Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A bright future for self-sustainable bioelectronics

Abstract

Self-sustainable bioelectronic devices that incorporate physiological synchronization functions are attracting increasing research interest because they could provide the variable functions required by living cells and tissues. However, from the popular viewpoint, self-sustainable bioelectronic devices are presently regarded to provide unidirectional stimulation, similarly to traditional bioelectronic devices that prompt cells and tissues to passively respond to the electrical cues delivered to them. The active effect of self-sustainable bioelectronic devices, which allows cells and/or tissues to autonomously alter the delivered electrical stimulation on demand, has not been fully recognized. This Perspective article presents the insight that self-sustainable bioelectronics could act as a bidirectional ‘bridge’ linking the electrical modulation of a cell or tissue with its growth and development requirements, thereby establishing a fully autonomous, closed-loop regulatory system. The interaction processes arising in microscopic (cell–piezoelectric material) and macroscopic (organ–electromechanically coupled device) systems are discussed, and typical examples of self-sustainable bioelectronics are presented, highlighting the key challenges of signal fidelity and long-term device stability. Predictions of the future trajectory of self-sustainable bioelectronics, and design considerations for the next generation of intelligent bioelectronic devices, are also included.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between self-sustainable bioelectronics and biological systems.
Fig. 2: Bidirectional interactions at cell–piezoelectric material interfaces.
Fig. 3: Technology roadmap for self-sustainable bioelectronics.

Similar content being viewed by others

References

  1. Fukui, H. et al. Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces. Science 374, 351–354 (2021).

    Article  Google Scholar 

  2. Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184, 1971–1989 (2021).

    Article  Google Scholar 

  3. Payne, S. C., Furness, J. B. & Stebbing, M. J. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16, 89–105 (2019).

    Article  Google Scholar 

  4. Liu, Z., Wan, X., Wang, Z. L. & Li, L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021).

    Article  Google Scholar 

  5. Gong, S., Lu, Y., Yin, J., Levin, A. & Cheng, W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev. 124, 455–553 (2024).

    Article  Google Scholar 

  6. Li, T. et al. Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation. Nat. Commun. 14, 8386 (2023).

    Article  Google Scholar 

  7. Bhatia, A. et al. Wireless battery-free and fully implantable organ interfaces. Chem. Rev. 124, 2205–2280 (2024).

    Article  Google Scholar 

  8. Lee, Y. C. et al. The dynamic roles of the bladder tumour microenvironment. Nat. Rev. Urol. 19, 515–533 (2022).

    Article  Google Scholar 

  9. Mata, R. et al. The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research 2021, 4189516 (2021).

    Article  Google Scholar 

  10. Huang, G. et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117, 12764–12850 (2017).

    Article  Google Scholar 

  11. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    Article  Google Scholar 

  12. Jin, F. et al. Biofeedback electrostimulation for bionic and long-lasting neural modulation. Nat. Commun. 13, 5302 (2022).

    Article  Google Scholar 

  13. Jin, F. et al. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Adv. Mater. 33, e2104175 (2021).

    Article  Google Scholar 

  14. Li, J. et al. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 304, 122421 (2024).

    Article  Google Scholar 

  15. Xiao, X., Chen, G., Libanori, A. & Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 3, 279–290 (2021).

    Article  Google Scholar 

  16. Panda, S. et al. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 100, 107514 (2022).

    Article  Google Scholar 

  17. Kapat, K., Shubhra, Q. T. H., Zhou, M. & Leeuwenburgh, S. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30, 1909045 (2020).

    Article  Google Scholar 

  18. Long, Y., Li, J., Yang, F., Wang, J. & Wang, X. Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 8, 2004023 (2021).

    Article  Google Scholar 

  19. Zhou, L. et al. Advances in applications of piezoelectronic electrons in cell regulation and tissue regeneration. J. Mater. Chem. B 10, 8797–8823 (2022).

    Article  Google Scholar 

  20. Murillo, G. et al. Electromechanical nanogenerator–cell interaction modulates cell activity. Adv. Mater. 29, 1605048 (2017).

    Article  Google Scholar 

  21. Nain, A. et al. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 307, 122528 (2024).

    Article  Google Scholar 

  22. Guo, H. et al. Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite. Chem. Eng. J. 468, 143597 (2023).

    Article  Google Scholar 

  23. Conta, G., Libanori, A., Tat, T., Chen, G. & Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33, e2007502 (2021).

    Article  Google Scholar 

  24. Yin, J., Wang, S., Tat, T. & Chen, J. Motion artefact management for soft bioelectronics. Nat. Rev. Bioeng. 2, 541–558 (2024).

    Article  Google Scholar 

  25. Zhao, X. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024).

    Article  Google Scholar 

  26. Elsanadidy, E. et al. Advances in triboelectric nanogenerators for self‐powered neuromodulation. Adv. Funct. Mater. 33, 2211177 (2023).

    Article  Google Scholar 

  27. Xia, G., Song, B. & Fang, J. Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research 2022, 9896274 (2022).

    Article  Google Scholar 

  28. Liu, Z. et al. Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv. Mater. 33, e2106317 (2021).

    Article  Google Scholar 

  29. Wu, H. et al. Stem cell self‐triggered regulation and differentiation on polyvinylidene fluoride electrospun nanofibers. Adv. Funct. Mater. 34, 2309270 (2023).

    Article  Google Scholar 

  30. Ren, J. et al. Piezoelectric dual network dressing with adaptive electrical stimulation for diabetic infected wound repair via antibacterial, antioxidant, anti-inflammation, and angiogenesis. Chem. Eng. J. 491, 151801 (2024).

    Article  Google Scholar 

  31. Zhang, H. Y. et al. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 383, 1492–1498 (2024).

    Article  Google Scholar 

  32. Li, T. et al. Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator. Sci. Adv. 7, eabh2350 (2021).

    Article  Google Scholar 

  33. Zhang, L. et al. Recent progress on structure manipulation of poly(vinylidene fluoride)‐based ferroelectric polymers for enhanced piezoelectricity and applications. Adv. Funct. Mater. 33, 2301302 (2023).

    Article  Google Scholar 

  34. Xu, Q. et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv. Mater. 33, e2008452 (2021).

    Article  Google Scholar 

  35. Li, T. et al. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33, e2006093 (2021).

    Article  Google Scholar 

  36. Nguyen, T. D. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587–593 (2012).

    Article  Google Scholar 

  37. Zhang, X. et al. Piezoelectric nanotopography induced neuron-like differentiation of stem cells. Adv. Funct. Mater. 29, 1900372 (2019).

    Article  Google Scholar 

  38. Li, J. et al. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J. Mater. Chem. B 11, 9056–9083 (2023).

    Article  Google Scholar 

  39. Leijnse, N. et al. Filopodia rotate and coil by actively generating twist in their actin shaft. Nat. Commun. 13, 1636 (2022).

    Article  Google Scholar 

  40. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  Google Scholar 

  41. Marques-Almeida, T., Fernandes, H. J. R., Lanceros-Mendez, S. & Ribeiro, C. Surface charge and dynamic mechanoelectrical stimuli improves adhesion, proliferation and differentiation of neuron-like cells. J. Mater. Chem. B 11, 144–153 (2022).

    Article  Google Scholar 

  42. Di, X. et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Sig. Transduct. Target. Ther. 8, 282 (2023).

    Article  Google Scholar 

  43. Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

    Article  Google Scholar 

  44. Yuan, X. et al. Piezoelectricity, pyroelectricity, and ferroelectricity in biomaterials and biomedical applications. Adv. Mater. 36, 2308726 (2024).

    Article  Google Scholar 

  45. Mao, R. et al. Piezoelectric stimulation from electrospun composite nanofibers for rapid peripheral nerve regeneration. Nano Energy 98, 107322 (2022).

    Article  Google Scholar 

  46. Fernandez-Yague, M. A. et al. A self-powered piezo-bioelectric device regulates tendon repair-associated signaling pathways through modulation of mechanosensitive ion channels. Adv. Mater. 33, 2008788 (2021).

    Article  Google Scholar 

  47. Liu, Y. et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci. Transl. Med. 14, eabi7282 (2022).

    Article  Google Scholar 

  48. Joo, S. et al. Piezoelectrically and topographically engineered scaffolds for accelerating bone regeneration. ACS Appl. Mater. Interfaces 16, 1999–2011 (2024).

    Article  Google Scholar 

  49. Qian, L. et al. Self-adhesive and self-sustainable bioelectronic patch for physiological feedback electronic modulation of soft organs. Adv. Mater. 36, 2406636 (2024).

    Article  Google Scholar 

  50. Luo, R., Dai, J., Zhang, J. & Li, Z. Accelerated skin wound healing by electrical stimulation. Adv. Healthc. Mater. 10, 2100557 (2021).

    Article  Google Scholar 

  51. Yeh, C. C. et al. Timing of applying electrical stimulation is an important factor deciding the success rate and maturity of regenerating rat sciatic nerves. Neurorehab. Neural Repair 24, 730–735 (2010).

    Article  Google Scholar 

  52. Wang, R., Sui, J. & Wang, X. Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices. ACS Nano 16, 17708–17728 (2022).

    Article  Google Scholar 

  53. Zheng, W. et al. Interfacial polarization locked flexible β-phase glycine/Nb2CTx piezoelectric nanofibers. Small 20, 2308715 (2024).

    Article  Google Scholar 

  54. Cheng, Y. et al. Boosting the piezoelectric sensitivity of amino acid crystals by mechanical annealing for the engineering of fully degradable force sensors. Adv. Sci. 10, 2207269 (2023).

    Article  Google Scholar 

  55. Yang, F. et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 373, 337–342 (2021).

    Article  Google Scholar 

  56. Zhang, Z. et al. Van der Waals exfoliation processed biopiezoelectric submucosa ultrathin films. Adv. Mater. 34, 2200864 (2022).

    Article  Google Scholar 

  57. Xie, X. et al. Biomimetic nanofibrillar hydrogel with cell-adaptable network for enhancing cellular mechanotransduction, metabolic energetics, and bone regeneration. J. Am. Chem. Soc. 145, 15218–15229 (2023).

    Article  Google Scholar 

  58. Zhang, Y. et al. Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring. Mater. Today 70, 237–272 (2023).

    Article  Google Scholar 

  59. Zhang, X. et al. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Mater. Today 68, 177–203 (2023).

    Article  Google Scholar 

  60. Schmitt, M. S. et al. Machine learning interpretable models of cell mechanics from protein images. Cell 187, 481–494 (2024).

    Article  Google Scholar 

  61. Petsakou, A. & Perrimon, N. Bioelectric regulation of intestinal stem cells. Trends Cell Biol. 33, 555–567 (2023).

    Article  Google Scholar 

  62. Sekitani, T. The disappearing boundary between organism and machine. Science 380, 690–691 (2023).

    Article  Google Scholar 

  63. Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    Article  Google Scholar 

  64. Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).

    Article  Google Scholar 

  65. Tang, W., Sun, Q. & Wang, Z. L. Self-powered sensing in wearable electronics horizontal line — a paradigm shift technology. Chem. Rev. 123, 12105–12134 (2023).

    Article  Google Scholar 

  66. Deng, W. et al. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51, 3380–3435 (2022).

    Article  Google Scholar 

  67. Choi, D. et al. Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17, 11087–11219 (2023).

    Article  Google Scholar 

  68. Kang, M. et al. Advances in bioresorbable triboelectric nanogenerators. Chem. Rev. 123, 11559–11618 (2023).

    Article  Google Scholar 

  69. Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article  Google Scholar 

  70. Chen, G. et al. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 4, 3725–3740 (2021).

    Article  Google Scholar 

  71. Zhao, X. et al. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 12, 6755 (2021).

    Article  Google Scholar 

  72. Xu, J. et al. A programmable magnetoelastic sensor array for self-powered human–machine interface. Appl. Phys. Rev. 9, 031404 (2022).

    Article  Google Scholar 

  73. Zhou, Y. et al. A multimodal magnetoelastic artificial skin for underwater haptic sensing. Sci. Adv. 10, eadj8567 (2024).

    Article  Google Scholar 

  74. Che, Z. et al. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 15, 1873 (2024).

    Article  Google Scholar 

  75. Dobashi, Y. et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels. Science 376, 502–507 (2022).

    Article  Google Scholar 

  76. Chen, K. & Ho, D. Piezoionics: mechanical‐to‐ionic transduction for sensing, biointerface, and energy harvesting. Aggregate 5, e425 (2023).

    Article  Google Scholar 

  77. Zheng, Q. et al. Robust multilayered encapsulation for high-performance triboelectric nanogenerator in harsh environment. ACS Appl. Mater. Interfaces 8, 26697–26703 (2016).

    Article  Google Scholar 

  78. Libanori, A. et al. Self-powered programming of fibroblasts into neurons via a scalable magnetoelastic generator array. Adv. Mater. 35, e2206933 (2023).

    Article  Google Scholar 

  79. Zhao, X. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 16, 6013–6022 (2022).

    Article  Google Scholar 

  80. Xu, J. et al. A textile magnetoelastic patch for self-powered personalized muscle physiotherapy. Matter 6, 2235–2247 (2023).

    Article  Google Scholar 

  81. Jung, S. et al. Unraveling the missing link of bio‐electrical stimulation from body‐mediated energy transfer. Adv. Funct. Mater. 33, 2302465 (2023).

    Article  Google Scholar 

  82. Yao, G. et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl Acad. Sci. USA 118, e2100772118 (2021).

    Article  Google Scholar 

  83. Wang, T. et al. Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. Sci. Adv. 10, eadi6799 (2024).

    Article  Google Scholar 

  84. Yao, G. et al. Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair. Nat. Commun. 14, 3604 (2023).

    Article  Google Scholar 

  85. Liu, S. et al. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 598, 641–645 (2021).

    Article  Google Scholar 

  86. Fox, D. The shock tactics set to shake up immunology. Nature 545, 20–22 (2017).

    Article  Google Scholar 

  87. Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    Article  Google Scholar 

  88. Zhang, Y. et al. Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation. Nano Energy 89, 106319 (2021).

    Article  Google Scholar 

  89. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article  Google Scholar 

  90. Sun, Y. et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci. Bull. 67, 1284–1294 (2022).

    Article  Google Scholar 

  91. Oehrn, C. R. et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial. Nat. Med. 30, 3345–3356 (2024).

    Article  Google Scholar 

  92. Kang, W. et al. Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially. Nat. Commun. 13, 7805 (2022).

    Article  Google Scholar 

  93. Hollunder, B. et al. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat. Neurosci. 27, 573–586 (2024).

    Article  Google Scholar 

  94. Photopoulos, J. Bioelectronic devices could treat autoimmune disease. Nature 595, S63 (2021).

    Article  Google Scholar 

  95. Zhao, Q. et al. A multidimensional coding architecture of the vagal interoceptive system. Nature 603, 878–884 (2022).

    Article  Google Scholar 

  96. Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).

    Article  Google Scholar 

  97. Wang, F., Mai, Y.-W., Wang, D., Ding, R. & Shi, W. High quality barium titanate nanofibers for flexible piezoelectric device applications. Sens. Actuators A 233, 195–201 (2015).

    Article  Google Scholar 

  98. Cordero, F. Quantitative evaluation of the piezoelectric response of unpoled ferroelectric ceramics from elastic and dielectric measurements: tetragonal BaTiO3. J. Appl. Phys. 123, 094103 (2018).

    Article  Google Scholar 

  99. Maruyama, K., Kawakami, Y. & Narita, F. Young’s modulus and ferroelectric property of BaTiO3 films formed by aerosol deposition in consideration of residual stress and film thickness. Jpn. J. Appl. Phys. 61, 250204777 (2022).

    Article  Google Scholar 

  100. Luo, Y. et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440–442 (2003).

    Article  Google Scholar 

  101. Jiang, Y., Man, G., Wang, X. & He, H. Identification of elastic-plastic and phase transition characteristics for relaxor ferroelectric PMN-PT anisotropic single crystals using nanoindentation technique. Philos. Mag. 98, 2595–2608 (2018).

    Article  Google Scholar 

  102. Hwang, G. T. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880–4887 (2014).

    Article  Google Scholar 

  103. Shibata, K., Watanabe, K., Kuroda, T. & Osada, T. KNN lead-free piezoelectric films grown by sputtering. Appl. Phys. Lett. 121, 092901 (2022).

    Article  Google Scholar 

  104. Zhao, M.-H., Wang, Z.-L. & Mao, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004).

    Article  Google Scholar 

  105. Wu, H. S., Murti, B. T., Singh, J., Yang, P. K. & Tsai, M. L. Prospects of metal-free perovskites for piezoelectric applications. Adv. Sci. 9, e2104703 (2022).

    Article  Google Scholar 

  106. Sekhar Muddam, R., Sinclair, J. & Krishnan Jagadamma, L. Piezoelectric charge coefficient of halide perovskites. Materials 17, 3083 (2024).

    Article  Google Scholar 

  107. Guerin, S. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018).

    Article  Google Scholar 

  108. Zhang, Z. et al. Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling. Nat. Commun. 14, 4094 (2023).

    Article  Google Scholar 

  109. Shin, D.-M. et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ. Sci. 8, 3198–3203 (2015).

    Article  Google Scholar 

  110. Kim, H. & Lee, S. W. Molecular mechanisms and enhancement of piezoelectricity in the M13 virus. Adv. Funct. Mater. 34, 2407462 (2024).

    Article  Google Scholar 

  111. Choi, S. S. & Kim, K. J. Mechanical characterization of P2 bacteriophage by using Young’s modulus measurements. AIP Adv. 11, 015245 (2021).

    Article  Google Scholar 

  112. Nguyen, V., Jenkins, K. & Yang, R. Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy 17, 323–329 (2015).

    Article  Google Scholar 

  113. Su, Y. et al. Electric field-assisted self-assembly of diphenylalanine peptides for high-performance energy conversion. ACS Mater. Lett. 5, 2317–2323 (2023).

    Article  Google Scholar 

  114. Basavalingappa, V. et al. Diphenylalanine-derivative peptide assemblies with increased aromaticity exhibit metal-like rigidity and high piezoelectricity. ACS Nano 14, 7025–7037 (2020).

    Article  Google Scholar 

  115. Fang, W. et al. Oriented strontium carbonate nanocrystals within collagen films for flexible piezoelectric sensors. Adv. Funct. Mater. 31, 2105806 (2021).

    Article  Google Scholar 

  116. Denning, D. et al. Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomater. Sci. Eng. 3, 929–935 (2017).

    Article  Google Scholar 

  117. Andriotis, O. G., Nalbach, M. & Thurner, P. J. Mechanics of isolated individual collagen fibrils. Acta Biomater. 163, 35–49 (2023).

    Article  Google Scholar 

  118. Romanyuk, K. et al. Piezoactive dense diphenylalanine thin films via solid-phase crystallization. Appl. Mater. Today 26, 101261 (2022).

    Article  Google Scholar 

  119. Quesada Cabrera, R., Meersman, F., McMillan, P. F. & Dmitriev, V. Nanomechanical and structural properties of native cellulose under compressive stress. Biomacromolecules 12, 2178–2183 (2011).

    Article  Google Scholar 

  120. Tanpichai, S. et al. Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13, 1340–1349 (2012).

    Article  Google Scholar 

  121. Zhai, L., Kim, H. C., Kim, J. W. & Kim, J. Alignment effect on the piezoelectric properties of ultrathin cellulose nanofiber films. ACS Appl. Bio Mater. 3, 4329–4334 (2020).

    Article  Google Scholar 

  122. Chen, P. et al. Quantifying the contribution of the dispersion interaction and hydrogen bonding to the anisotropic elastic properties of chitin and chitosan. Biomacromolecules 23, 1633–1642 (2022).

    Article  Google Scholar 

  123. de Marzo, G. et al. Sustainable, flexible, and biocompatible enhanced piezoelectric chitosan thin film for compliant piezosensors for human health. Adv. Electron. Mater. 9, 2200069 (2022).

    Article  Google Scholar 

  124. Ribeiro, C., Sencadas, V., Correia, D. M. & Lanceros-Mendez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B 136, 46–55 (2015).

    Article  Google Scholar 

  125. Chernozem, R. V. et al. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. Mat. Sci. Eng. C 122, 111909 (2021).

    Article  Google Scholar 

  126. Sultana, A. et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B 5, 7352–7359 (2017).

    Article  Google Scholar 

  127. Pariy, I. O. et al. Hybrid biodegradable electrospun scaffolds based on poly(L-lactic acid) and reduced graphene oxide with improved piezoelectric response. Polym. J. 54, 1237–1252 (2022).

    Article  Google Scholar 

  128. Jariyavidyanont, K. et al. Young’s modulus of the different crystalline phases of poly (L-lactic acid). J. Mech. Behav. Biomed. Mater. 137, 105546 (2023).

    Article  Google Scholar 

  129. Kanik, M., Aktas, O., Sen, H. S., Durgun, E. & Bayindir, M. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique. ACS Nano 8, 9311–9323 (2014).

    Article  Google Scholar 

  130. Fang, F., Shan, S. C. & Yang, W. A multipeak phenomenon of magnetoelectric coupling in Terfenol-D/P(VDF-TrFE)/Terfenol-D laminates. J. Appl. Phys. 108, 104505 (2010).

    Article  Google Scholar 

  131. Ikei, A., Wissman, J., Sampath, K., Yesner, G. & Qadri, S. N. Tunable in situ 3D-printed PVDF-TrFE piezoelectric arrays. Sensors 21, 5032 (2021).

    Article  Google Scholar 

  132. Baji, A., Mai, Y.-W., Li, Q. & Liu, Y. Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos. Sci. Technol. 71, 1435–1440 (2011).

    Article  Google Scholar 

  133. Kim, H. S. et al. Dominant role of Young’s modulus for electric power generation in PVDF–BaTiO3 composite-based piezoelectric nanogenerator. Nanomaterials 8, 777 (2018).

    Article  Google Scholar 

  134. Huang, Z.-X. et al. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat. Commun. 15, 819 (2024).

    Article  Google Scholar 

  135. Zhang, C., Wei, W., Sun, H. & Zhu, Q. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process. J. Mater. Sci. Mater. Electron. 32, 21837–21847 (2021).

    Article  Google Scholar 

  136. Li, J. et al. Multifunctional artificial artery from direct 3D printing with built‐In ferroelectricity and tissue‐matching modulus for real‐time sensing and occlusion monitoring. Adv. Funct. Mater. 30, 2002868 (2020).

    Article  Google Scholar 

  137. Li, J. et al. Bulk ferroelectric metamaterial with enhanced piezoelectric and biomimetic mechanical properties from additive manufacturing. ACS Nano 15, 14903–14914 (2021).

    Article  Google Scholar 

  138. Han, J. et al. Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film. Sensors 19, 830 (2019).

    Article  Google Scholar 

  139. Chai, B. et al. Modulus-modulated all-organic core–shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring. Nano Lett. 23, 1810–1819 (2023).

    Article  Google Scholar 

  140. Tang, T. et al. Stretchable polymer composites with ultrahigh piezoelectric performance. Natl Sci. Rev. 10, nwad177 (2023).

    Article  Google Scholar 

  141. Li, H., Lee, H. B., Kang, J.-W. & Lim, S. Three-dimensional polymer-nanoparticle-liquid ternary composite for ultrahigh augmentation of piezoelectric nanogenerators. Nano Energy 113, 108576 (2023).

    Article  Google Scholar 

  142. Zhang, Q., Zhu, J., Fei, X. & Zhu, M. A Janus nanofibrous scaffold integrated with exercise-driven electrical stimulation and nanotopological effect enabling the promotion of tendon-to-bone healing. Nano Today 55, 102208 (2024).

    Article  Google Scholar 

  143. Shan, Y. et al. A biodegradable piezoelectric sensor for real‐time evaluation of the motor function recovery after nerve injury. Adv. Funct. Mater. 34, 2400295 (2024).

    Article  Google Scholar 

  144. Chorsi, M. T. et al. Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Sci. Adv. 9, eadg6075 (2023).

    Article  Google Scholar 

  145. Xue, H. et al. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms. Sci. Adv. 10, eadn0260 (2024).

    Article  Google Scholar 

  146. Song, X. et al. Nanomedicine-enabled sonomechanical, sonopiezoelectric, sonodynamic, and sonothermal therapy. Adv. Mater. 35, e2212259 (2023).

    Article  Google Scholar 

  147. Wei, Z. et al. Physical cue‐based strategies on peripheral nerve regeneration. Adv. Funct. Mater. 33, 2209658 (2022).

    Article  Google Scholar 

  148. Zhou, L. et al. Wireless self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia. Adv. Sci. 10, e2205551 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

Z.-Q.F., F.J. and T.L. received financial support from the National Natural Science Foundation of China (grants 82302406, 82472159, 52303186, 51773093 and 11204033). F.J. and T.L. acknowledge funding from China Postdoctoral Science Foundation (grants 2024T171167, 2023M731696, 2022TQ0158 and 2022M721616). F.J. and T.L. acknowledge funding from Jiangsu Funding Program for Excellent Postdoctoral Talent (grants 2023ZB539 and 2022ZB250). F.J. and Z.-Q.F received financial support from the Fundamental Research Funds for the Central Universities (grants 30923010307 and 30920041105).

Author information

Authors and Affiliations

Authors

Contributions

S.W. and F.J. researched data for the article and contributed substantially to discussions of its content. S.W., F.J., T.L., Z.W., L.Q., N.J. and Z.-Q.F. wrote the manuscript. All authors contributed to the review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Steven Wang or Zhang-Qi Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Soyun Joo, who co-reviewed with Seungbum Hong, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Li, T., Wei, Z. et al. A bright future for self-sustainable bioelectronics. Nat Rev Electr Eng 2, 338–349 (2025). https://doi.org/10.1038/s44287-025-00164-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00164-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing