Abstract
In this Perspective, we survey recent research on boron nitride (BN) including synthesis, integration and simulation aspects from the material engineering perspective for applications in microelectronics industry. First, we discuss the BN history and its process development milestones, with an emphasis on amorphous BN and hexagonal BN deposition process, highlighting the need for deep understanding of precursor and surface chemistry as well as integration issues. Next, we summarize recent material synthesis simulation progress for BN in the context of tackling complex amorphous material network formation mechanisms and discuss new methodology development needs to address current challenges. We propose future research directions towards the co-development between experimental and modelling approaches to further accelerate discovery of additional material property improvements. Finally, overall trends in microelectronic applications of BN and perspectives are presented and categorized into two main directions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
International Roadmap for Devices and Systems: More Moore (IEEE, 2022).
Shamiryan, D., Abell, T., Iacopi, F. & Maex, K. Low-k dielectric materials. Mater. Today 7, 34 (2004).
Venema, L. Silicon electronics and beyond. Nature 479, 309 (2011).
Moon, J. H. et al. Materials quest for advanced interconnect metallization in integrated circuits. Adv. Sci. 10, 2207321 (2023).
Chang, W. et al. 300 mm process integration for 0.13 μm generation with Cu/low-k interconnect technology. In International Electron Devices Meeting (IEDM) 28.2.1–28.2.4 (IEEE, 2001).
International Technology Roadmap for Semiconductors: Interconnect (ITRS, 2004).
Kim, Y. H., Hwang, M. S., Kim, H. J., Kim, J. Y. & Lee, Y. Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).
Michalak, D. J., Blackwell, J. M. & Torres, J. M. Porosity scaling strategies for low-k films. J. Mater. Res. 30, 3363 (2015).
Maex, K. et al. Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).
Hatton, B. D. et al. Materials chemistry for low-k materials. Mater. Today 9, 22 (2006).
Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011).
Prawoto, C., Ma, Z., Xiao, Y., Raju, S. & Chan, M. Air-gap technology with a large void-fraction for global interconnect delay reduction. IEEE Trans. Electron Devices 68, 2071 (2021).
Besien, E. V. et al. Influence of porosity on electrical properties of low-k dielectrics. Microelectron. Eng. 92, 59 (2012).
Hoofman, R. et al. Challenges in the implementation of low-k dielectrics in the back-end of line. Microelectron. Eng. 80, 337 (2005).
Vanstreels, K., Ciofi, I., Barbarin, Y. & Baklanov, M. Influence of porosity on dielectric breakdown of ultralow-k dielectrics. J. Vac. Sci. Technol. B 31, 050604 (2013).
Li, M. Y., Su, S. K., Wong, H. S. P. & Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 567, 169 (2019).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).
Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504 (2022).
Woon, W. Y. et al. Integration and characterization of high thermal conductivity materials for heat dissipation in stacked devices. In 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 3.4.1–3.4.2 (IEEE, 2024).
Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262 (2016).
Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004).
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012).
Liu, Z. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).
Yuan, C. et al. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019).
Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano. Lett. 13, 550 (2013).
Franklin, A. D. Device Technology. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, 704 (2015).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 6308 (2016).
Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistor. Nat. Nanotechnol. 5, 858 (2010).
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271 (2017).
Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511 (2020).
Lin, C. M. et al. Ultralow-k amorphous boron nitride based on hexagonal ring stacking framework for 300 mm silicon technology platform. Adv. Mater. Technol. 7, 2200022 (2022).
Kim, K. et al. Ultralow-k amorphous boron nitride film for copper interconnect capping layer. IEEE Trans. Electron Devices 70, 2588 (2023).
Sun, J. et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47, 4242 (2018).
Balmain, W. H. Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen. J. Prakt. Chem. 27, 422 (1842).
Lee, J. et al. Atomic layer deposition of layered boron nitride for large-area 2D electronics. ACS Appl. Mater. Interfaces 12, 36688 (2020).
Ferguson, J. D., Weimer, A. W. & George, S. M. Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3. Thin Solid Films 413, 16 (2002).
Pavlović, V., Kötter, H. R. & Meixner, C. Chemical vapor deposition of boron nitride using premixed borontrichloride and ammonia. J. Mater. Res. 6, 2393 (1991).
Oh, H. & Yi, G.-C. Synthesis of atomically thin h-BN layers using BCl3 and NH3 by sequential-pulsed chemical vapor deposition on Cu foil. Nanomaterials 12, 80 (2022).
Qin, L., Yu, J., Li, M., Liu, F. & Bai, X. Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology 22, 215602 (2011).
Bansal, A. et al. Substrate modification during chemical vapor deposition of hBN on sapphire. ACS Appl. Mater. Interfaces 14, 54516 (2012).
Apaydin, R. O. et al. Comparative study of thermal and radical-enhanced methods for growing boron nitride films from diborane and ammonia. J. Vac. Sci. Technol. A 38, 033411 (2020).
Andújar, J. L., Bertran, E. & Polo, M. C. Plasma-enhanced chemical vapor deposition of boron nitride thin films from B2H6-H2-NH3 and B2H6-N2 gas mixtures. J. Vac. Sci. Technol. A 16, 578 (1998).
Rand, M. J. & Roberts, J. Preparation and properties of thin film boron nitride. J. Electrochem. Soc. 115, 423 (1968).
Nakamura, K. Preparation and properties of boron nitride films by metal organic chemical vapor deposition. J. Electrochem. Soc. 133, 1120 (1986).
Jeong, H. et al. Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci. Rep. 9, 5736 (2019).
Kim, J. et al. Conformal growth of hexagonal boron nitride on high-aspect-ratio silicon-based nanotrenches. Chem. Mater. 35, 2429 (2023).
Tokuyama, S. et al. Properties of methyl boron nitride film for next generation low-k interconnection. J. Appl. Phys. 47, 2492 (2008).
Aoki, H. et al. Synthesis of methyl boron nitride film as low-k insulating film for LSI interconnection. Diam. Relat. Mater. 18, 1048 (2009).
Aoki, H. et al. Boron carbon nitride film containing hydrogen for 2 nm node low-k interconnection. In 2009 International Symposium on VLSI Technology, Systems, and Applications 13–14 (IEEE, 2009).
Sattari-Esfahlan, S. M. et al. Low-temperature direct growth of amorphous boron nitride films for high-performance nanoelectronic device applications. ACS Appl. Mater. Interfaces 15, 7274 (2023).
Liu, D. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 1188 (2019).
Zhang, D. et al. Thickness-tunable growth of ultra-large, continuous and high-dielectric h-BN thin films. J. Mater. Chem. C 7, 1871 (2019).
Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010).
Zhou, H. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 7, 1232 (2014).
Lu, Z. et al. Low-temperature synthesis of boron nitride as a large-scale passivation and protection layer for two-dimensional materials and high-performance devices. ACS Appl. Mater. Interfaces 14, 25984 (2022).
Wang, L. X. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).
Yamamoto, M. et al. Low-temperature direct synthesis of multilayered h-BN without catalysts by inductively coupled plasma-enhanced chemical vapor deposition. ACS Omega 8, 5497 (2023).
Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).
Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583 (2012).
Müller, F., Stöwe, K. & Sachdev, H. Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 17, 3464 (2005).
Auwärter, W., Suter, H. U., Sachdev, H. & Greber, T. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16, 343 (2004).
Ma, K. Y., Kim, M. & Shin, H. S. Large-area hexagonal boron nitride layers by chemical vapor deposition: growth and applications for substrates, encapsulation, and membranes. Acc. Mater. Res. 3, 748 (2022).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282 (2011).
Lee, G.-H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9, 7019 (2015).
Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219 (2020).
Tay, R. Y. et al. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett. 106, 101901 (2015).
Chen, C. Y. et al. Tailoring amorphous boron nitride for high-performance two-dimensional electronics. Nat. Commun. 15, 4016 (2024).
Glavin, N. R. et al. Amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater. 26, 2640 (2016).
Rice, A. et al. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride. J. Cryst. Growth 485, 90 (2018).
Lee, S. H. et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci. Rep. 9, 10590 (2019).
Kim, K. K. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161 (2012).
Wolf, G., Baumann, J., Baitalow, F. & Hofmann, F. P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim. Acta 343, 19 (2000).
Vahlas, C., Caussat, B., Gladfelter, W. L., Senocq, F. & Gladfelter, E. J. Liquid and solid precursor delivery systems in gas phase processes. Recent Pat. Mater. Sci. 8, 91 (2015).
Astié, V., Millon, C., Decams, J.-M. & Bartasyte, A. in Chemical Vapor Deposition for Nanotechnology (ed. Mandracci, P.) Ch. 2 (IntechOpen, 2018).
Zhang, X., Lai, J. & Gray, T. Recent progress in low-temperature CVD growth of 2D materials. Oxf. Open Mater. Sci. 3, itad010 (2023).
Ranjan, A., O’Shea, S. J., Bosman, M., Raghavan, N. & Pey, K. L. Molecular bridges link monolayers of hexagonal boron nitride during dielectric breakdown. ACS Appl. Mater. Interfaces 12, 55000 (2020).
Fukamachi, S. et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126 (2023).
Wang, Y. et al. Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate. Nat. Mater. 23, 1495–1501 (2024).
Zhu, K. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57 (2023).
Pazos, S. et al. Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications. Nat. Electron. 7, 557–566 (2014).
Cai, Q. et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5, eaav0129 (2019).
Sevik, C., Kinaci, A., Haskins, J. B. & Çağın, T. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011).
Woon, W. Y. et al. Thermal dissipation in stacked devices. In 2023 International Electron Devices Meeting (IEDM) 19.3.1–19.3.4 (IEEE, 2023).
Simonov, K. A. et al. Controllable oxidation of h-BN monolayer on Ir(111) studied by core-level spectroscopies. Surf. Sci. 606, 564 (2012).
Zhao, Y., Wu, X., Yang, J. & Zeng, X. C. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Phys. Chem. Chem. Phys. 14, 5545 (2012).
Hui, W. C. Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film. In Proc. SPIE Vol. 5276, 143–153 (SPIE, 2004).
Zhang, Z., Liu, Y., Yang, Y. & Yakobson, B. I. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 16, 1398 (2016).
Hirvonen, P. et al. Phase-field crystal model for heterostructures. Phys. Rev. B 100, 165412 (2019).
Liu, H. et al. Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition. 2D Mater. 9, 015004 (2021).
Ji, Y., Momeni, K. & Chen, L. Q. A multiscale insight into the growth of h-BN: effect of the enclosure. 2D Mater. 8, 035033 (2021).
Liu, D. J. & Evans, J. W. Realistic multisite lattice-gas modelling and KMC simulation of catalytic surface reactions: kinetics and multiscale spatial behaviour for CO-oxidation on metal (100) surfaces. Prog. Surf. Sci. 88, 393 (2013).
Shang, C. & Liu, Z. P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838 (2013).
Ohno, K. & Osada, Y. in Advances in the Theory of Quantum Systems in Chemistry and Physics Vol. 22 (eds Hoggan, P. E. et al.) 381–394 (Springer, 2011).
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562 (2002).
Tan, T. B., Schultz, A. J. & Kofke, D. A. Suitability of umbrella- and overlap-sampling methods for calculation of solid-phase free energies by molecular simulation. J. Chem. Phys. 132, 214103 (2010).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).
Li, L. et al. Towards accurate and efficient process simulations based on atomistic and neural network approaches. In International Electron Devices Meeting (IEDM) 15.6.1–15.6.4 (IEEE, 2022).
Kaya, O., Colombo, L., Antidormi, A., Lanza, M. & Roche, S. Revealing the improved stability of amorphous boron-nitride upon carbon doping. Nanoscale Horiz. 8, 361 (2023).
Tsai, C. L., Delaney, K. T. & Fredrickson, G. H. Using particle swarm optimization and SCFT to discover globally stable morphologies of block copolymers. Macromolecules 55, 5249 (2022).
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).
Magyari-Köpe, B., Hsu, H. & Wu. J. Quantum mechanical modeling techniques for high-performance low-k amorphous material engineering: a showcase for aBN. In 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 137–140 (IEEE, 2023).
Acknowledgements
The authors gratefully acknowledge support from the Material Analysis Team from Taiwan Semiconductor Manufacturing Company in characterization.
Author information
Authors and Affiliations
Contributions
S.-H.C., C.-H.H., B.M.-K. and W.-Y.W. researched data for the article. All authors contributed substantially to discussion of the content. S.-H.C., B.M.-K. and W.-Y.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks Jae-Hyun Lee, Hyeon Suk Shin and Jianfeng Jiang for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, SH., Magyari-Kope, B., Hsu, CH. et al. Boron nitride for applications in microelectronics. Nat Rev Electr Eng 2, 205–214 (2025). https://doi.org/10.1038/s44287-025-00141-1
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44287-025-00141-1
This article is cited by
-
Future interconnect materials for highly integrated semiconductor devices
Nature Reviews Electrical Engineering (2025)


