Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spintronic neural systems

Abstract

Neural computing, guided by brain-inspired computational frameworks, promises to realize various cognitive and perception-related tasks. Complementary metal–oxide–semiconductor-based computing machines use orders-of-magnitude more computational resources than the brain on cognitive tasks that humans efficiently perform every day. As a result, we are witnessing a seismic shift in the field of computation. Research efforts are being directed to develop artificial intelligence (AI) hardware that mimics the human brain from a bottom-up perspective — through devices that are more naturally suited to neural computation — and thereby improves the efficiency of performing cognitive tasks. In the attempt to bridge the gap between neuroscience and electronics, here we report on developments in the field of spintronic devices for AI hardware. The dynamics of spintronic devices that can be used for the realization of neural and synaptic functionalities are discussed. A cross-layer perspective extending from the device to the circuit and system levels as a pathway towards efficient neural computing systems is also presented.

Key points

  • Neural computing, guided by brain-like computational frameworks, promises to realize various cognitive and perception-related tasks.

  • Complementary metal–oxide–semiconductor (CMOS) transistors, being on/off switches, are ideally suited for Boolean functions. CMOS-based neural computing on von Neumann architectures consumes orders-of-magnitude higher energy than biological brains.

  • Spin-transfer-torque-based device dynamics can efficiently mimic neuronal and synaptic functionalities.

  • A cross-layer co-design approach extending from the device to the circuit and system levels can lead to efficient neural computing systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: System and technology co-design for spintronic neural systems.
Fig. 2: Behaviours and driving mechanisms of magnetic tunnel junction (MTJ)-based devices.
Fig. 3: Comparison between biological neuronal dynamics and magnetic tunnel junction (MTJ)-based spiking neuron.
Fig. 4: Crossbar array implementation of magnetic tunnel junction-based spiking neural network.
Fig. 5: Examples of reduction in energy consumption using spintronic memory devices.
Fig. 6: Neural computing based on stochastic magnetic tunnel junction.

Similar content being viewed by others

References

  1. Zhou, Z. et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762 (2019).

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  Google Scholar 

  3. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article  Google Scholar 

  4. Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for modern deep learning research. In Proc. AAAI Conference on Artificial Intelligence Vol. 34, 13693–13696 (AAAI, 2020).

  5. Reuther, A. et al. AI and ML accelerator survey and trends. In 2022 IEEE High Performance Extreme Computing Conference (HPEC) https://doi.org/10.1109/HPEC55821.2022.9926331 (IEEE, 2022).

  6. Rathi, N. et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware. ACM Comput. Surv. https://doi.org/10.1145/3571155 (2023).

  7. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).

    Article  Google Scholar 

  8. Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    Article  Google Scholar 

  9. Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016).

    Article  Google Scholar 

  10. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article  Google Scholar 

  11. Lukoševiˇcius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    Article  Google Scholar 

  12. Zhang, D. et al. All spin artificial neural networks based on compound spintronic synapse and neuron. IEEE Trans. Biomed. Circuits Syst. 10, 828–836 (2016).

    Article  Google Scholar 

  13. Sengupta, A., Shim, Y. & Roy, K. Proposal for an all-spin artificial neural network: emulating neural and synaptic functionalities through domain wall motion in ferromagnets. IEEE Trans. Biomed. Circuits Syst. 10, 1152–1160 (2016).

    Article  Google Scholar 

  14. Liu, Q. et al. 33.2 a fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing. In 2020 IEEE International Solid-State Circuits Conference, 500–502 (IEEE, 2020).

  15. Hirohata, A. et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2015.2457393 (2015).

    Article  Google Scholar 

  16. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).

    Article  Google Scholar 

  17. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  18. Tsoi, M., Fontana, R. E. & Parkin, S. S. P. Magnetic domain wall motion triggered by an electric current. Appl. Phys. Lett. 83, 2617–2619 (2003).

