 263, 1–21 (1976).

    Article  Google Scholar 

  72. Jin, P., Wang, G., Liang, Y., Iu, H. H.-C. & Chua, L. O. Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circ. Syst. I Regul. Pap. 68, 4419–4432 (2021).

    Article  Google Scholar 

  73. Jin, P. et al. Poor man’s memristor: Chua corsage memristor. IEEE Trans. Circ. Syst. II Express Briefs 70, 3139–3143 (2023).

    Google Scholar 

  74. Hickmott, T. Low‐frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    Article  Google Scholar 

  75. Simmons, J. & Verderber, R. New thin-film resistive memory. Radio Electron. Eng. 34, 81–89 (1967).

    Article  Google Scholar 

  76. Liu, S., Wu, N. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

I thank S. Williams for sharing his fascinating recent exploitations of the edge of chaos to discover highly promising new memristive materials that could not have been found by trial and error, which had unique potential applications for advanced neurocomputing, AI and other exotic high-tech applications. I also thank R. Picos, A. James, G. Wang, P. Jin, A. Ascoli and Q. Xia for sharing their current, as yet unpublished research results. Last but not least, I thank M. Umraiz for his profound devotion and superb professionalism in all aspect of the preparation of this Review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon O. Chua.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Yimin Wu; Wei Yi; and Jianhua Yang, who co-reviewed with Ruoyu Zhao, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, L.O. Memristors on ‘edge of chaos’. Nat Rev Electr Eng 1, 614–627 (2024). https://doi.org/10.1038/s44287-024-00082-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00082-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing