Abstract
Neural computing, guided by brain-inspired computational frameworks, promises to realize various cognitive and perception-related tasks. Complementary metal–oxide–semiconductor-based computing machines use orders-of-magnitude more computational resources than the brain on cognitive tasks that humans efficiently perform every day. As a result, we are witnessing a seismic shift in the field of computation. Research efforts are being directed to develop artificial intelligence (AI) hardware that mimics the human brain from a bottom-up perspective — through devices that are more naturally suited to neural computation — and thereby improves the efficiency of performing cognitive tasks. In the attempt to bridge the gap between neuroscience and electronics, here we report on developments in the field of spintronic devices for AI hardware. The dynamics of spintronic devices that can be used for the realization of neural and synaptic functionalities are discussed. A cross-layer perspective extending from the device to the circuit and system levels as a pathway towards efficient neural computing systems is also presented.
Key points
-
Neural computing, guided by brain-like computational frameworks, promises to realize various cognitive and perception-related tasks.
-
Complementary metal–oxide–semiconductor (CMOS) transistors, being on/off switches, are ideally suited for Boolean functions. CMOS-based neural computing on von Neumann architectures consumes orders-of-magnitude higher energy than biological brains.
-
Spin-transfer-torque-based device dynamics can efficiently mimic neuronal and synaptic functionalities.
-
A cross-layer co-design approach extending from the device to the circuit and system levels can lead to efficient neural computing systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Zhou, Z. et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762 (2019).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for modern deep learning research. In Proc. AAAI Conference on Artificial Intelligence Vol. 34, 13693–13696 (AAAI, 2020).
Reuther, A. et al. AI and ML accelerator survey and trends. In 2022 IEEE High Performance Extreme Computing Conference (HPEC) https://doi.org/10.1109/HPEC55821.2022.9926331 (IEEE, 2022).
Rathi, N. et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware. ACM Comput. Surv. https://doi.org/10.1145/3571155 (2023).
Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).
Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).
Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Lukoševiˇcius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).
Zhang, D. et al. All spin artificial neural networks based on compound spintronic synapse and neuron. IEEE Trans. Biomed. Circuits Syst. 10, 828–836 (2016).
Sengupta, A., Shim, Y. & Roy, K. Proposal for an all-spin artificial neural network: emulating neural and synaptic functionalities through domain wall motion in ferromagnets. IEEE Trans. Biomed. Circuits Syst. 10, 1152–1160 (2016).
Liu, Q. et al. 33.2 a fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing. In 2020 IEEE International Solid-State Circuits Conference, 500–502 (IEEE, 2020).
Hirohata, A. et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2015.2457393 (2015).
Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Tsoi, M., Fontana, R. E. & Parkin, S. S. P. Magnetic domain wall motion triggered by an electric current. Appl. Phys. Lett. 83, 2617–2619 (2003).
Haazen, P. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).
Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).
Amiri, P. K. et al. Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2015.2443124 (2015).
Jaiswal, A., Chakraborty, I. & Roy, K. Energy-efficient memory using magneto-electric switching of ferromagnets. IEEE Magn. Lett. 8, 1–5 (2017).
Eliasmith, C. & Anderson, C. H. Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems (MIT Press, 2003).
Zheng, N. & Mazumder, P. Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design (Wiley, 2019).
Fong, X. et al. Spin-transfer torque devices for logic and memory: prospects and perspectives. IEEE Trans. Comput. Des. Integr. Circuits Syst. 35, 1–22 (2016).
Sengupta, A. & Roy, K. Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing. Appl. Phys. Rev. 4, 041105 (2017).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Sun, J. Z. Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).
Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19, 165209 (2007).
Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).
Grollier, J. et al. Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78, 3663–3665 (2001).
Sengupta, A. & Roy, K. A vision for all-spin neural networks: a device to system perspective. IEEE Trans. Circuits Syst. I 63, 2267–2277 (2016).
Rajaei, R. & Mamaghani, S. B. Ultra-low power, highly reliable, and nonvolatile hybrid MTJ/CMOS based full-adder for future VLSI design. IEEE Trans. Device Mater. Reliab. 17, 213–220 (2017).
Deng, E. et al. Design optimization and analysis of multicontext STT-MTJ/CMOS logic circuits. IEEE Trans. Nanotechnol. 14, 169–177 (2015).
Driskill-Smith, A. et al. Latest advances and roadmap for in-plane and perpendicular STT-RAM. In Proc. 3rd IEEE International Memory Workshop https://doi.org/10.1109/IMW.2011.5873205 (IEEE, 2011).
Fong, X. et al. Spin-transfer torque memories: devices, circuits, and systems. Proc. IEEE 104, 1449–1488 (2016).
Hao, Z. et al. A computing-in-memory scheme with series bit-cell in STT-MRAM for efficient multi-bit analog multiplication. In 2021 IEEE/ACM International Symposium on Nanoscale Architectures https://doi.org/10.1109/NANOARCH53687.2021.9642248 (IEEE, 2021).
Bromberg, D. M., Morris, D. H., Pileggi, L. & Zhu, J. G. Novel STT-MTJ device enabling all-metallic logic circuits. IEEE Trans. Magn. 48, 3215–3218 (2012).
Fan, D., Shim, Y., Raghunathan, A. & Roy, K. STT-SNN: a spin-transfer-torque based soft-limiting non-linear neuron for low-power artificial neural networks. IEEE Trans. Nanotechnol. 14, 1013–1023 (2015).
Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat. Phys. 7, 626–630 (2011).
Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).
Chen, T. et al. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE 104, 1919–1945 (2016).
Zahedinejad, M. et al. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).
González, V. H., Khymyn, R., Fulara, H., Awad, A. A. & Åkerman, J. Voltage control of frequency, effective damping, and threshold current in nano-constriction-based spin Hall nano-oscillators. Appl. Phys. Lett. 121, 252404 (2022).
Behera, N. et al. Ultra-low-current spin Hall nano-oscillators. In 2023 IEEE International Magnetic Conference — Short Papers https://doi.org/10.1109/INTERMAGShortPapers58606.2023.10228420 (IEEE, 2023).
Choi, J.-G. et al. Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators. Nat. Commun. 13, 3783 (2022).
Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).
Mazraati, H. et al. Mutual synchronization of constriction-based spin Hall nano-oscillators in weak in-plane magnetic fields. Phys. Rev. Appl. 18, 014026 (2022).
Kumar, A. et al. Robust mutual synchronization in long spin Hall nano-oscillator chains. Nano Lett. 23, 6720–6726 (2023).
Jué, E., Pufall, M. R. & Rippard, W. H. Asymmetric and partial injection locking of a three-terminal spin-torque oscillator. Appl. Phys. Lett. 112, 102403 (2018).
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).
Markovi´c, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
Yu, T., Yang, Y., Li, D., Hospedales, T. & Xiang, T. Simple and effective stochastic neural networks. Proc. AAAI Conf. Artif. Intel. 35, 3252–3260 (2021).
Zink, B. R., Lv, Y. & Wang, J.-P. Telegraphic switching signals by magnet tunnel junctions for neural spiking signals with high information capacity. J. Appl. Phys. 124, 152121 (2018).
Suh, D. I., Bae, G. Y., Oh, H. S. & Park, W. Neural coding using telegraphic switching of magnetic tunnel junction. J. Appl. Phys. 117, 17D714 (2015).
Liyanagedera, C. M., Sengupta, A., Jaiswal, A. & Roy, K. Stochastic spiking neural networks enabled by magnetic tunnel junctions: from nontelegraphic to telegraphic switching regimes. Phys. Rev. Appl. 8, 64017 (2017).
Yang, K. & Sengupta, A. Stochastic magnetoelectric neuron for temporal information encoding. Appl. Phys. Lett. 116, 043701 (2020).
Sengupta, A., Parsa, M., Han, B. & Roy, K. Probabilistic deep spiking neural systems enabled by magnetic tunnel junction. IEEE Trans. Electron. Devices 63, 2963–2970 (2016).
Camsari, K. Y., Sutton, B. M. & Datta S. P-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 011305 (2019).
Augustine, C., Behin-Aein, B., Fong, X. & Roy, K. A design methodology and device/circuit/architecture compatible simulation framework for low-power magnetic quantum cellular automata systems. In 2009 Asia and South Pacific Design Automation Conference 847–852 (IEEE, 2009).
Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).
Song, C. et al. Spin–orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Fan, X. et al. Observation of the nonlocal spin-orbital effective field. Nat. Commun. 4, 1799 (2013).
Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Phil. Trans. R. Soc. A 369, 3175–3197 (2011).
Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).
Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2017.2772185 (2018).
Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 96602 (2012).
Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
Martinez, E., Emori, S., Perez, N., Torres, L. & Beach, G. S. D. Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis. J. Appl. Phys. 115, 213909 (2014).
Emori, S. et al. Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014).
Zhao, W. S. et al. Failure and reliability analysis of STT-MRAM. Microelectron. Reliab. 52, 1848–1852 (2012).
Amiri, P. K. & Wang, K. L. Voltage-controlled magnetic anisotropy in spintronic devices. Spin 02, 1240002 (2012).
Nozaki, T. et al. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. 10.3390/mi10050327 (2019).
Nikonov, D. E. & Young, I. A. Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29, 2109–2115 (2014).
Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).
Miwa, S. et al. Voltage controlled interfacial magnetism through platinum orbits. Nat. Commun. 8, 15848 (2017).
Suzuki, Y. & Miwa, S. Magnetic anisotropy of ferromagnetic metals in low-symmetry systems. Phys. Lett. A 383, 1203–1206 (2019).
Kawabe, T. et al. Electric-field-induced changes of magnetic moments and magnetocrystalline anisotropy in ultrathin cobalt films. Phys. Rev. B 96, 220412 (2017).
Song, J. et al. Evaluation of operating margin and switching probability of voltage-controlled magnetic anisotropy magnetic tunnel junctions. IEEE J. Explor. Solid-State Comput. Devices Circuits 4, 76–84 (2018).
Inokuchi, T. et al. Real-time observation of fast and highly reliable magnetization switching in voltage-control spintronics memory (VoCSM). Appl. Phys. Lett. 114, 192404 (2019).
Sengupta, A., Jaiswal, A. & Roy, K. True random number generation using voltage controlled spin-dice. In 2016 74th Annual Device Research Conference https://doi.org/10.1109/DRC.2016.7548436 (IEEE, 2016).
Nisar, A., Dhull, S., Kaushik, B. K. & Khanday, F. A. Design of an efficient VCMA controlled spintronic random number generator. Proc. SPIE https://doi.org/10.1117/12.2567531 (2020).
Parks, B. et al. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators. AIP Adv. 8, 055903 (2017).
Quizon, L. R. A. et al. A voltage-controlled magnetic anisotropy based true random number generator. In 2021 18th International SoC Design Conference https://doi.org/10.1109/ISOCC53507.2021.9613854 (IEEE, 2021).
Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).
Sharma, N., Marshall, A., Bird, J. & Dowben, P. Magneto-electric magnetic tunnel junction logic devices. In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems https://doi.org/10.1109/E3S.2015.7336817 (IEEE, 2015).
Chakraborty, I., Agrawal, A., Jaiswal, A., Srinivasan, G. & Roy, K. In situ unsupervised learning using stochastic switching in magneto-electric magnetic tunnel junctions. Phil. Trans. R. Soc. A 378, 20190157 (2019).
Chen, A. et al. Nonvolatile magnetoelectric switching of magnetic tunnel junctions with dipole interaction. Adv. Funct. Mater. 33, 2213402 (2023).
Yoshida, C., Tanaka, T., Ataka, T., Hoshina, M. & Furuya, A. Field-free reliable magnetization switching in a three terminal perpendicular magnetic tunnel junction via spin–orbit torque, spin-transfer torque, and voltage-controlled magnetic anisotropy. J. Phys. D 55, 365003 (2022).
Zhang, C., Takeuchi, Y., Fukami, S. & Ohno, H. Field-free and sub-ns magnetization switching of magnetic tunnel junctions by combining spin-transfer torque and spin–orbit torque. Appl. Phys. Lett. 118, 092406 (2021).
Cai, W. et al. Sub-ns field-free switching in perpendicular magnetic tunnel junctions by the interplay of spin transfer and orbit torques. IEEE Electron. Device Lett. 42, 704–707 (2021).
Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).
Yang, K., M, D. P. G. & Sengupta, A. Leveraging probabilistic switching in superparamagnets for temporal information encoding in neuromorphic systems. IEEE Trans. Comput. Des. Integr. Circuits Syst. https://doi.org/10.1109/TCAD.2022.3233926 (2023).
Sengupta, A. & Roy, K. Short-term plasticity and long-term potentiation in magnetic tunnel junctions: towards volatile synapses. Phys. Rev. Appl. 5, 024012 (2016).
Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).
Roy, K., Sengupta, A. & Shim, Y. Perspective: stochastic magnetic devices for cognitive computing. J. Appl. Phys. 123, 210901 (2018).
Sengupta, A., Han, B. & Roy, K. Toward a spintronic deep learning spiking neural processor. In 2016 IEEE Biomedical Circuits and Systems Conference https://doi.org/10.1109/BioCAS.2016.7833852 (IEEE, 2016).
Liu, S. et al. A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks. Appl. Phys. Lett. 118, 202405 (2021).
Lacour, D. et al. Experimental evidence of multiple stable locations for a domain wall trapped by a submicron notch. Appl. Phys. Lett. 84, 1910–1912 (2004).
Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).
Raab, K. et al. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat. Commun. 13, 6982 (2022).
Fleischer, B. & Shukla, S. Unlocking the promise of approximate computing for on-chip AI acceleration. IBM Research Blog https://phys.org/news/2018-06-approximate-on-chip-ai.html (2020).
Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).
Patil, A. D., Hua, H., Gonugondla, S., Kang, M. & Shanbhag, N. R. An MRAM-based deep in-memory architecture for deep neural networks. In 2019 IEEE International Symposium on Circuits and Systems, 1–5 (IEEE, 2019).
Doevenspeck, J. et al. Multi-pillar SOT-MRAM for accurate analog in-memory DNN inference. In 2021 Symposium on VLSI Technology, 1–2 (IEEE, 2021).
Ramasubramanian, S. G., Venkatesan, R., Sharad, M., Roy, K. & Raghunathan, A. Spindle: Spintronic deep learning engine for large-scale neuromorphic computing. In 2014 IEEE/ACM International Symposium on Low Power Electronics and Design https://doi.org/10.1145/2627369.2627625 (IEEE, 2014).
Sharma, T.,Wang, C., Agrawal, A. & Roy, K. Enabling robust SOT-MTJ crossbars for machine learning using sparsity-aware device-circuit co-design. In 2021 IEEE/ACM International Symposium on Low Power Electronics and Design 1–6 (IEEE, 2021).
Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).
Chen, M.-C., Sengupta, A. & Roy, K. Magnetic skyrmion as a spintronic deep learning spiking neuron processor. IEEE Trans. Magn. 54, 1–7 (2018).
Markram, H., Gerstner, W. & Sjöström, P. J. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. https://doi.org/10.3389/fnsyn.2011.00004 (2011).
Jacob, V., Brasier, D. J., Erchova, I., Feldman, D. & Shulz, D. E. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007).
Meliza, C. D. & Dan, Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49, 183–189 (2006).
Zhao, Z., Smith, A. K., Jamali, M. & Wang, J.-P. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. 6, 1901368 (2020).
Wang, Z., Zhao, W., Deng, E., Klein, J.-O. & Chappert, C. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. J. Phys. D 48, 065001 (2015).
Wasef, S. & Fariborzi, H. Theoretical study of field-free switching in PMA-MTJ using combined injection of STT and SOT currents. Micromachines https://doi.org/10.3390/mi12111345 (2021).
McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).
Torok, E. J., Olson, A. L. & Oredson, H. N. Transition between Bloch and Néel walls. J. Appl. Phys. 36, 1394–1399 (2004).
Yamaguchi, A. et al. Effect of Joule heating in current-driven domain wall motion. Appl. Phys. Lett. 86, 012511 (2004).
Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).
Kläui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 26601 (2005).
Suzuki, T., Fukami, S., Ohshima, N., Nagahara, K. & Ishiwata, N. Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 113913 (2008).
Agrawal, A. & Roy, K. Mimicking leaky-integrate-fire spiking neuron using automotion of domain walls for energy efficient brain-inspired computing. IEEE Trans. Magn. 55, 1–7 (2019).
Nikonov, D. E., Manipatruni, S. & Young, I. A. Automotion of domain walls for spintronic interconnects. J. Appl. Phys. 115, 213902 (2014).
Bi, X., Li, H. & Wang, X. STT-RAM cell design considering CMOS and MTJ temperature dependence. IEEE Trans. Magn. 48, 3821–3824 (2012).
Wu, B., Cheng, Y., Yang, J., Todri-Sanial, A. & Zhao, W. Temperature impact analysis and access reliability enhancement for 1T1MTJ STT-RAM. IEEE Trans. Reliab. 65, 1755–1768 (2016).
Yuan, L., Liou, S. H. & Wang, D. Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures. Phys. Rev. B 73, 134403 (2006).
Laufenberg, M. et al. Temperature dependence of the spin torque effect in current-induced domain wall motion. Phys. Rev. Lett. 97, 46602 (2006).
Savage, A. & Miller, R. C. Temperature dependence of the velocity of sidewise 180° domain-wall motion in BaTiO3. J. Appl. Phys. 31, 1546–1549 (2004).
Schieback, C., Hinzke, D., Kläui, M., Nowak, U. & Nielaba, P. Temperature dependence of the current-induced domain wall motion from a modified Landau–Lifshitz–Bloch equation. Phys. Rev. B 80, 214403 (2009).
Lee, S.-E., Takemura, Y. & Park, J.-G. Effect of double MgO tunneling barrier on thermal stability and TMR ratio for perpendicular MTJ spin-valve with tungsten layers. Appl. Phys. Lett. 109, 182405 (2016).
Lee, S.-E., Baek, J.-U. & Park, J.-G. Highly enhanced TMR ratio and Δ for double MgO-based p-MTJ spin-valves with top Co2Fe6B2 free layer by nanoscale-thick iron diffusion-barrier. Sci. Rep. 7, 11907 (2017).
Scheike, T., Wen, Z., Sukegawa, H. & Mitani, S. 631magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).
Yang, B. et al. Ultrahigh tunneling-magnetoresistance ratios in nitride-based perpendicular magnetic tunnel junctions from first principles. Phys. Rev. Appl. 9, 54019 (2018).
Cai, H. et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell. IEEE Trans. Circuits Syst. I: Regul. Pap. 69, 1519–1531 (2022).
Jaiswal, A., Roy, S., Srinivasan, G. & Roy, K. Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets. IEEE Trans. Electron. Devices 64, 1818–1824 (2017).
Jaiswal, A., Agrawal, A., Panda, P. & Roy, K. Neural computing with magnetoelectric domain-wall-based neurosynaptic devices. IEEE Trans. Magn. 57, 1–9 (2021).
Kang, W., Ran, Y., Zhang, Y., Lv, W. & Zhao, W. Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications. IEEE Trans. Nanotechnol. 16, 387–395 (2017).
Li, X. et al. Materials requirements of high-speed and low-power spin–orbit-torque magnetic random-access memory. IEEE J. Electron. Devices Soc. 8, 674–680 (2020).
Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).
Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater 31, 1900636 (2019).
Wang, C., Lee, C. & Roy, K. Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices. Sci. Rep. 12, 8361 (2022).
Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).
Chakraborty, I., Jaiswal, A., Saha, A., Gupta, S. & Roy, K. Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 7, 021308 (2020).
He, K., Chakraborty, I., Wang, C. & Roy, K. Design space and memory technology co-exploration for in-memory computing based machine learning accelerators. In Proc. 41st IEEE/ACM International Conference on Computer-Aided Design 1–9 (IEEE, 2022).
Singh, S. et al. NEBULA: a neuromorphic spin-based ultra-low power architecture for SNNs and ANNs. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture, 363–376 (IEEE, 2020).
Chakraborty, I. et al. Resistive crossbars as approximate hardware building blocks for machine learning: opportunities and challenges. Proc. IEEE 108, 2276–2310 (2020).
Ranjan, A. et al. Staxcache: an approximate, energy efficient STT-MRAM cache. In Design, Automation & Test in Europe Conference & Exhibition (DATE) 356–361 (IEEE, 2017).
Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).
Sun, B. et al. MRAM co-designed processing-in-memory CNN accelerator for mobile and IoT applications. Preprint at https://arxiv.org/abs/1811.12179 (2018).
Venkatesan, R., Chippa, V., Augustine, C., Roy, K. & Raghunathan, A. Energy efficient many-core processor for recognition and mining using spin-based memory. In 2011 IEEE/ACM International Symposium on Nanoscale Architectures 122–128 (IEEE, 2011).
Mishty, K. & Sadi, M. Designing efficient and high-performance AI accelerators with customized STT-MRAM. IEEE Trans. Very Large Scale Integr. Syst. 29, 1730–1742 (2021).
Roy, S., Wang, C., & Raghunathan, A. Evaluation of STT-MRAM as a scratchpad for training in ML accelerators. Preprint at https://doi.org/10.48550/arXiv.2308.02024 (2023).
Deco, G., Rolls, E. T. & Romo, R. Stochastic dynamics as a principle of brain function. Prog. Neurobiol. 88, 1–16 (2009).
Sengupta, A., Panda, P., Wijesinghe, P., Kim, Y. & Roy, K. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci. Rep. 6, 30039 (2016).
Fukushima, A. et al. Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014).
Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. Sci. Rep. 6, 29545 (2016).
Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction enabled all-spin stochastic spiking neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE) 530–535 (IEEE, 2017).
Seo, J.-s. et al. A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In 2011 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2011).
Sutton, B., Camsari, K. Y., Behin-Aein, B. & Datta, S. Intrinsic optimization using stochastic nanomagnets. Sci. Rep. 7, 44370 (2017).
Sharmin, S., Shim, Y. S. & Roy, K. Magnetoelectric oxide based stochastic spin device towards solving combinatorial optimization problems. Sci. Rep. 7, 11276 (2017).
Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
Yamaoka, M. et al. A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid-State Circuits 51, 303–309 (2015).
Shim, Y., Jaiswal, A. & Roy, K. Ising computation based combinatorial optimization using spin-Hall effect (SHE) induced stochastic magnetization reversal. J. Appl. Phys. 121, 193902 (2017).
Shim, Y., Chen, S., Sengupta, A. & Roy, K. Stochastic spin–orbit torque devices as elements for Bayesian inference. Sci. Rep. 7, 14101 (2017).
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
Riou, M. et al. Neuromorphic computing through time-multiplexing with a spin-torque nano-oscillator. In 2017 IEEE International Electron Devices Meeting https://doi.org/10.1109/IEDM.2017.8268505 (2017).
Tsunegi, S. et al. Evaluation of memory capacity of spin torque oscillator for recurrent neural networks. Jpn. J. Appl. Phys. 57, 120307 (2018).
Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).
Albertsson, D. I. et al. Ultrafast ising machines using spin torque nano-oscillators. Appl. Phys. Lett. 118, 112404 (2021).
McGoldrick, B. C., Sun, J. Z. & Liu, L. Ising machine based on electrically coupled spin Hall nano-oscillators. Phys. Rev. Appl. 17, 14006 (2022).
Houshang, A. et al. Phase-binarized spin Hall nano-oscillator arrays: towards spin Hall Ising machines. Phys. Rev. Appl. 17, 14003 (2022).
Author information
Authors and Affiliations
Contributions
K.R., C.W., S.R. and A.S. substantially contributed to discussion of content and writing. All authors researched data for the Review and contributed to reviewing and/or editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Bloch walls
-
Domain-wall magnetization rotates in the plane of the wall.
- Dzyaloshinskii–Moriya interaction
-
A type of exchange interaction observed in magnetic heterostructures.
- Ising model
-
A statistical model of interacting spins on a lattice, where the energy depends on neighbouring spin alignment and an external field.
- Magnetoelectric effect
-
This effect occurs when a material’s magnetization changes due to applied electric fields.
- Néel walls
-
Domain-wall magnetization rotates in a plane perpendicular to the plane of the wall.
- Non-deterministic polynomial-time hard problems
-
Computational problems for which no efficient solution algorithm is known, and solving or verifying a solution is as hard as the most challenging problems in NP (non-deterministic polynomial time).
- Telegraphic switching
-
Subnanosecond switching regime of magnets where the magnetization undergoes volatile state transitions for low-barrier-height magnets.
- Travelling salesman problem
-
A mathematical problem that asks to search for the shortest possible route that traverses a given list of cities in a map exactly once and returns to the origin.
- Voltage-controlled magnetic anisotropy
-
A physical phenomenon that enables modulation of magnetic anisotropy by applying an electric voltage.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Roy, K., Wang, C., Roy, S. et al. Spintronic neural systems. Nat Rev Electr Eng 1, 714–729 (2024). https://doi.org/10.1038/s44287-024-00107-9
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44287-024-00107-9
This article is cited by
-
Cell-to-cell communication: from physical calling to remote emotional touching
Discover Nano (2025)
-
Spintronic memristors for computing
npj Spintronics (2025)