    Article  Google Scholar 

  19. Haazen, P. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  Google Scholar 

  20. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  Google Scholar 

  21. Amiri, P. K. et al. Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2015.2443124 (2015).

    Article  Google Scholar 

  22. Jaiswal, A., Chakraborty, I. & Roy, K. Energy-efficient memory using magneto-electric switching of ferromagnets. IEEE Magn. Lett. 8, 1–5 (2017).

    Article  Google Scholar 

  23. Eliasmith, C. & Anderson, C. H. Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems (MIT Press, 2003).

  24. Zheng, N. & Mazumder, P. Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design (Wiley, 2019).

  25. Fong, X. et al. Spin-transfer torque devices for logic and memory: prospects and perspectives. IEEE Trans. Comput. Des. Integr. Circuits Syst. 35, 1–22 (2016).

    Article  Google Scholar 

  26. Sengupta, A. & Roy, K. Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing. Appl. Phys. Rev. 4, 041105 (2017).

    Article  Google Scholar 

  27. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  28. Sun, J. Z. Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

    Article  Google Scholar 

  29. Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19, 165209 (2007).

    Article  Google Scholar 

  30. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  31. Grollier, J. et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78, 3663–3665 (2001).

    Article  Google Scholar 

  32. Sengupta, A. & Roy, K. A vision for all-spin neural networks: a device to system perspective. IEEE Trans. Circuits Syst. I 63, 2267–2277 (2016).

    Article  Google Scholar 

  33. Rajaei, R. & Mamaghani, S. B. Ultra-low power, highly reliable, and nonvolatile hybrid MTJ/CMOS based full-adder for future VLSI design. IEEE Trans. Device Mater. Reliab. 17, 213–220 (2017).

    Article  Google Scholar 

  34. Deng, E. et al. Design optimization and analysis of multicontext STT-MTJ/CMOS logic circuits. IEEE Trans. Nanotechnol. 14, 169–177 (2015).

    Article  Google Scholar 

  35. Driskill-Smith, A. et al. Latest advances and roadmap for in-plane and perpendicular STT-RAM. In Proc. 3rd IEEE International Memory Workshop https://doi.org/10.1109/IMW.2011.5873205 (IEEE, 2011).

  36. Fong, X. et al. Spin-transfer torque memories: devices, circuits, and systems. Proc. IEEE 104, 1449–1488 (2016).

    Article  Google Scholar 

  37. Hao, Z. et al. A computing-in-memory scheme with series bit-cell in STT-MRAM for efficient multi-bit analog multiplication. In 2021 IEEE/ACM International Symposium on Nanoscale Architectures https://doi.org/10.1109/NANOARCH53687.2021.9642248 (IEEE, 2021).

  38. Bromberg, D. M., Morris, D. H., Pileggi, L. & Zhu, J. G. Novel STT-MTJ device enabling all-metallic logic circuits. IEEE Trans. Magn. 48, 3215–3218 (2012).

    Article  Google Scholar 

  39. Fan, D., Shim, Y., Raghunathan, A. & Roy, K. STT-SNN: a spin-transfer-torque based soft-limiting non-linear neuron for low-power artificial neural networks. IEEE Trans. Nanotechnol. 14, 1013–1023 (2015).

    Article  Google Scholar 

  40. Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat. Phys. 7, 626–630 (2011).

    Article  Google Scholar 

  41. Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    Article  Google Scholar 

  42. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  Google Scholar 

  43. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article  Google Scholar 

  44. Chen, T. et al. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE 104, 1919–1945 (2016).

    Article  Google Scholar 

  45. Zahedinejad, M. et al. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).

    Article  Google Scholar 

  46. González, V. H., Khymyn, R., Fulara, H., Awad, A. A. & Åkerman, J. Voltage control of frequency, effective damping, and threshold current in nano-constriction-based spin Hall nano-oscillators. Appl. Phys. Lett. 121, 252404 (2022).

    Article  Google Scholar 

  47. Behera, N. et al. Ultra-low-current spin Hall nano-oscillators. In 2023 IEEE International Magnetic Conference — Short Papers https://doi.org/10.1109/INTERMAGShortPapers58606.2023.10228420 (IEEE, 2023).

  48. Choi, J.-G. et al. Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators. Nat. Commun. 13, 3783 (2022).

    Article  Google Scholar 

  49. Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).

    Article  Google Scholar 

  50. Mazraati, H. et al. Mutual synchronization of constriction-based spin Hall nano-oscillators in weak in-plane magnetic fields. Phys. Rev. Appl. 18, 014026 (2022).

    Article  Google Scholar 

  51. Kumar, A. et al. Robust mutual synchronization in long spin Hall nano-oscillator chains. Nano Lett. 23, 6720–6726 (2023).

    Article  Google Scholar 

  52. Jué, E., Pufall, M. R. & Rippard, W. H. Asymmetric and partial injection locking of a three-terminal spin-torque oscillator. Appl. Phys. Lett. 112, 102403 (2018).

    Article  Google Scholar 

  53. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  54. Markovi´c, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  55. Yu, T., Yang, Y., Li, D., Hospedales, T. & Xiang, T. Simple and effective stochastic neural networks. Proc. AAAI Conf. Artif. Intel. 35, 3252–3260 (2021).

  56. Zink, B. R., Lv, Y. & Wang, J.-P. Telegraphic switching signals by magnet tunnel junctions for neural spiking signals with high information capacity. J. Appl. Phys. 124, 152121 (2018).

    Article  Google Scholar 

  57. Suh, D. I., Bae, G. Y., Oh, H. S. & Park, W. Neural coding using telegraphic switching of magnetic tunnel junction. J. Appl. Phys. 117, 17D714 (2015).

    Article  Google Scholar 

  58. Liyanagedera, C. M., Sengupta, A., Jaiswal, A. & Roy, K. Stochastic spiking neural networks enabled by magnetic tunnel junctions: from nontelegraphic to telegraphic switching regimes. Phys. Rev. Appl. 8, 64017 (2017).

    Article  Google Scholar 

  59. Yang, K. & Sengupta, A. Stochastic magnetoelectric neuron for temporal information encoding. Appl. Phys. Lett. 116, 043701 (2020).

    Article  Google Scholar 

  60. Sengupta, A., Parsa, M., Han, B. & Roy, K. Probabilistic deep spiking neural systems enabled by magnetic tunnel junction. IEEE Trans. Electron. Devices 63, 2963–2970 (2016).

    Article  Google Scholar 

  61. Camsari, K. Y., Sutton, B. M. & Datta S. P-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 011305 (2019).

  62. Augustine, C., Behin-Aein, B., Fong, X. & Roy, K. A design methodology and device/circuit/architecture compatible simulation framework for low-power magnetic quantum cellular automata systems. In 2009 Asia and South Pacific Design Automation Conference 847–852 (IEEE, 2009).

  63. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  Google Scholar 

  64. Song, C. et al. Spin–orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).

    Article  Google Scholar 

  65. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).

    Article  Google Scholar 

  66. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  67. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).

    Google Scholar 

  68. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  Google Scholar 

  69. Fan, X. et al. Observation of the nonlocal spin-orbital effective field. Nat. Commun. 4, 1799 (2013).

    Article  Google Scholar 

  70. Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Phil. Trans. R. Soc. A 369, 3175–3197 (2011).

    Article  Google Scholar 

  71. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  72. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  73. Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2017.2772185 (2018).

    Article  Google Scholar 

  74. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  Google Scholar 

  75. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 96602 (2012).

    Article  Google Scholar 

  76. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  Google Scholar 

  77. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  Google Scholar 

  78. Martinez, E., Emori, S., Perez, N., Torres, L. & Beach, G. S. D. Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis. J. Appl. Phys. 115, 213909 (2014).

    Article  Google Scholar 

  79. Emori, S. et al. Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014).

    Article  Google Scholar 

  80. Zhao, W. S. et al. Failure and reliability analysis of STT-MRAM. Microelectron. Reliab. 52, 1848–1852 (2012).

    Article  Google Scholar 

  81. Amiri, P. K. & Wang, K. L. Voltage-controlled magnetic anisotropy in spintronic devices. Spin 02, 1240002 (2012).

  82. Nozaki, T. et al. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. 10.3390/mi10050327 (2019).

  83. Nikonov, D. E. & Young, I. A. Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29, 2109–2115 (2014).

    Article  Google Scholar 

  84. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  Google Scholar 

  85. Miwa, S. et al. Voltage controlled interfacial magnetism through platinum orbits. Nat. Commun. 8, 15848 (2017).

    Article  Google Scholar 

  86. Suzuki, Y. & Miwa, S. Magnetic anisotropy of ferromagnetic metals in low-symmetry systems. Phys. Lett. A 383, 1203–1206 (2019).

    Article  Google Scholar 

  87. Kawabe, T. et al. Electric-field-induced changes of magnetic moments and magnetocrystalline anisotropy in ultrathin cobalt films. Phys. Rev. B 96, 220412 (2017).

    Article  Google Scholar 

  88. Song, J. et al. Evaluation of operating margin and switching probability of voltage-controlled magnetic anisotropy magnetic tunnel junctions. IEEE J. Explor. Solid-State Comput. Devices Circuits 4, 76–84 (2018).

    Article  Google Scholar 

  89. Inokuchi, T. et al. Real-time observation of fast and highly reliable magnetization switching in voltage-control spintronics memory (VoCSM). Appl. Phys. Lett. 114, 192404 (2019).

    Article  Google Scholar 

  90. Sengupta, A., Jaiswal, A. & Roy, K. True random number generation using voltage controlled spin-dice. In 2016 74th Annual Device Research Conference https://doi.org/10.1109/DRC.2016.7548436 (IEEE, 2016).

  91. Nisar, A., Dhull, S., Kaushik, B. K. & Khanday, F. A. Design of an efficient VCMA controlled spintronic random number generator. Proc. SPIE https://doi.org/10.1117/12.2567531 (2020).

  92. Parks, B. et al. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators. AIP Adv. 8, 055903 (2017).

    Article  Google Scholar 

  93. Quizon, L. R. A. et al. A voltage-controlled magnetic anisotropy based true random number generator. In 2021 18th International SoC Design Conference https://doi.org/10.1109/ISOCC53507.2021.9613854 (IEEE, 2021).

  94. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  Google Scholar 

  95. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    Article  Google Scholar 

  96. Sharma, N., Marshall, A., Bird, J. & Dowben, P. Magneto-electric magnetic tunnel junction logic devices. In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems https://doi.org/10.1109/E3S.2015.7336817 (IEEE, 2015).

  97. Chakraborty, I., Agrawal, A., Jaiswal, A., Srinivasan, G. & Roy, K. In situ unsupervised learning using stochastic switching in magneto-electric magnetic tunnel junctions. Phil. Trans. R. Soc. A 378, 20190157 (2019).

    Article  MathSciNet  Google Scholar 

  98. Chen, A. et al. Nonvolatile magnetoelectric switching of magnetic tunnel junctions with dipole interaction. Adv. Funct. Mater. 33, 2213402 (2023).

    Article  Google Scholar 

  99. Yoshida, C., Tanaka, T., Ataka, T., Hoshina, M. & Furuya, A. Field-free reliable magnetization switching in a three terminal perpendicular magnetic tunnel junction via spin–orbit torque, spin-transfer torque, and voltage-controlled magnetic anisotropy. J. Phys. D 55, 365003 (2022).

    Article  Google Scholar 

  100. Zhang, C., Takeuchi, Y., Fukami, S. & Ohno, H. Field-free and sub-ns magnetization switching of magnetic tunnel junctions by combining spin-transfer torque and spin–orbit torque. Appl. Phys. Lett. 118, 092406 (2021).

    Article  Google Scholar 

  101. Cai, W. et al. Sub-ns field-free switching in perpendicular magnetic tunnel junctions by the interplay of spin transfer and orbit torques. IEEE Electron. Device Lett. 42, 704–707 (2021).

    Article  Google Scholar 

  102. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  Google Scholar 

  103. Yang, K., M, D. P. G. & Sengupta, A. Leveraging probabilistic switching in superparamagnets for temporal information encoding in neuromorphic systems. IEEE Trans. Comput. Des. Integr. Circuits Syst. https://doi.org/10.1109/TCAD.2022.3233926 (2023).

  104. Sengupta, A. & Roy, K. Short-term plasticity and long-term potentiation in magnetic tunnel junctions: towards volatile synapses. Phys. Rev. Appl. 5, 024012 (2016).

    Article  Google Scholar 

  105. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).

  106. Roy, K., Sengupta, A. & Shim, Y. Perspective: stochastic magnetic devices for cognitive computing. J. Appl. Phys. 123, 210901 (2018).

    Article  Google Scholar 

  107. Sengupta, A., Han, B. & Roy, K. Toward a spintronic deep learning spiking neural processor. In 2016 IEEE Biomedical Circuits and Systems Conference https://doi.org/10.1109/BioCAS.2016.7833852 (IEEE, 2016).

  108. Liu, S. et al. A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks. Appl. Phys. Lett. 118, 202405 (2021).

    Article  Google Scholar 

  109. Lacour, D. et al. Experimental evidence of multiple stable locations for a domain wall trapped by a submicron notch. Appl. Phys. Lett. 84, 1910–1912 (2004).

    Article  Google Scholar 

  110. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article  Google Scholar 

  111. Raab, K. et al. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat. Commun. 13, 6982 (2022).

    Article  Google Scholar 

  112. Fleischer, B. & Shukla, S. Unlocking the promise of approximate computing for on-chip AI acceleration. IBM Research Blog https://phys.org/news/2018-06-approximate-on-chip-ai.html (2020).

  113. Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article  Google Scholar 

  114. Patil, A. D., Hua, H., Gonugondla, S., Kang, M. & Shanbhag, N. R. An MRAM-based deep in-memory architecture for deep neural networks. In 2019 IEEE International Symposium on Circuits and Systems, 1–5 (IEEE, 2019).

  115. Doevenspeck, J. et al. Multi-pillar SOT-MRAM for accurate analog in-memory DNN inference. In 2021 Symposium on VLSI Technology, 1–2 (IEEE, 2021).

  116. Ramasubramanian, S. G., Venkatesan, R., Sharad, M., Roy, K. & Raghunathan, A. Spindle: Spintronic deep learning engine for large-scale neuromorphic computing. In 2014 IEEE/ACM International Symposium on Low Power Electronics and Design https://doi.org/10.1145/2627369.2627625 (IEEE, 2014).

  117. Sharma, T.,Wang, C., Agrawal, A. & Roy, K. Enabling robust SOT-MTJ crossbars for machine learning using sparsity-aware device-circuit co-design. In 2021 IEEE/ACM International Symposium on Low Power Electronics and Design 1–6 (IEEE, 2021).

  118. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article  Google Scholar 

  119. Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).

    Article  Google Scholar 

  120. Chen, M.-C., Sengupta, A. & Roy, K. Magnetic skyrmion as a spintronic deep learning spiking neuron processor. IEEE Trans. Magn. 54, 1–7 (2018).

    Google Scholar 

  121. Markram, H., Gerstner, W. & Sjöström, P. J. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. https://doi.org/10.3389/fnsyn.2011.00004 (2011).

  122. Jacob, V., Brasier, D. J., Erchova, I., Feldman, D. & Shulz, D. E. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007).

    Article  Google Scholar 

  123. Meliza, C. D. & Dan, Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49, 183–189 (2006).

    Article  Google Scholar 

  124. Zhao, Z., Smith, A. K., Jamali, M. & Wang, J.-P. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. 6, 1901368 (2020).

    Article  Google Scholar 

  125. Wang, Z., Zhao, W., Deng, E., Klein, J.-O. & Chappert, C. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. J. Phys. D 48, 065001 (2015).

    Article  Google Scholar 

  126. Wasef, S. & Fariborzi, H. Theoretical study of field-free switching in PMA-MTJ using combined injection of STT and SOT currents. Micromachines https://doi.org/10.3390/mi12111345 (2021).

  127. McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).

    Article  Google Scholar 

  128. Torok, E. J., Olson, A. L. & Oredson, H. N. Transition between Bloch and Néel walls. J. Appl. Phys. 36, 1394–1399 (2004).

    Article  Google Scholar 

  129. Yamaguchi, A. et al. Effect of Joule heating in current-driven domain wall motion. Appl. Phys. Lett. 86, 012511 (2004).

    Article  Google Scholar 

  130. Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

    Article  Google Scholar 

  131. Kläui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 26601 (2005).

    Article  Google Scholar 

  132. Suzuki, T., Fukami, S., Ohshima, N., Nagahara, K. & Ishiwata, N. Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 113913 (2008).

    Article  Google Scholar 

  133. Agrawal, A. & Roy, K. Mimicking leaky-integrate-fire spiking neuron using automotion of domain walls for energy efficient brain-inspired computing. IEEE Trans. Magn. 55, 1–7 (2019).

    Article  Google Scholar 

  134. Nikonov, D. E., Manipatruni, S. & Young, I. A. Automotion of domain walls for spintronic interconnects. J. Appl. Phys. 115, 213902 (2014).

    Article  Google Scholar 

  135. Bi, X., Li, H. & Wang, X. STT-RAM cell design considering CMOS and MTJ temperature dependence. IEEE Trans. Magn. 48, 3821–3824 (2012).

    Article  Google Scholar 

  136. Wu, B., Cheng, Y., Yang, J., Todri-Sanial, A. & Zhao, W. Temperature impact analysis and access reliability enhancement for 1T1MTJ STT-RAM. IEEE Trans. Reliab. 65, 1755–1768 (2016).

    Article  Google Scholar 

  137. Yuan, L., Liou, S. H. & Wang, D. Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures. Phys. Rev. B 73, 134403 (2006).

    Article  Google Scholar 

  138. Laufenberg, M. et al. Temperature dependence of the spin torque effect in current-induced domain wall motion. Phys. Rev. Lett. 97, 46602 (2006).

    Article  Google Scholar 

  139. Savage, A. & Miller, R. C. Temperature dependence of the velocity of sidewise 180° domain-wall motion in BaTiO3. J. Appl. Phys. 31, 1546–1549 (2004).

    Article  Google Scholar 

  140. Schieback, C., Hinzke, D., Kläui, M., Nowak, U. & Nielaba, P. Temperature dependence of the current-induced domain wall motion from a modified Landau–Lifshitz–Bloch equation. Phys. Rev. B 80, 214403 (2009).

    Article  Google Scholar 

  141. Lee, S.-E., Takemura, Y. & Park, J.-G. Effect of double MgO tunneling barrier on thermal stability and TMR ratio for perpendicular MTJ spin-valve with tungsten layers. Appl. Phys. Lett. 109, 182405 (2016).

    Article  Google Scholar 

  142. Lee, S.-E., Baek, J.-U. & Park, J.-G. Highly enhanced TMR ratio and Δ for double MgO-based p-MTJ spin-valves with top Co2Fe6B2 free layer by nanoscale-thick iron diffusion-barrier. Sci. Rep. 7, 11907 (2017).

    Article  Google Scholar 

  143. Scheike, T., Wen, Z., Sukegawa, H. & Mitani, S. 631magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).

    Article  Google Scholar 

  144. Yang, B. et al. Ultrahigh tunneling-magnetoresistance ratios in nitride-based perpendicular magnetic tunnel junctions from first principles. Phys. Rev. Appl. 9, 54019 (2018).

    Article  Google Scholar 

  145. Cai, H. et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell. IEEE Trans. Circuits Syst. I: Regul. Pap. 69, 1519–1531 (2022).

    Article  Google Scholar 

  146. Jaiswal, A., Roy, S., Srinivasan, G. & Roy, K. Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets. IEEE Trans. Electron. Devices 64, 1818–1824 (2017).

    Article  Google Scholar 

  147. Jaiswal, A., Agrawal, A., Panda, P. & Roy, K. Neural computing with magnetoelectric domain-wall-based neurosynaptic devices. IEEE Trans. Magn. 57, 1–9 (2021).

    Article  Google Scholar 

  148. Kang, W., Ran, Y., Zhang, Y., Lv, W. & Zhao, W. Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications. IEEE Trans. Nanotechnol. 16, 387–395 (2017).

    Article  Google Scholar 

  149. Li, X. et al. Materials requirements of high-speed and low-power spin–orbit-torque magnetic random-access memory. IEEE J. Electron. Devices Soc. 8, 674–680 (2020).

    Article  Google Scholar 

  150. Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).

    Article  Google Scholar 

  151. Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater 31, 1900636 (2019).

    Article  Google Scholar 

  152. Wang, C., Lee, C. & Roy, K. Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices. Sci. Rep. 12, 8361 (2022).

    Article  Google Scholar 

  153. Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).

    Article  Google Scholar 

  154. Chakraborty, I., Jaiswal, A., Saha, A., Gupta, S. & Roy, K. Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 7, 021308 (2020).

    Article  Google Scholar 

  155. He, K., Chakraborty, I., Wang, C. & Roy, K. Design space and memory technology co-exploration for in-memory computing based machine learning accelerators. In Proc. 41st IEEE/ACM International Conference on Computer-Aided Design 1–9 (IEEE, 2022).

  156. Singh, S. et al. NEBULA: a neuromorphic spin-based ultra-low power architecture for SNNs and ANNs. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture, 363–376 (IEEE, 2020).

  157. Chakraborty, I. et al. Resistive crossbars as approximate hardware building blocks for machine learning: opportunities and challenges. Proc. IEEE 108, 2276–2310 (2020).

    Article  Google Scholar 

  158. Ranjan, A. et al. Staxcache: an approximate, energy efficient STT-MRAM cache. In Design, Automation & Test in Europe Conference & Exhibition (DATE) 356–361 (IEEE, 2017).

  159. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).

  160. Sun, B. et al. MRAM co-designed processing-in-memory CNN accelerator for mobile and IoT applications. Preprint at https://arxiv.org/abs/1811.12179 (2018).

  161. Venkatesan, R., Chippa, V., Augustine, C., Roy, K. & Raghunathan, A. Energy efficient many-core processor for recognition and mining using spin-based memory. In 2011 IEEE/ACM International Symposium on Nanoscale Architectures 122–128 (IEEE, 2011).

  162. Mishty, K. & Sadi, M. Designing efficient and high-performance AI accelerators with customized STT-MRAM. IEEE Trans. Very Large Scale Integr. Syst. 29, 1730–1742 (2021).

    Article  Google Scholar 

  163. Roy, S., Wang, C., & Raghunathan, A. Evaluation of STT-MRAM as a scratchpad for training in ML accelerators. Preprint at https://doi.org/10.48550/arXiv.2308.02024 (2023).

  164. Deco, G., Rolls, E. T. & Romo, R. Stochastic dynamics as a principle of brain function. Prog. Neurobiol. 88, 1–16 (2009).

    Article  Google Scholar 

  165. Sengupta, A., Panda, P., Wijesinghe, P., Kim, Y. & Roy, K. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci. Rep. 6, 30039 (2016).

    Article  Google Scholar 

  166. Fukushima, A. et al. Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014).

    Article  Google Scholar 

  167. Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. Sci. Rep. 6, 29545 (2016).

    Article  Google Scholar 

  168. Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction enabled all-spin stochastic spiking neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE) 530–535 (IEEE, 2017).

  169. Seo, J.-s. et al. A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In 2011 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2011).

  170. Sutton, B., Camsari, K. Y., Behin-Aein, B. & Datta, S. Intrinsic optimization using stochastic nanomagnets. Sci. Rep. 7, 44370 (2017).

  171. Sharmin, S., Shim, Y. S. & Roy, K. Magnetoelectric oxide based stochastic spin device towards solving combinatorial optimization problems. Sci. Rep. 7, 11276 (2017).

  172. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article  Google Scholar 

  173. Yamaoka, M. et al. A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid-State Circuits 51, 303–309 (2015).

    Google Scholar 

  174. Shim, Y., Jaiswal, A. & Roy, K. Ising computation based combinatorial optimization using spin-Hall effect (SHE) induced stochastic magnetization reversal. J. Appl. Phys. 121, 193902 (2017).

  175. Shim, Y., Chen, S., Sengupta, A. & Roy, K. Stochastic spin–orbit torque devices as elements for Bayesian inference. Sci. Rep. 7, 14101 (2017).

    Article  Google Scholar 

  176. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  Google Scholar 

  177. Riou, M. et al. Neuromorphic computing through time-multiplexing with a spin-torque nano-oscillator. In 2017 IEEE International Electron Devices Meeting https://doi.org/10.1109/IEDM.2017.8268505 (2017).

  178. Tsunegi, S. et al. Evaluation of memory capacity of spin torque oscillator for recurrent neural networks. Jpn. J. Appl. Phys. 57, 120307 (2018).

    Article  Google Scholar 

  179. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article  Google Scholar 

  180. Albertsson, D. I. et al. Ultrafast ising machines using spin torque nano-oscillators. Appl. Phys. Lett. 118, 112404 (2021).

    Article  Google Scholar 

  181. McGoldrick, B. C., Sun, J. Z. & Liu, L. Ising machine based on electrically coupled spin Hall nano-oscillators. Phys. Rev. Appl. 17, 14006 (2022).

    Article  Google Scholar 

  182. Houshang, A. et al. Phase-binarized spin Hall nano-oscillator arrays: towards spin Hall Ising machines. Phys. Rev. Appl. 17, 14003 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.R., C.W., S.R. and A.S. substantially contributed to discussion of content and writing. All authors researched data for the Review and contributed to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Kaushik Roy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bloch walls

Domain-wall magnetization rotates in the plane of the wall.

Dzyaloshinskii–Moriya interaction

A type of exchange interaction observed in magnetic heterostructures.

Ising model

A statistical model of interacting spins on a lattice, where the energy depends on neighbouring spin alignment and an external field.

Magnetoelectric effect

This effect occurs when a material’s magnetization changes due to applied electric fields.

Néel walls

Domain-wall magnetization rotates in a plane perpendicular to the plane of the wall.

Non-deterministic polynomial-time hard problems

Computational problems for which no efficient solution algorithm is known, and solving or verifying a solution is as hard as the most challenging problems in NP (non-deterministic polynomial time).

Telegraphic switching

Subnanosecond switching regime of magnets where the magnetization undergoes volatile state transitions for low-barrier-height magnets.

Travelling salesman problem

A mathematical problem that asks to search for the shortest possible route that traverses a given list of cities in a map exactly once and returns to the origin.

Voltage-controlled magnetic anisotropy

A physical phenomenon that enables modulation of magnetic anisotropy by applying an electric voltage.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Wang, C., Roy, S. et al. Spintronic neural systems. Nat Rev Electr Eng 1, 714–729 (2024). https://doi.org/10.1038/s44287-024-00107-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00107-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing