Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanostructured materials for next-generation display technology

Abstract

Nanostructured materials, such as quantum dots (QDs), metal oxide nanoparticles and metal halide perovskite nanostructures, are promising for next-generation display technology owing to their low-cost solution process, high photoluminescence quantum yield, narrow emission, wide colour gamut and high colour purity. Over the past decade, commercial displays based on QD photoluminescence have been successfully introduced, such as QD-enhanced liquid crystal displays, QD organic light-emitting diodes and QD light-emitting diodes. Electroluminescence (EL) from nanostructured materials represents one of the ultimate goals for future display technology, owing to its high efficiency and simple device structure. However, the electroluminescent application of these nanomaterials is still in its infancy, primarily owing to the instability of blue devices and immature mass-production technologies. This Review introduces the progress of photoluminescent QDs, with a focus on advancements in EL. We explore improvements in materials and device design to enhance EL stability and to examine critical mass-production technologies, including high-resolution display innovations. Finally, we outline future research direction for enhancing operation stability of deep-blue EL.

Key points

  • Nanostructured materials (NMs), such as quantum dots, metal oxides and perovskites, have great potential to be applied in next-generation display technologies owing to their excellent optoelectronic properties.

  • Research in the stability of NMs offers valuable insights into improving the electroluminescence (EL) performance of NMs, pushing the commercialization of solution-processable light-emitting diodes.

  • Photoluminescence application of quantum dots has been successful for decades and their EL is on the corner. Engineering methodologies can enhance the performance of EL devices and clear the way for commercialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Mechanism of quantum dot light-emitting diode stability.
Fig. 3: Surface modification of quantum dots.
Fig. 4: Energy diagram of quantum dot light-emitting diodes.
Fig. 5: Mass-production technology of S-quantum dot light-emitting diodes.

Similar content being viewed by others

References

  1. Chen, H., He, J. & Wu, S. T. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Sel. Top. Quantum Electron. 23, 1–12 (2017).

    MATH  Google Scholar 

  2. Triana, M. A., Hsiang, E. L., Zhang, C., Dong, Y. & Wu, S. T. Luminescent nanomaterials for energy-efficient display and healthcare. ACS Energy Lett. 7, 1001–1020 (2022).

    Article  MATH  Google Scholar 

  3. Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  Google Scholar 

  4. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014). To balance the device charge, design an interface layer, which achieves stable high external quantum efficiency (>20%) S-QLED for the first time. It proves that device design is an efficient route for fabricating efficient and stable S-QLED.

    Article  MATH  Google Scholar 

  5. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  MATH  Google Scholar 

  6. Lee, T. et al. Bright and stable quantum dot light‐emitting diodes. Adv. Mater. 34, 2106276 (2022).

    Article  Google Scholar 

  7. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article  MATH  Google Scholar 

  8. Chen, X. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 14, 284 (2023). The article provides state-of-the-art core(shell) designs for achieving efficient and stable deep-blue Cd-based quantum dots.

    Article  MATH  Google Scholar 

  9. Xie, L. et al. High‐performance inkjet‐printed blue QLED enabled by crosslinked and intertwined hole transport layer. Adv. Opt. Mater. 10, 2200935 (2022).

    Article  Google Scholar 

  10. Fu, Z. et al. Direct photo-patterning of efficient and stable quantum dot light-emitting diodes via light-triggered, carbocation-enabled ligand stripping. Nano Lett. 23, 2000–2008 (2023).

    Article  MATH  Google Scholar 

  11. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  MATH  Google Scholar 

  12. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  MATH  Google Scholar 

  13. Liu, A. et al. High color-purity and efficient pure-blue perovskite light-emitting diodes based on strongly confined monodispersed quantum dots. Nano Lett. 23, 2405–2411 (2023).

    Article  MATH  Google Scholar 

  14. Huang, S. et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces 9, 7249–7258 (2017).

    Article  MATH  Google Scholar 

  15. Levermore, P. et al. 38-1: Invited paper: ink-jet-printed OLEDs for display applications. SID Symp. Dig. Tech. Pap. 47, 484–486 (2016).

    Article  Google Scholar 

  16. Yamada, T. et al. 57-2: Invited paper: latest development of high-performance OLED material suitable for printing. SID Symp. Dig. Tech. Pap. 48, 845–848 (2017).

    Article  MATH  Google Scholar 

  17. Luo, C. et al. Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals. Adv. Funct. Mater. 30, 1–9 (2020).

    Article  MATH  Google Scholar 

  18. Bi, C. et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv. Mater. 33, e2006722 (2021).

    Article  Google Scholar 

  19. Long, Z. et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2, 296–304 (2023).

    Article  MATH  Google Scholar 

  20. Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).

    Article  MATH  Google Scholar 

  21. Pu, C. et al. Electrochemically-stable ligands bridge the photoluminescence–electroluminescence gap of quantum dots. Nat. Commun. 11, 937 (2020).

    Article  MATH  Google Scholar 

  22. Chang, J. H. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 12, 10231–10239 (2018). It unravelled two important mechanisms of external quantum efficiency drop of S-QLEDs. One is the luminance efficiency drop of the QD emissive layer owing to Auger recombination. The other is physical damage to hole transport layer, which is caused by leakage current.

    Article  MATH  Google Scholar 

  23. Xu, X., Zhong, Y. & Shao, Z. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 1, 410–424 (2019).

    Article  MATH  Google Scholar 

  24. Muscarella, L. A. & Hutter, E. M. Halide double-perovskite semiconductors beyond photovoltaics. ACS Energy Lett. 7, 2128–2135 (2022).

    Article  Google Scholar 

  25. Vasala, S. & Karppinen, M. A2B′B″O6 perovskites: a review. Prog. Solid State Chem. 43, 1–36 (2015).

    Article  MATH  Google Scholar 

  26. Volonakis, G. et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016).

    Article  MATH  Google Scholar 

  27. Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    Article  MATH  Google Scholar 

  28. Kyung, W. et al. Electric-field-driven octahedral rotation in perovskite. npj Quantum Mater. 6, 5 (2021).

    Article  MATH  Google Scholar 

  29. Akkerman, Q. A. & Manna, L. What defines a halide perovskite? ACS Energy Lett. 5, 604–610 (2020).

    Article  MATH  Google Scholar 

  30. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  MATH  Google Scholar 

  31. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    Article  Google Scholar 

  32. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  MATH  Google Scholar 

  33. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245–248 (2018).

    Article  MATH  Google Scholar 

  34. Schmidt, L. C. et al. Non-template synthesis of CH3NH3PbBr3 perovskite nanoparticles non-template synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  MATH  Google Scholar 

  35. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  MATH  Google Scholar 

  36. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  37. Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  MATH  Google Scholar 

  38. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    Article  MATH  Google Scholar 

  39. Yang, J.-N. N. et al. High color purity and efficient green light-emitting diode using perovskite nanocrystals with the size overly exceeding Bohr exciton diameter. J. Am. Chem. Soc. 143, 19928–19937 (2021).

    Article  Google Scholar 

  40. Chu, S. et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021).

    Article  MATH  Google Scholar 

  41. Yuan, F. et al. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6, 1–9 (2020).

    Article  MATH  Google Scholar 

  42. Han, D. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622, 493–498 (2023).

    Article  Google Scholar 

  43. Gao, Y. et al. Stable bright perovskite nanoparticle thin porous films for color enhancement in modern liquid crystal displays. Nanoscale 13, 6400–6409 (2021).

    Article  MATH  Google Scholar 

  44. Fan, C. et al. Ultrastable and highly efficient CsPbBr3 composites achieved by dual‐matrix encapsulation for display devices. InfoMat 5, e12417 (2023).

    Article  Google Scholar 

  45. Tian, T. et al. Large-area waterproof and durable perovskite luminescent textiles. Nat. Commun. 14, 234 (2023).

    Article  MATH  Google Scholar 

  46. van Sark, W. G. J. H. M., Frederix, P. L. T. M., Bol, A. A., Gerritsen, H. C. & Meijerink, A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3, 871–879 (2002).

    Article  Google Scholar 

  47. Dembski, S. et al. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids. Small 4, 1516–1526 (2008).

    Article  MATH  Google Scholar 

  48. Pechstedt, K., Whittle, T., Baumberg, J. & Melvin, T. Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water molecules. J. Phys. Chem. C 114, 12069–12077 (2010).

    Article  Google Scholar 

  49. Jasinski, J. et al. Rapid oxidation of InP nanoparticles in air. Solid State Commun. 141, 624–627 (2007).

    Article  MATH  Google Scholar 

  50. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  MATH  Google Scholar 

  51. Chen, O. et al. Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  Google Scholar 

  52. Bae, W. K., Char, K., Hur, H. & Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 20, 531–539 (2008).

    Article  MATH  Google Scholar 

  53. Zhang, H. et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness. J. Phys. Chem. Lett. 11, 960–967 (2020).

    Article  MATH  Google Scholar 

  54. Li, H. et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett 22, 4067–4073 (2022).

    Article  MATH  Google Scholar 

  55. Lim, J. et al. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater. 19, 1927–1932 (2007).

    Article  MATH  Google Scholar 

  56. Kim, S. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134, 3804–3809 (2012).

    Article  MATH  Google Scholar 

  57. Song, J. et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, 1800764 (2018).

    Article  Google Scholar 

  58. Haydous, F., Gardner, J. M. & Cappel, U. B. The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals. J. Mater. Chem. A 9, 23419–23443 (2021).

    Article  Google Scholar 

  59. Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    Article  MATH  Google Scholar 

  60. Brown, A. A. M. et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes. Nanoscale 11, 12370–12380 (2019).

    Article  MATH  Google Scholar 

  61. Ahmed, G. H., Yin, J., Bakr, O. M. & Mohammed, O. F. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett. 6, 1340–1357 (2021).

    Article  Google Scholar 

  62. Zhang, C. et al. Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 30, 1910582 (2020).

    Article  Google Scholar 

  63. Ravi, V. K., Saikia, S., Yadav, S., Nawale, V. V. & Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 5, 1794–1796 (2020).

    Article  Google Scholar 

  64. Lim, J., Park, Y. S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018). Excellent materials core(shell) design for achieving droop-free QLEDs. The fabricated device achieved very high stability and opened the door of continuously gradient alloy quantum dot synthesis for electroluminescence.

    Article  Google Scholar 

  65. Liu, M. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 15, 379–385 (2021).

    Article  MATH  Google Scholar 

  66. Sun, Y. et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).

    Article  MATH  Google Scholar 

  67. Hu, Z., Liu, S., Qin, H., Zhou, J. & Peng, X. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 142, 4254–4264 (2020).

    Article  MATH  Google Scholar 

  68. Song, J. et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

    Article  Google Scholar 

  69. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  MATH  Google Scholar 

  70. Aranda, C. A., Caliò, L. & Salado, M. Toward commercialization of stable devices: an overview on solar cells. Crystals 11, 519 (2021).

    Article  MATH  Google Scholar 

  71. Kobayashi, E., Tsuji, R., Martineau, D., Hinsch, A. & Ito, S. Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Rep. Phys. Sci. 2, 100648 (2021).

    Article  Google Scholar 

  72. Cheng, F. et al. 85 °C/85%‐stable n‐i‐p perovskite photovoltaics with NiOx hole transport layers promoted by perovskite quantum dots. Adv. Sci. 9, 2201573 (2022).

    Article  Google Scholar 

  73. Zhao, L. et al. Thermal management enables bright and stable perovskite light‐emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  Google Scholar 

  74. Zou, C., Liu, Y., Ginger, D. S. & Lin, L. Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020).

    Article  Google Scholar 

  75. Li, N., Jia, Y., Guo, Y. & Zhao, N. Ion migration in perovskite light‐emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34, 2108102 (2022).

    Article  Google Scholar 

  76. Yamada, Y. & Kanemitsu, Y. Electron–phonon interactions in halide perovskites. NPG Asia Mater. 14, 48 (2022).

    Article  MATH  Google Scholar 

  77. Ricciardulli, A. G., Yang, S., Smet, J. H. & Saliba, M. Emerging perovskite monolayers. Nat. Mater. 20, 1325–1336 (2021).

    Article  Google Scholar 

  78. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  MATH  Google Scholar 

  79. Gottesman, R. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015).

    Article  MATH  Google Scholar 

  80. Zhao, Y. C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light Sci. Appl. 6, e16243–8 (2017).

    Article  Google Scholar 

  81. Kim, G. Y., Senocrate, A., Wang, Y., Moia, D. & Maier, J. Photo-effect on ion transport in mixed cation and halide perovskites and implications for photo-demixing. Angew. Chem. Int. Ed. 60, 820–826 (2021).

    Article  Google Scholar 

  82. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  83. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  MATH  Google Scholar 

  84. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  Google Scholar 

  85. Ye, C., Jiang, J., Zou, S., Mi, W. & Xiao, Y. Core–shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc. 144, 9707–9714 (2022).

    Article  MATH  Google Scholar 

  86. Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic–inorganic perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

    Article  MATH  Google Scholar 

  87. Liu, Z. et al. Perovskite light‐emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  Google Scholar 

  88. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). Meticulous core(shell) nano-3D structure via a novel fabrication process achieves ultra-bright, efficient and stable perovskite LEDs.

    Article  MATH  Google Scholar 

  89. Chen, J. et al. Glutamine induced high‐quality perovskite film to improve the efficiency of NIR perovskite light‐emitting diodes. Small 19, 2207520 (2023).

    Article  Google Scholar 

  90. Lian, Y. et al. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 13, 3845 (2022).

    Article  MATH  Google Scholar 

  91. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  MATH  Google Scholar 

  92. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  MATH  Google Scholar 

  93. Kim, Y. H. W. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  MATH  Google Scholar 

  94. Yuan, S. et al. Overcoming degradation pathways to achieve stable blue perovskite light-emitting diodes. ACS Energy Lett. 7, 1348–1354 (2022).

    Article  MATH  Google Scholar 

  95. Zhang, D., Eaton, S. W., Yu, Y., Dou, L. & Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015).

    Article  Google Scholar 

  96. Gomez, L. et al. Extraordinary interfacial stitching between single all-inorganic perovskite nanocrystals. ACS Appl. Mater. Interfaces 10, 5984–5991 (2018).

    Article  MATH  Google Scholar 

  97. Yang, D. et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 31, 1–8 (2019).

    Article  Google Scholar 

  98. Zeng, Q. et al. Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands. ACS Energy Lett. 7, 1963–1970 (2022).

    Article  MATH  Google Scholar 

  99. Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    Article  MATH  Google Scholar 

  100. Bi, C. et al. Suppressing Auger recombination of perovskite quantum dots for efficient pure-blue-light-emitting diodes. ACS Energy Lett. 8, 731–739 (2023).

    Article  MATH  Google Scholar 

  101. Wan, Q. et al. Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 8, 927–934 (2023).

    Article  MATH  Google Scholar 

  102. Wang, H. et al. Molecule‐induced p‐doping in perovskite nanocrystals enables efficient color‐saturated red light‐emitting diodes. Small 16, 2001062 (2020).

    Article  Google Scholar 

  103. He, Y. et al. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 5, eaax4424 (2019).

    Article  Google Scholar 

  104. Jiang, Y., Wei, J. & Yuan, M. Energy-funneling process in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 12, 2593–2606 (2021).

    Article  MATH  Google Scholar 

  105. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  MATH  Google Scholar 

  106. Chu, Z. et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat. Electron. 6, 360–369 (2023).

    Article  MATH  Google Scholar 

  107. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  MATH  Google Scholar 

  108. Ding, S. et al. Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nat. Photon. 18, 363–370 (2024). Profound elucidation of fundamental origin of perovskite instability and phase dimension resolving of stable and efficient quasi-2D perovskite LEDs.

    Article  MATH  Google Scholar 

  109. Guerrero, A. et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016).

    Article  MATH  Google Scholar 

  110. Yuan, Y. et al. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 6, 1–7 (2016).

    Article  Google Scholar 

  111. Kerner, R. A. et al. Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7, 041103 (2019).

    Article  MATH  Google Scholar 

  112. Nguyen, H. T., Duong, A. T. & Lee, S. Investigation the effect of different surface ligand treatments on luminescence and performance of quantum dot LEDs. J. Mater. Res. 36, 3309–3316 (2021).

    Article  MATH  Google Scholar 

  113. Liu, A., Bi, C. & Tian, J. All solution‐processed high performance pure‐blue perovskite quantum‐dot light‐emitting diodes. Adv. Funct. Mater. 32, 2207069 (2022).

    Article  Google Scholar 

  114. Zhang, W. et al. Positive aging effect of ZnO nanoparticles induced by surface stabilization. J. Phys. Chem. Lett. 11, 5863–5870 (2020).

    Article  MATH  Google Scholar 

  115. Ding, K. et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 9, 20231–20238 (2017).

    Article  Google Scholar 

  116. Wang, L. et al. Mg-doped ZnO nanoparticle films as the interlayer between the ZnO electron transport layer and InP quantum dot layer for light-emitting diodes. J. Phys. Chem. C 124, 8758–8765 (2020).

    Article  MATH  Google Scholar 

  117. Kim, H. M., Geng, D., Kim, J., Hwang, E. & Jang, J. Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes. ACS Appl. Mater. Interfaces 8, 28727–28736 (2016).

    Article  MATH  Google Scholar 

  118. Chen, D. D. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 32, e2006178 (2020).

    Article  Google Scholar 

  119. Chen, Z. & Chen, S. Efficient and stable quantum‐dot light‐emitting diodes enabled by tin oxide multifunctional electron transport layer. Adv. Opt. Mater. 10, 2102404 (2022).

    Article  Google Scholar 

  120. Wang, Y., Zhang, H. & Ji, W. Efficient quantum-dot light-emitting diodes based on solvent-annealed SnO2 electron-transport layers. ACS Appl. Electron. Mater. 5, 537–543 (2023).

    Article  MATH  Google Scholar 

  121. Ye, Z. et al. Solution-processed quantum-dot light-emitting diodes combining ultrahigh operational stability, shelf stability, and luminance. npj Flex. Electron. 6, 96 (2022).

    Article  MATH  Google Scholar 

  122. Tian, Y. et al. Efficient quantum-dot light-emitting diodes featuring the interfacial carrier relaxation and exciton recycling. Mater. Today Energy 20, 100649 (2021).

    Article  MATH  Google Scholar 

  123. Qi, D. et al. Finely controlled synthesis of Zn1−xMgxO nanoparticles with uniform size distribution used as electron transport materials for red QLEDs. ACS Appl. Electron. Mater. 4, 1875–1881 (2022).

    Article  MATH  Google Scholar 

  124. Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Article  MATH  Google Scholar 

  125. Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5, 543–548 (2011). This study is the first to prepare QLED devices using an all-solution process, greatly improving the efficiency and stability of QLEDs by the application of zinc oxide nanoparticles as electron transport layers.

    Article  Google Scholar 

  126. Xiang, C. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 11, 1646 (2020). By adapting the idea of dual ionic passivation of QDs, ink-jet-printed QLEDs with an external quantum efficiency exceeding 16% and a halflife of more than 1,721,000 h were realized, fulfilling the basic requirements of commercial mass production.

    Article  MATH  Google Scholar 

  127. Alexandrov, A., Zvaigzne, M., Lypenko, D., Nabiev, I. & Samokhvalov, P. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 10, 1–11 (2020).

    Article  Google Scholar 

  128. Yang, X. et al. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy 46, 229–233 (2018).

    Article  MATH  Google Scholar 

  129. Han, S. et al. Synthesis of WOn-WX2 (n = 2.7, 2.9; X = S, Se) heterostructures for highly efficient green quantum dot light-emitting diodes. Angew. Chem. Int. Ed. 56, 10486–10490 (2017).

    Article  MATH  Google Scholar 

  130. Wang, F. et al. Highly efficient and super stable full-color quantum dots light-emitting diodes with solution-processed all-inorganic charge transport layers. Small 17, 1–11 (2021).

    Google Scholar 

  131. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).

    Article  Google Scholar 

  132. Hwang, J. D. & Wang, S. T. High-performance multicolor p-Ag:NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx. Mater. Sci. Semicond. Process. 139, 106376 (2022).

    Article  Google Scholar 

  133. Zhang, X., Li, D., Zhang, Z., Liu, H. & Wang, S. Constructing effective hole transport channels in cross‐linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv. Sci. 9, 2200450 (2022).

    Article  Google Scholar 

  134. Tang, P. et al. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer. ACS Appl. Mater. Interfaces 12, 13087–13095 (2020).

    Article  MATH  Google Scholar 

  135. Xu, M. et al. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Res. 15, 7453–7459 (2022).

    Article  MATH  Google Scholar 

  136. Jang, E. et al. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 22, 3076–3080 (2010).

    Article  MATH  Google Scholar 

  137. Chiang, C. & Wu, C. Large‐area perovskite film prepared by new FFASE method for stable solar modules having high efficiency under both outdoor and indoor light harvesting. Adv. Sci. 10, e2205967 (2023).

    Article  Google Scholar 

  138. Liang, Q. et al. Manipulating crystallization kinetics in high‐performance blade‐coated perovskite solar cells via cosolvent‐assisted phase transition. Adv. Mater. 34, e2200276 (2022).

    Article  Google Scholar 

  139. Du, P. et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12, 4751 (2021).

    Article  MATH  Google Scholar 

  140. Yarin, A. L. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  141. Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    Article  MATH  Google Scholar 

  142. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  MATH  Google Scholar 

  143. Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11, 3040 (2020).

    Article  MATH  Google Scholar 

  144. Kim, B. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 10, 4920–4925 (2016).

    Article  MATH  Google Scholar 

  145. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022). With an ultrahigh pixel resolution of 9,072–25,400 pixels per inch, QLED devices are fabricated by innovative transfer printing to achieve ultrahigh-resolution devices.

    Article  Google Scholar 

  146. Kim, T. H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  MATH  Google Scholar 

  147. Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017). Introducing a general chemical approach for direct optical lithography of functional inorganic nanomaterials provides an alternative route for thin-film device manufacturing and opens a new door to the device process of QLEDs.

    Article  MATH  Google Scholar 

  148. Hahm, D. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022).

    Article  MATH  Google Scholar 

  149. Mei, W. et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 13, 2485–2491 (2020).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.Z., S.D. and Z.T. contributed to writing and editing of this manuscript. X.Z., S.D., Z.Y. and Z.T. researched data for the manuscript and contributed to the content discussion. T.Z., L.Q. and C.X. contributed to the discussion, writing and reviewing the manuscript before submission. Note that all four of the above tasks should be accounted for.

Corresponding authors

Correspondence to Chaoyu Xiang or Lei Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Guankui Long, Rui Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ding, S., Tang, Z. et al. Nanostructured materials for next-generation display technology. Nat Rev Electr Eng 2, 263–276 (2025). https://doi.org/10.1038/s44287-025-00158-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00158-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing