Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spintronics for achieving system-level energy-efficient logic

Abstract

The demand for data processing in high-performance computing is growing rapidly. Extrapolating these trends to the long term suggests that a switch, which is more energy-efficient than a silicon complementary metal-oxide semiconductor (CMOS) switch, is necessary to support future computing needs. Spintronic logic, which encodes information using spin and magnetism, can theoretically provide an energy-efficient switch; however, it is less mature than CMOS logic and has yet to be realized at the level of a full processor system, thus warranting an informed review of spintronic logic technologies with guidelines for future research directions. In this Review, we contextualize spintronic logic within the broader goals of beyond-CMOS computing. We then provide an overview of five types of spintronic logic, discussing the operating principles, advantages, advancements and challenges of each type. We highlight that future research in spintronic logic should focus on the realization of low-voltage operation, transparent benchmarking for application-level tasks, development of computing architectures that exploit unique features of spintronics such as non-volatility and high endurance, and adaptation of spintronic logic to circuits usable for both computing and memory. This Review provides motivation and direction for high-risk, high-reward research in spintronic logic that should be pursued in parallel with the CMOS road map.

Key points

  • Logic devices beyond the complementary metal-oxide semiconductor (CMOS) transistor must address multiple sources of energy loss to achieve system-level energy efficiency.

  • Spintronic devices for computing can be categorized into applications for high-performance computing, unconventional computing and CMOS+X.

  • Spintronic logic can theoretically address the needs of beyond-CMOS high-performance computing, but a demonstration of that goal has yet to be realized.

  • For five established spintronic logic types, the advantages, recent advancements in simulation, recent advancements in experiments and current challenges are discussed.

  • Benchmarking of spintronic logic should include transparent methods that both capture device imperfections and can be updated as the technology matures, and they should use application-level tasks that capture the unique benefits of the device.

  • Research priorities for spintronic logic are identified, including the need for voltage-driven switching, gain in more device concepts, higher output read-out signals, higher ratio of spintronic gates over silicon gates in spintronic circuits and new materials for faster dynamics.

  • High-risk, high-reward research in spintronic logic should be pursued in parallel with the CMOS road map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetoelectric spin–orbit logic.
Fig. 2: Domain wall–magnetic tunnel junction logic.
Fig. 3: Spin torque majority gate logic.
Fig. 4: Perpendicular nanomagnetic logic.
Fig. 5: Spin wave logic.

Similar content being viewed by others

References

  1. Andrae, A. S. G. & Edler, T. On global electricity usage of communication technology: trends to 2030. Challenges 6, 117–157 (2015).

    Article  Google Scholar 

  2. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    Article  Google Scholar 

  3. IRDS. International Roadmap for Devices and Systems IRDS. IEEE https://irds.ieee.org (2023).

  4. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article  Google Scholar 

  5. Sharma, V. & Rajawat, A. Review of approaches for radiation hardened combinational logic in CMOS silicon technology. IETE Tech. Rev. 35, 562–573 (2018).

    Article  Google Scholar 

  6. Fanghui, R., Jander, A., Dhagat, P. & Nordman, C. Radiation tolerance of magnetic tunnel junctions with MgO tunnel barriers. IEEE Trans. Nucl. Sci. 59, 3034–3038 (2012).

    Article  Google Scholar 

  7. Hughes, H. et al. Radiation studies of spin-transfer torque materials and devices. IEEE Trans. Nucl. Sci. 59, 3027–3033 (2012).

    Article  Google Scholar 

  8. Alamdar, M. et al. Irradiation effects on perpendicular anisotropy spin–orbit torque magnetic tunnel junctions. IEEE Trans. Nucl. Sci. 68, 665–670 (2021).

    Article  Google Scholar 

  9. Bennett, C. H. et al. Radiation response of domain-wall magnetic tunnel junction logic devices. IEEE Trans. Nucl. Sci. 71, 454–460 (2024).

    Article  Google Scholar 

  10. Mochizuki, A., Kimura, H., Ibuki, M. & Hanyu, T. TMR-based logic-in-memory circuit for low-power VLSI. IEICE Trans. Fundamentals Electron. Commun. Computer Sci. 88, 1408–1415 (2005).

    Article  Google Scholar 

  11. Gebregiorgis, A., Bishnoi, R. & Tahoori, M. B. Spintronic normally-off heterogenous system-on-chip design. In 2018 Design, Automation & Test in Europe Conf. & Exhibition (DATE) 113–118 (IEEE, 2018). This paper shows how a normally-off system on chip can be designed by a hybrid architecture containing conventional CMOS bistable elements as well as different flavours of spintronic-based non-volatile storage elements.

  12. Deng, E., Anghel, L., Prenat, G. & Zhao, W. Multi-context non-volatile content addressable memory using magnetic tunnel junctions. In 2016 IEEE/ACM Int. Symp. Nanoscale Architectures 103–108 (IEEE, 2016). This article shows that content-addressable memories can be made using MTJs.

  13. Jin, H. et al. Domain wall-magnetic tunnel junction analog content addressable memory using current and projected data. IEEE Trans. Nanotechnol. 23, 20–28 (2024).

    Article  Google Scholar 

  14. Iwai, H. Future of nano CMOS technology. In 28th Symp. Microelectronics Technology and Devices (IEEE, 2013).

  15. Radosavljevic, M. & Kavalieros, J. 3D-stacked CMOS takes Moore’s law to new heights. IEEE Spectrum 32–37 (IEEE, 2022).

  16. Chang, C. H. et al. Critical process features enabling aggressive contacted gate pitch scaling for 3 nm CMOS technology and beyond. In Technical Digest—Int. Electron Devices Meeting (IEDM) 623–626 (IEEE, 2022).

  17. Chung, Y.-Y. et al. First demonstration of GAA monolayer-MoS2 nanosheet nFET with 410 μA μm ID 1V VD at 40 nm gate length. In Technical Digest—Int. Electron Devices Meeting (IEDM) 823–826 (IEEE, 2022).

  18. Rupp, K. microprocessor-trend-data. GitHub https://github.com/karlrupp/microprocessor-trend-data (2022).

  19. Zhang, K. et al. SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction. IEEE J. Solid-State Circuits 40, 895–900 (2005).

    Article  Google Scholar 

  20. Tachibana, F. et al. A 27% active and 85% standby power reduction in dual-power-supply SRAM using BL power calculator and digitally controllable retention circuit. IEEE J. Solid-State Circuits 49, 118–126 (2014).

    Article  Google Scholar 

  21. Sabry Aly, M. M. et al. Energy-efficient abundant-data computing: the N3XT 1,000×. Computer 48, 24–33 (2015).

    Article  Google Scholar 

  22. Singer, P. Scaling the BEOL: a toolbox filled with new processes, boosters and conductors. Semiconductor Digest. https://www.semiconductor-digest.com/scaling-the-beol-a-toolbox-filled-with-new-processes-boosters-and-conductors/ (2020). This article shows that interconnect energy dissipation is a dominant source of energy loss in modern CPUs and memories.

  23. Prasad, D. & Naeemi, A. Interconnect design and technology optimization for conventional and emerging nanoscale devices: a physical design perspective. In Technical Digest—Int. Electron Devices Meeting (IEDM) 5.1.1–5.1.4 (IEEE, 2018).

  24. Dang, F., Sun, X. K., Bin Liu, K., Xu, Y. F. & Liu, Y. H. A survey on clock synchronization in the industrial internet. J. Comput. Sci. Technol. 38, 146–165 (2023).

    Article  Google Scholar 

  25. Likamwa, R., Hou, Y., Gao, Y., Polansky, M. & Zhong, L. RedEye: analog ConvNet image sensor architecture for continuous mobile vision. In 43rd Int. Symp. Computer Architecture (ISCA) 255–266 (IEEE, 2016).

  26. Wilson, R. B. et al. Ultrafast magnetic switching of GdFeCo with electronic heat currents. Phys. Rev. B 95, 180409 (2017).

    Article  Google Scholar 

  27. Guan, Y. et al. Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  28. Alam, S. M. et al. Versatile STT-MRAM architecture for memory and emerging applications. In IEEE 34th Magnetic Recording Conf. (TMRC) (IEEE, 2023).

  29. Muller, J. et al. From emergence to prevalence: 22FDX® embedded STT-MRAM. In IEEE International Memory Workshop (IMW) (2022).

  30. Naik, V. B. et al. STT-MRAM product reliability and cross-talk. In IEEE Electron Devices Technology and Manufacturing Conf. (EDTM) 366–368 (IEEE, 2022).

  31. Jew, T. MRAM in microcontroller and microprocessor product applications. In Technical Digest—Int. Electron Devices Meeting (IEDM) 11.1.1–11.1.3 (IEEE, 2020).

  32. Ross, A. et al. Multilayer spintronic neural networks with radiofrequency connections. Nat. Nanotechnol. 18, 1273–1280 (2023).

    Article  Google Scholar 

  33. Sakhare, S. et al. Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node. In Technical Digest—Int. Electron Devices Meeting (IEDM) 18.3.1–18.3.4 (IEEE, 2018).

  34. Kan, J. J. et al. A study on practically unlimited endurance of STT-MRAM. IEEE Trans. Electron. Devices 64, 3639–3646 (2017).

    Article  Google Scholar 

  35. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article  Google Scholar 

  36. Streetman, B. & Banerjee, S. Solid State Electronic Devices, Global Edition (Pearson Education, 2015).

  37. Rao, S. et al. A systematic assessment of W-doped CoFeB single free layers for low power STT-MRAM applications. Electronics 10, 2384 (2021).

    Article  Google Scholar 

  38. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019). This article introduces the proposal of MESO logic.

    Article  Google Scholar 

  39. Nikonov, D. E. & Young, I. A. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015).

    Article  Google Scholar 

  40. Fedorova, N. S., Nikonov, D. E., Li, H., Young, I. A. & Íñiguez, J. First-principles Landau-like potential for BiFeO3 and related materials. Phys. Rev. B 106, 165122 (2022).

    Article  Google Scholar 

  41. Fedorova, N. S. et al. Understanding magnetoelectric switching in BiFeO3 thin films. Phys. Rev. B 109, 085116 (2023).

    Article  Google Scholar 

  42. Liu, H. et al. Synchronous circuit design with beyond-CMOS magnetoelectric spin-orbit devices toward 100-mV logic. IEEE J. Explor. Solid-State Comput. Devices Circuits 5, 1–9 (2019).

    Article  Google Scholar 

  43. Li, H., Lin, C. C., Nikonov, D. E. & Young, I. A. Differential electrically insulated magnetoelectric spin–orbit logic circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 7, 18–25 (2021).

    Article  Google Scholar 

  44. Li, H. et al. Physics-based models for magneto-electric spin–orbit logic circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 8, 10–18 (2022).

    Article  Google Scholar 

  45. Liao, Y. C. et al. Evaluating the performances of the ultralow power magnetoelectric random access memory with a physics-based compact model of the antiferromagnet/ferromagnet bilayer. IEEE Trans. Electron. Devices 69, 2331–2337 (2022).

    Article  Google Scholar 

  46. Rothe, R. et al. Energy efficient logic and memory design with beyond-CMOS magnetoelectric spin–orbit (MESO) technology toward ultralow supply voltage. IEEE J. Explor. Solid-State Comput. Devices Circuits 9, 124–133 (2023).

    Article  Google Scholar 

  47. Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020). This article presents experimental observation of spin–orbit detection of magnetic states.

    Article  Google Scholar 

  48. Groen, I. et al. Disentangling spin, anomalous, and planar Hall effects in ferromagnet-heavy-metal nanostructures. Phys. Rev. Appl. 15, 044010 (2021).

    Article  Google Scholar 

  49. Prasad, B. et al. Ultralow voltage manipulation of ferromagnetism. Adv. Mater. 32, 2001943 (2020).

    Article  Google Scholar 

  50. Debashis, P. et al. Low-voltage and high-speed switching of a magnetoelectric element for energy efficient compute. In Technical Digest—Int. Electron Devices Meeting (IEDM) 3641–3644 (IEEE, 2022).

  51. Parsonnet, E. et al. Toward intrinsic ferroelectric switching in multiferroic BiFeO3. Phys. Rev. Lett. 125, 067601 (2020).

    Article  Google Scholar 

  52. Vaz, D. C. et al. Voltage-based magnetization switching and reading in magnetoelectric spin–orbit nanodevices. Nat. Commun. 15, 1902 (2024). This article demonstrates the latest experimental advances for MESO logic.

    Article  Google Scholar 

  53. Choi, W. Y. et al. All-electrical spin-to-charge conversion in sputtered BixSe1–x. Nano Lett. 22, 7992–7999 (2022).

    Article  Google Scholar 

  54. Herling, F. et al. Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2. APL Mater. 8, 071103 (2020).

    Article  Google Scholar 

  55. Currivan, J. A., Jang, Y., Mascaro, M. D., Baldo, M. A. & Ross, C. A. Low energy magnetic domain wall logic in short, narrow, ferromagnetic wires. IEEE Magn. Lett. 3, 3000104 (2012).

    Article  Google Scholar 

  56. Zogbi, N. et al. Parallel matrix multiplication using voltage-controlled magnetic anisotropy domain wall logic. IEEE J. Explor. Solid-State Comput. Devices Circuits. 9, https://doi.org/10.1109/jxcdc.2023.3266441 (2023). This work shows the high-performance compute capability and prospects for DW-MTJ logic, as well as a path towards lower-energy voltage control.

  57. Alamdar, M. et al. Domain wall–magnetic tunnel junction spin–orbit torque devices and circuits for in-memory computing. Appl. Phys. Lett. 118, 112401 (2021). This article presents an experimental demonstration of DW-MTJ devices and small circuits, operating with spin–orbit torque and electrically nucleated domain walls.

    Article  Google Scholar 

  58. Xiao, T. P. et al. Energy and performance benchmarking of a domain wall–magnetic tunnel junction multibit adder. IEEE J. Explor. Solid-State Comput. Devices Circuits 5, 188–196 (2019).

    Article  Google Scholar 

  59. Morris, D., Bromberg, D., Zhu, J. & Pileggi, L. mLogic: ultra-low voltage non-volatile logic circuits using STT-MTJ devices. In DAC Design Automation Conf. 486–491 (IEEE, 2012).

  60. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual Int. Symp. Computer Architecture 1–12 (2017).

  61. Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls. Nat. Commun. 7, 10275 (2016).

    Article  Google Scholar 

  62. Liu, S. et al. A domain wall–magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks. Appl. Phys. Lett. 118, 202405 (2021).

    Article  Google Scholar 

  63. Liu, S. et al. Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing. Front. Nanotechnol. 4, 1092820 (2022).

    Article  Google Scholar 

  64. Leonard, T. et al. Shape-dependent multi-weight magnetic artificial synapses for neuromorphic computing. Adv. Electron. Mater. 8, 2200563 (2022). This work presents experimental DW-MTJs showing high control of the DW position.

    Article  Google Scholar 

  65. Leonard, T., Liu, S., Jin, H. & Incorvia, J. A. C. Stochastic domain wall–magnetic tunnel junction artificial neurons for noise-resilient spiking neural networks. Appl. Phys. Lett. 122, 26 (2023).

    Article  Google Scholar 

  66. Cui, C., Liu, S., Kwon, J. & Incorvia, J. A. C. Domain wall magnetic tunnel junction reliable integrate and fire neuron. Preprint at https://arxiv.org/abs/2405.14851 (2024).

  67. Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron. Device Lett. 32, 1128–1130 (2011).

    Article  Google Scholar 

  68. Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read and write. Nat. Electron. 4, 392–398 (2021). This article presents important experiments on electrical control of domain walls for STMGs and DW-MTJs.

    Article  Google Scholar 

  69. Vaysset, A. et al. Toward error-free scaled spin torque majority gates. AIP Adv. 6, 065304 (2016).

    Article  Google Scholar 

  70. Yang, S. H., Ryu, K. S. & Parkin, S. Domain-wall velocities of up to 750 m s–1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article  Google Scholar 

  71. Bhattacharya, D. et al. 3D interconnected magnetic nanowire networks as potential integrated multistate memristors. Nano Lett. 22, 10010–10017 (2022).

    Article  Google Scholar 

  72. Becherer, M. et al. A monolithic 3D integrated nanomagnetic co-processing unit. Solid. State Electron. 115, 74–80 (2016). This work gives a clear path towards 3D integration of field-coupled NML, summarizing the basic building blocks for a digital co-processing unit.

    Article  Google Scholar 

  73. Becherer, M. 3D nanomagnetic logic. In Emerging Non-Volatile Memory Technologies (eds Lew, W. S. et al.) 3–438 (Springer Nature Limited, 2021).

  74. Hassan, N. et al. Secure logic locking with strain-protected nanomagnet logic. In ACM/IEEE Design Automation Conf. (DAC) 127–132 (IEEE, 2021).

  75. Edwards, A. J. et al. Physically and algorithmically secure logic locking with hybrid CMOS/nanomagnet logic circuits. In Proc. 2022 Conf. Exhibition on Design, Automation & Test in Europe 17–22 (IEEE, 2022).

  76. Breitkreutz, S. et al. Compact modeling of perpendicular nanomagnetic logic based on threshold gates. J. Appl. Phys. 115, 17–104 (2014).

    Article  Google Scholar 

  77. Turvani, G., Riente, F., Plozner, E., Schmitt-Landsiedel, D. & Gamm, S. B. V. A compact physical model for the simulation of pNML-based architectures. AIP Adv. 7, 56005 (2017).

    Article  Google Scholar 

  78. Žiemys, G. et al. Modeling and simulation of nanomagnetic logic with cadence virtuoso using Verilog-A. Solid. State Electron. 125, 247–253 (2016).

    Article  Google Scholar 

  79. Garlando, U. et al. Architectural exploration of perpendicular nano magnetic logic based circuits. Integration 63, 275–282 (2018).

    Article  Google Scholar 

  80. Riente, F. et al. MagCAD: tool for the design of 3-D magnetic circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 3, 65–73 (2017).

    Article  Google Scholar 

  81. Riente, F. et al. ToPoliNano: a CAD tool for nano magnetic logic. IEEE Trans. Comput. Des. Integr. Circuits Syst. 36, 1061–1074 (2017).

    Article  Google Scholar 

  82. Bhoi, B. K., Misra, N. K. & Pradhan, M. Synthesis and simulation study of non-restoring cell architecture layout in perpendicular nano-magnetic logic. J. Comput. Electron. 19, 407–418 (2020).

    Article  Google Scholar 

  83. Kiermaier, J. et al. Information transport in field-coupled nanomagnetic logic devices. J. Appl. Phys. 113, 17B902 (2013).

    Article  Google Scholar 

  84. Eichwald, I. et al. Nanomagnetic logic: error-free, directed signal transmission by an inverter chain. IEEE Trans. Magn. 48, 4332–4335 (2012).

    Article  Google Scholar 

  85. Breitkreutz, S. et al. Nanomagnetic logic: demonstration of directed signal flow for field-coupled computing devices. In European Solid-State Device Research Conf. 323–326 (IEEE, 2011).

  86. Breitkreutz, S. et al. Controlled reversal of Co/Pt dots for nanomagnetic logic applications. J. Appl. Phys. 111, 07A715 (2012).

    Article  Google Scholar 

  87. Breitkreutz, S. et al. Majority gate for nanomagnetic logic with perpendicular magnetic anisotropy. IEEE Trans. Magn. 48, 4336–4339 (2012).

    Article  Google Scholar 

  88. Papp, A. et al. Threshold gate-based circuits from nanomagnetic logic. IEEE Trans. Nanotechnol. 13, 990–996 (2014).

    Article  Google Scholar 

  89. Breitkreutz, S. et al. 1-Bit full adder in perpendicular nanomagnetic logic using a novel 5-input majority gate. EPJ Web Conf. 75, 05001 (2014).

    Article  Google Scholar 

  90. Eichwald, I. et al. Signal crossing in perpendicular nanomagnetic logic. J. Appl. Phys. 115, 17–510 (2014).

    Article  Google Scholar 

  91. Eichwald, I. et al. Majority logic gate for 3D magnetic computing. Nanotechnology 25, 335202 (2014).

    Article  Google Scholar 

  92. Ziemys, G. et al. Characterization of the magnetization reversal of perpendicular nanomagnetic logic clocked in the ns-range. AIP Adv. 6, 56404 (2016).

    Article  Google Scholar 

  93. Mendsich, S., Ahrens, V., Kiechle, M., Papp, A. & Becherer, M. Perpendicular nanomagnetic logic based on low anisotropy Co\Ni multilayer. J. Magn. Magn Mater. 510, 166626 (2020).

    Article  Google Scholar 

  94. Mendisch, S. et al. Controlling domain-wall nucleation in Ta/Co–Fe–B/MgO nanomagnets via local Ga+ ion irradiation. Phys. Rev. Appl. 16, 014039 (2021).

    Article  Google Scholar 

  95. Favaro, D. et al. Enabling logic computation between Ta/CoFeB/MgO nanomagnets. IEEE Trans. Magn. 59, 1–10 (2023).

    Article  Google Scholar 

  96. Khitun, A., Kang, Wang, L. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 34306 (2011).

    Article  Google Scholar 

  97. Mahmoud, A. et al. Introduction to spin wave computing. J. Appl. Phys. 128, 161101 (2020).

    Article  Google Scholar 

  98. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  99. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 1–3 (2005).

    Article  Google Scholar 

  100. Lee, K. S. & Kim, S. K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 53909 (2008).

    Article  Google Scholar 

  101. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C: Solid. State Phys. 19, 7013 (1986).

    Article  Google Scholar 

  102. Ciubotaru, F., Devolder, T., Manfrini, M., Adelmann, C. & Radu, I. P. All electrical propagating spin wave spectroscopy with broadband wavevector capability. Appl. Phys. Lett. 109, 12403 (2016).

    Article  Google Scholar 

  103. Klingler, S. et al. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett. 105, 152410 (2014).

    Article  Google Scholar 

  104. Mahmoud, A. et al. Spin wave based full adder. In Proc. IEEE Int. Symp. Circuits and Systems 1–5 (IEEE, 2021).

  105. Mahmoud, A. N. et al. A spin wave-based approximate 4:2 compressor: seeking the most energy-efficient digital computing paradigm. IEEE Nanotechnol. Mag. 16, 47–56 (2022).

    Article  Google Scholar 

  106. Zografos, O. et al. Design and benchmarking of hybrid CMOS-Spin Wave Device Circuits compared to 10nm CMOS. In Int. Conf. Nanotechnology 686–689 (IEEE, 2015).

  107. Mahmoud, A. et al. Would Magnonic Circuits Outperform CMOS Counterparts? In Proc. ACM Great Lakes Symp. VLSI (GLSVLSI) 309–313 (ACM, 2022).

  108. Fischer, T. et al. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017).

    Article  Google Scholar 

  109. Kanazawa, N. et al. The role of Snell’s law for a magnonic majority gate. Sci. Rep. 7, 1–8 (2017).

    Article  Google Scholar 

  110. Talmelli, G. et al. Reconfigurable submicrometer spin-wave majority gate with electrical transducers. Sci. Adv. 6, 4042–4060 (2020). This article presents an experimental demonstration of spin wave logic.

    Article  Google Scholar 

  111. Mahmoud, A. N. et al. Spin wave normalization toward all magnonic circuits. IEEE Trans. Circuits Syst. I 68, 536–549 (2021).

    Article  Google Scholar 

  112. Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

    Article  Google Scholar 

  113. Vanderveken, F. et al. Lumped circuit model for inductive antenna spin-wave transducers. Sci. Rep. 12, 1–13 (2022).

    Article  Google Scholar 

  114. Mitrofanova, A., Safin, A., Kravchenko, O., Nikitov, S. & Kirilyuk, A. Optically initialized and current-controlled logical element based on antiferromagnetic-heavy metal heterostructures for neuromorphic computing. Appl. Phys. Lett. 120, 072402 (2022).

    Article  Google Scholar 

  115. Yang, Q. et al. Realization of high spin injection through chiral molecules and its application in logic device. IEEE Electron. Device Lett. 43, 1862–1865 (2022).

    Article  Google Scholar 

  116. Arava, H. et al. Computational logic with square rings of nanomagnets. Nanotechnology 29, 265205 (2018).

    Article  Google Scholar 

  117. Rakheja, S., Flatté, M. E. & Kent, A. D. Voltage-controlled topological spin switch for ultralow-energy computing: performance modeling and benchmarking. Phys. Rev. Appl. 11, 054009 (2019).

    Article  Google Scholar 

  118. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  Google Scholar 

  119. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article  Google Scholar 

  120. Perricone, R. et al. An energy efficient non-volatile flip-flop based on CoMET technology. In Design, Automation & Test in Europe Conf. Exhibition (DATE) 390–395 (IEEE, 2019).

  121. Friedman, J. S. et al. Cascaded spintronic logic with low-dimensional carbon. Nat. Commun. 8, 15635 (2017).

    Article  Google Scholar 

  122. Khokhriakov, D. et al. Multifunctional spin logic operations in graphene spin circuits. Phys. Rev. Appl. 18, 64063 (2022).

    Article  Google Scholar 

  123. Pan, C. & Naeemi, A. An expanded benchmarking of beyond-CMOS devices based on Boolean and neuromorphic representative circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 3, 101–110 (2017). This work expands the benchmarking framework for spintronic logic by considering both Boolean and non-Boolean circuits and by adding new devices such as three magnetoelectric devices and new flavours of all-spin logic and charge-coupled spin logic.

    Article  Google Scholar 

Download references

Acknowledgements

J.A.C.I., T.P.X. and N.Z. acknowledge funding through the Rad Edge Grand Challenge project, which is part of the Laboratory Directed Research and Development Program at Sandia National Laboratories. M.B. acknowledges support by the German Research Foundation (DFG) project numbers 114933698, 229838035 and 403505866. S.C., C.A. and F. Catthoor acknowledge support by imec’s Industrial Affiliate Programs on Magnetic Memory and on Exploratory Logic. F. Casanova acknowledges funding by ‘FEINMAN 2.0’ Intel Science Technology Center, the Spanish Ministry of Science, Innovation and Universities (MCIU) MCIU/AEI/10.13039/501100011033 (Grant No. CEX2020-001038-M) and MICIU/AEI and ERDF/EU (Grant No. PID2021-122511OB-I00). This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the US Department of Energy (DOE); the employee owns all right, title and interest in and to the article and is solely responsible for its contents. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this article or allow others to do so, for US Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the DOE or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and substantially contributed to discussion of content. J.A.C.I., S.C., T.P.X., N.Z., A.N., C.A., F. Catthoor and F. Casanova wrote the article. J.A.C.I., S.C., T.P.X. and N.Z. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Jean Anne C. Incorvia or Sebastien Couet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Dmitri E. Nikonov, Joseph S. Friedman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incorvia, J.A.C., Xiao, T.P., Zogbi, N. et al. Spintronics for achieving system-level energy-efficient logic. Nat Rev Electr Eng 1, 700–713 (2024). https://doi.org/10.1038/s44287-024-00103-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00103-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing