Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Boron nitride for applications in microelectronics

Abstract

In this Perspective, we survey recent research on boron nitride (BN) including synthesis, integration and simulation aspects from the material engineering perspective for applications in microelectronics industry. First, we discuss the BN history and its process development milestones, with an emphasis on amorphous BN and hexagonal BN deposition process, highlighting the need for deep understanding of precursor and surface chemistry as well as integration issues. Next, we summarize recent material synthesis simulation progress for BN in the context of tackling complex amorphous material network formation mechanisms and discuss new methodology development needs to address current challenges. We propose future research directions towards the co-development between experimental and modelling approaches to further accelerate discovery of additional material property improvements. Finally, overall trends in microelectronic applications of BN and perspectives are presented and categorized into two main directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brief history of boron nitride.
Fig. 2: Workflow for simulation–experiment iteration.
Fig. 3: Experiment–simulation co-development.

Similar content being viewed by others

References

  1. International Roadmap for Devices and Systems: More Moore (IEEE, 2022).

  2. Shamiryan, D., Abell, T., Iacopi, F. & Maex, K. Low-k dielectric materials. Mater. Today 7, 34 (2004).

    Article  Google Scholar 

  3. Venema, L. Silicon electronics and beyond. Nature 479, 309 (2011).

    Article  MATH  Google Scholar 

  4. Moon, J. H. et al. Materials quest for advanced interconnect metallization in integrated circuits. Adv. Sci. 10, 2207321 (2023).

    Article  MATH  Google Scholar 

  5. Chang, W. et al. 300 mm process integration for 0.13 μm generation with Cu/low-k interconnect technology. In International Electron Devices Meeting (IEDM) 28.2.1–28.2.4 (IEEE, 2001).

  6. International Technology Roadmap for Semiconductors: Interconnect (ITRS, 2004).

  7. Kim, Y. H., Hwang, M. S., Kim, H. J., Kim, J. Y. & Lee, Y. Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).

    Article  MATH  Google Scholar 

  8. Michalak, D. J., Blackwell, J. M. & Torres, J. M. Porosity scaling strategies for low-k films. J. Mater. Res. 30, 3363 (2015).

    Article  MATH  Google Scholar 

  9. Maex, K. et al. Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).

    Article  MATH  Google Scholar 

  10. Hatton, B. D. et al. Materials chemistry for low-k materials. Mater. Today 9, 22 (2006).

    Article  MATH  Google Scholar 

  11. Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011).

    Article  Google Scholar 

  12. Prawoto, C., Ma, Z., Xiao, Y., Raju, S. & Chan, M. Air-gap technology with a large void-fraction for global interconnect delay reduction. IEEE Trans. Electron Devices 68, 2071 (2021).

    Article  Google Scholar 

  13. Besien, E. V. et al. Influence of porosity on electrical properties of low-k dielectrics. Microelectron. Eng. 92, 59 (2012).

    Article  MATH  Google Scholar 

  14. Hoofman, R. et al. Challenges in the implementation of low-k dielectrics in the back-end of line. Microelectron. Eng. 80, 337 (2005).

    Article  MATH  Google Scholar 

  15. Vanstreels, K., Ciofi, I., Barbarin, Y. & Baklanov, M. Influence of porosity on dielectric breakdown of ultralow-k dielectrics. J. Vac. Sci. Technol. B 31, 050604 (2013).

    Article  Google Scholar 

  16. Li, M. Y., Su, S. K., Wong, H. S. P. & Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 567, 169 (2019).

    Article  MATH  Google Scholar 

  17. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  18. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).

    Article  MATH  Google Scholar 

  19. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504 (2022).

    Article  MATH  Google Scholar 

  20. Woon, W. Y. et al. Integration and characterization of high thermal conductivity materials for heat dissipation in stacked devices. In 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 3.4.1–3.4.2 (IEEE, 2024).

  21. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262 (2016).

    Article  Google Scholar 

  22. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004).

    Article  MATH  Google Scholar 

  23. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012).

    Article  MATH  Google Scholar 

  24. Liu, Z. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).

    Article  MATH  Google Scholar 

  25. Yuan, C. et al. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019).

    Article  MATH  Google Scholar 

  26. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano. Lett. 13, 550 (2013).

    Article  MATH  Google Scholar 

  27. Franklin, A. D. Device Technology. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, 704 (2015).

    Article  MATH  Google Scholar 

  28. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  29. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 6308 (2016).

    Article  MATH  Google Scholar 

  30. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistor. Nat. Nanotechnol. 5, 858 (2010).

    Article  MATH  Google Scholar 

  31. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271 (2017).

    Article  Google Scholar 

  32. Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511 (2020).

    Article  Google Scholar 

  33. Lin, C. M. et al. Ultralow-k amorphous boron nitride based on hexagonal ring stacking framework for 300 mm silicon technology platform. Adv. Mater. Technol. 7, 2200022 (2022).

    Article  Google Scholar 

  34. Kim, K. et al. Ultralow-k amorphous boron nitride film for copper interconnect capping layer. IEEE Trans. Electron Devices 70, 2588 (2023).

    Article  MATH  Google Scholar 

  35. Sun, J. et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47, 4242 (2018).

    Article  MATH  Google Scholar 

  36. Balmain, W. H. Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen. J. Prakt. Chem. 27, 422 (1842).

    Article  Google Scholar 

  37. Lee, J. et al. Atomic layer deposition of layered boron nitride for large-area 2D electronics. ACS Appl. Mater. Interfaces 12, 36688 (2020).

    Article  Google Scholar 

  38. Ferguson, J. D., Weimer, A. W. & George, S. M. Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3. Thin Solid Films 413, 16 (2002).

    Article  MATH  Google Scholar 

  39. Pavlović, V., Kötter, H. R. & Meixner, C. Chemical vapor deposition of boron nitride using premixed borontrichloride and ammonia. J. Mater. Res. 6, 2393 (1991).

    Article  MATH  Google Scholar 

  40. Oh, H. & Yi, G.-C. Synthesis of atomically thin h-BN layers using BCl3 and NH3 by sequential-pulsed chemical vapor deposition on Cu foil. Nanomaterials 12, 80 (2022).

    Article  Google Scholar 

  41. Qin, L., Yu, J., Li, M., Liu, F. & Bai, X. Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology 22, 215602 (2011).

    Article  Google Scholar 

  42. Bansal, A. et al. Substrate modification during chemical vapor deposition of hBN on sapphire. ACS Appl. Mater. Interfaces 14, 54516 (2012).

    MATH  Google Scholar 

  43. Apaydin, R. O. et al. Comparative study of thermal and radical-enhanced methods for growing boron nitride films from diborane and ammonia. J. Vac. Sci. Technol. A 38, 033411 (2020).

    Article  MATH  Google Scholar 

  44. Andújar, J. L., Bertran, E. & Polo, M. C. Plasma-enhanced chemical vapor deposition of boron nitride thin films from B2H6-H2-NH3 and B2H6-N2 gas mixtures. J. Vac. Sci. Technol. A 16, 578 (1998).

    Article  Google Scholar 

  45. Rand, M. J. & Roberts, J. Preparation and properties of thin film boron nitride. J. Electrochem. Soc. 115, 423 (1968).

    Article  MATH  Google Scholar 

  46. Nakamura, K. Preparation and properties of boron nitride films by metal organic chemical vapor deposition. J. Electrochem. Soc. 133, 1120 (1986).

    Article  MATH  Google Scholar 

  47. Jeong, H. et al. Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci. Rep. 9, 5736 (2019).

    Article  MATH  Google Scholar 

  48. Kim, J. et al. Conformal growth of hexagonal boron nitride on high-aspect-ratio silicon-based nanotrenches. Chem. Mater. 35, 2429 (2023).

    Article  MATH  Google Scholar 

  49. Tokuyama, S. et al. Properties of methyl boron nitride film for next generation low-k interconnection. J. Appl. Phys. 47, 2492 (2008).

    Article  MATH  Google Scholar 

  50. Aoki, H. et al. Synthesis of methyl boron nitride film as low-k insulating film for LSI interconnection. Diam. Relat. Mater. 18, 1048 (2009).

    Article  MATH  Google Scholar 

  51. Aoki, H. et al. Boron carbon nitride film containing hydrogen for 2 nm node low-k interconnection. In 2009 International Symposium on VLSI Technology, Systems, and Applications 13–14 (IEEE, 2009).

  52. Sattari-Esfahlan, S. M. et al. Low-temperature direct growth of amorphous boron nitride films for high-performance nanoelectronic device applications. ACS Appl. Mater. Interfaces 15, 7274 (2023).

    Article  MATH  Google Scholar 

  53. Liu, D. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 1188 (2019).

    Article  MATH  Google Scholar 

  54. Zhang, D. et al. Thickness-tunable growth of ultra-large, continuous and high-dielectric h-BN thin films. J. Mater. Chem. C 7, 1871 (2019).

    Article  MATH  Google Scholar 

  55. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010).

    Article  MATH  Google Scholar 

  56. Zhou, H. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 7, 1232 (2014).

    Article  MATH  Google Scholar 

  57. Lu, Z. et al. Low-temperature synthesis of boron nitride as a large-scale passivation and protection layer for two-dimensional materials and high-performance devices. ACS Appl. Mater. Interfaces 14, 25984 (2022).

    Article  Google Scholar 

  58. Wang, L. X. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  MATH  Google Scholar 

  59. Yamamoto, M. et al. Low-temperature direct synthesis of multilayered h-BN without catalysts by inductively coupled plasma-enhanced chemical vapor deposition. ACS Omega 8, 5497 (2023).

    Article  MATH  Google Scholar 

  60. Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Article  MATH  Google Scholar 

  61. Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583 (2012).

    Article  MATH  Google Scholar 

  62. Müller, F., Stöwe, K. & Sachdev, H. Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 17, 3464 (2005).

    Article  Google Scholar 

  63. Auwärter, W., Suter, H. U., Sachdev, H. & Greber, T. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16, 343 (2004).

    Article  Google Scholar 

  64. Ma, K. Y., Kim, M. & Shin, H. S. Large-area hexagonal boron nitride layers by chemical vapor deposition: growth and applications for substrates, encapsulation, and membranes. Acc. Mater. Res. 3, 748 (2022).

    Article  MATH  Google Scholar 

  65. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  MATH  Google Scholar 

  66. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282 (2011).

    Article  MATH  Google Scholar 

  67. Lee, G.-H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9, 7019 (2015).

    Article  MATH  Google Scholar 

  68. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  MATH  Google Scholar 

  69. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219 (2020).

    Article  MATH  Google Scholar 

  70. Tay, R. Y. et al. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett. 106, 101901 (2015).

    Article  MATH  Google Scholar 

  71. Chen, C. Y. et al. Tailoring amorphous boron nitride for high-performance two-dimensional electronics. Nat. Commun. 15, 4016 (2024).

    Article  MATH  Google Scholar 

  72. Glavin, N. R. et al. Amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater. 26, 2640 (2016).

    Article  MATH  Google Scholar 

  73. Rice, A. et al. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride. J. Cryst. Growth 485, 90 (2018).

    Article  MATH  Google Scholar 

  74. Lee, S. H. et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci. Rep. 9, 10590 (2019).

    Article  MATH  Google Scholar 

  75. Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161 (2012).

    Article  MATH  Google Scholar 

  76. Wolf, G., Baumann, J., Baitalow, F. & Hofmann, F. P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim. Acta 343, 19 (2000).

    Article  MATH  Google Scholar 

  77. Vahlas, C., Caussat, B., Gladfelter, W. L., Senocq, F. & Gladfelter, E. J. Liquid and solid precursor delivery systems in gas phase processes. Recent Pat. Mater. Sci. 8, 91 (2015).

    Article  Google Scholar 

  78. Astié, V., Millon, C., Decams, J.-M. & Bartasyte, A. in Chemical Vapor Deposition for Nanotechnology (ed. Mandracci, P.) Ch. 2 (IntechOpen, 2018).

  79. Zhang, X., Lai, J. & Gray, T. Recent progress in low-temperature CVD growth of 2D materials. Oxf. Open Mater. Sci. 3, itad010 (2023).

    Article  Google Scholar 

  80. Ranjan, A., O’Shea, S. J., Bosman, M., Raghavan, N. & Pey, K. L. Molecular bridges link monolayers of hexagonal boron nitride during dielectric breakdown. ACS Appl. Mater. Interfaces 12, 55000 (2020).

    Article  Google Scholar 

  81. Fukamachi, S. et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126 (2023).

    Article  MATH  Google Scholar 

  82. Wang, Y. et al. Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate. Nat. Mater. 23, 1495–1501 (2024).

    Article  MATH  Google Scholar 

  83. Zhu, K. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57 (2023).

    Article  MATH  Google Scholar 

  84. Pazos, S. et al. Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications. Nat. Electron. 7, 557–566 (2014).

    Article  MATH  Google Scholar 

  85. Cai, Q. et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5, eaav0129 (2019).

    Article  Google Scholar 

  86. Sevik, C., Kinaci, A., Haskins, J. B. & Çağın, T. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011).

    Article  MATH  Google Scholar 

  87. Woon, W. Y. et al. Thermal dissipation in stacked devices. In 2023 International Electron Devices Meeting (IEDM) 19.3.1–19.3.4 (IEEE, 2023).

  88. Simonov, K. A. et al. Controllable oxidation of h-BN monolayer on Ir(111) studied by core-level spectroscopies. Surf. Sci. 606, 564 (2012).

    Article  MATH  Google Scholar 

  89. Zhao, Y., Wu, X., Yang, J. & Zeng, X. C. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Phys. Chem. Chem. Phys. 14, 5545 (2012).

    Article  MATH  Google Scholar 

  90. Hui, W. C. Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film. In Proc. SPIE Vol. 5276, 143–153 (SPIE, 2004).

    Article  Google Scholar 

  91. Zhang, Z., Liu, Y., Yang, Y. & Yakobson, B. I. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 16, 1398 (2016).

    Article  MATH  Google Scholar 

  92. Hirvonen, P. et al. Phase-field crystal model for heterostructures. Phys. Rev. B 100, 165412 (2019).

    Article  MATH  Google Scholar 

  93. Liu, H. et al. Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition. 2D Mater. 9, 015004 (2021).

    Article  MATH  Google Scholar 

  94. Ji, Y., Momeni, K. & Chen, L. Q. A multiscale insight into the growth of h-BN: effect of the enclosure. 2D Mater. 8, 035033 (2021).

    Article  Google Scholar 

  95. Liu, D. J. & Evans, J. W. Realistic multisite lattice-gas modelling and KMC simulation of catalytic surface reactions: kinetics and multiscale spatial behaviour for CO-oxidation on metal (100) surfaces. Prog. Surf. Sci. 88, 393 (2013).

    Article  MATH  Google Scholar 

  96. Shang, C. & Liu, Z. P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838 (2013).

    Article  MATH  Google Scholar 

  97. Ohno, K. & Osada, Y. in Advances in the Theory of Quantum Systems in Chemistry and Physics Vol. 22 (eds Hoggan, P. E. et al.) 381–394 (Springer, 2011).

  98. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562 (2002).

    Article  Google Scholar 

  99. Tan, T. B., Schultz, A. J. & Kofke, D. A. Suitability of umbrella- and overlap-sampling methods for calculation of solid-phase free energies by molecular simulation. J. Chem. Phys. 132, 214103 (2010).

    Article  Google Scholar 

  100. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  MATH  Google Scholar 

  101. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article  MATH  Google Scholar 

  102. Li, L. et al. Towards accurate and efficient process simulations based on atomistic and neural network approaches. In International Electron Devices Meeting (IEDM) 15.6.1–15.6.4 (IEEE, 2022).

  103. Kaya, O., Colombo, L., Antidormi, A., Lanza, M. & Roche, S. Revealing the improved stability of amorphous boron-nitride upon carbon doping. Nanoscale Horiz. 8, 361 (2023).

    Article  Google Scholar 

  104. Tsai, C. L., Delaney, K. T. & Fredrickson, G. H. Using particle swarm optimization and SCFT to discover globally stable morphologies of block copolymers. Macromolecules 55, 5249 (2022).

    Article  MATH  Google Scholar 

  105. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Article  MATH  Google Scholar 

  106. Magyari-Köpe, B., Hsu, H. & Wu. J. Quantum mechanical modeling techniques for high-performance low-k amorphous material engineering: a showcase for aBN. In 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 137–140 (IEEE, 2023).

Download references

Acknowledgements

The authors gratefully acknowledge support from the Material Analysis Team from Taiwan Semiconductor Manufacturing Company in characterization.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.C., C.-H.H., B.M.-K. and W.-Y.W. researched data for the article. All authors contributed substantially to discussion of the content. S.-H.C., B.M.-K. and W.-Y.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Wei-Yen Woon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Jae-Hyun Lee, Hyeon Suk Shin and Jianfeng Jiang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SH., Magyari-Kope, B., Hsu, CH. et al. Boron nitride for applications in microelectronics. Nat Rev Electr Eng 2, 205–214 (2025). https://doi.org/10.1038/s44287-025-00141-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00141-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing