Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thermal management materials for 3D-stacked integrated circuits

Abstract

As transistor scaling approaches nanometre and even atomic scales, 3D stacking has become a critical enabler for advancement in the semiconductor industry, especially in high-performance computing and artificial intelligence (AI) applications. However, 3D integration introduces substantial thermal management challenges related to the increased power density and constrained heat dissipation pathways, particularly through low thermal conductivity interlayer dielectrics and complex interfaces. In this Review, we discuss state-of-the-art thermal management materials, covering their process compatibility, the critical integration challenges and the need for improved methods to enhance heat transport across interfaces. Advanced thermal characterization metrologies are introduced to highlight the need for non-destructive in-line metrologies. Finally, we provide a road map that outlines future research directions for material growth, integration and characterization methodologies to enable viable thermal solutions for 3D integration and beyond.

Key points

  • The shrinking dimensions, increased structural complexity and 3D stacking of silicon-based semiconductor devices are intensifying challenges in thermal dissipation.

  • Breakthroughs are needed to address maximum temperatures near hot spots in 3D-stacked devices, requiring innovation in material growth, processing and integration.

  • Advancements are necessary in the characterization of the thermal properties of the materials and in the methods to enhance heat transport across interfaces.

  • The development of non-destructive in-line metrologies compatible with semiconductor processing flows is highly desirable for the characterization of thermal management film stacks and the monitoring of thermal dissipation performance within chips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device architecture and system integration induced thermal dissipation issues.
Fig. 2: Integration challenges of thermal management materials.
Fig. 3: Working principle of the 3ω method.
Fig. 4: Capabilities of thermal characterization techniques.

Similar content being viewed by others

References

  1. Mii, Y. J. Semiconductor industry outlook and new technology frontiers. In Intenaional Electron Devices Meeting 1.1.1–1.1.6 (IEEE, 2024). This work points out a technology road map and outlook for the semiconductor industry.

  2. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023). This work describes the directions for transistor evolution and needs for new materials.

    Article  Google Scholar 

  3. Yeap, G. et al. 2 nm platform technology featuring energy-efficient nanosheet transistors and interconnects co-optimized with 3DIC for AI, HPC and mobile SoC applications. In Internationa Electron Devices Meeting 2.1.1–2.1.4 (IEEE, 2024).

  4. Liao. S. S. et al. Complementary field-effect transistor (CFET) demonstration at 48 nm gate pitch for future logic technology scaling. In International Electron Devices Meeting 29.6.1–29.6.4 (IEEE, 2023).

  5. Liao. S. S. et al. First demonstration of monolithic CFET inverter at 48 nm gate pitch toward future logic technology scaling. In International Electron Devices Meeting 2.5.1–2.5.4 (IEEE, 2024). This work showcases a state-of-the-art BSPDN-implemented CFET inverter at an industry-relevant scale.

  6. Woon. W. Y. et al. Integration and characterization of high thermal conductivity materials for heat dissipation in stacked devices. In Symposium VLSI Technology and Circuits JFS3.4 (IEEE, 2024). This work illustrates the progress and development directions for integration and characterization of high thermal conductivity materials for heat dissipation in stacked devices and demonstrates SSTR as an effective thermal characterization metrology for a complex film stack.

  7. Tung, C. H. & Yu, D. C. H. An integrated system scaling solution for future high performance computing. In Symposium VLSI Technology and Circuits JSF4.2 (IEEE, 2023). This work presents the technology road map, especially 3D stacking, in system integration for high-performance computing.

  8. Chen. R. et al. Power, performance, area and thermal analysis of 2D and 3D ICs at A14 node designed with back-side power delivery network. In International Electron Devices Meeting 23.4.1–23.4.4 (IEEE, 2022).

  9. Tatum, L. P., Sikder, U. & Liu, T.-J. K. Design technology co-optimization for back-end-of-line nonvolatile NEM switch arrays. IEEE Trans. Electron. Dev. 68, 1471–1477 (2021).

    Article  Google Scholar 

  10. Woon. W. Y. et al. Thermal dissipation in stacked devices. In International Electron Devices Meeting 19.3.1–19.3.3 (IEEE, 2023). This work discusses diamond and AlN as thermal management material candidates and the mitigation of TBR, and demonstrates SSTR as an effective thermal characterization metrology for thermal management films.

  11. Lau, J. H. et al. Thermal management of 3D IC integration with TSV (through silicon via). In Electronic Components and Technology Conference 635 (IEEE, 2009).

  12. Prasad, C., Ramey, S. & Jiang, L. Self-heating in advanced CMOS technologies. In International Reliability Physics Symposium 6A-4.1–6A-4.7 (IEEE, 2017). This work describes the electrical impacts on CMOS devices by self-heating.

  13. Park, K. et al. Development of an advanced TDDB analysis model for temperature dependency. Electronics 8, 942 (2019).

    Article  Google Scholar 

  14. Chang, X. et al. Calibrated fast thermal calculation and experimental characterization of advanced BEOL stacks. In Electronic Components and Technology Conference 1485–1492 (IEEE, 2024).

  15. Minnich, A. J. Advances in the measurement and computation of thermal phonon transport properties. J. Phys. Condens. Matter 27, 053202 (2015). This work describes the fundamentals of thermal phonon transport properties.

    Article  Google Scholar 

  16. Nomura, M. et al. Review of thermal transport in phononic crystals. Mater. Today Phys. 22, 100613 (2022).

    Article  Google Scholar 

  17. Jeong, C., Datta, S. & Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. J. Appl. Phys. 111, 093708 (2012).

    Article  Google Scholar 

  18. Kuryliuk, V., Nepochatyi, O., Chantrenee, P., Lacroix, D. & Isaiev, M. Thermal conductivity of strained silicon: molecular dynamics insight and kinetic theory approach. J. Appl. Phys. 126, 055109 (2019).

    Article  Google Scholar 

  19. Hanus, R. et al. Thermal transport in defective and disordered materials. Appl. Phys. Rev. 8, 031311 (2021). This work describes the effect of defects and disorder on thermal transport in thermal management materials.

    Article  Google Scholar 

  20. Windischmann. H. in Properties, Growth and Applications of Diamond (eds. Nazare, M. H. & Neves, A. J.) 410–416 (INSPEC, 2001).

  21. Wort, C. J. H. & Balmer, R. S. Diamond as an electronic material. Mater. Today 11, 22–28 (2008).

    Article  Google Scholar 

  22. Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article  Google Scholar 

  23. Ward, A., Broido, D. A., Stewart, D. A. & Deinzer, G. Ab intio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009).

    Article  Google Scholar 

  24. Onn, D. G., Witek, A., Qiu, Y. Z., Anthony, T. R. & Banholzer, W. F. Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 2806 (1992).

    Article  Google Scholar 

  25. Inyushkin, A. V. et al. Thermal conductivity of high purity synthetic single cristal diamonds. Phys. Rev. B 97, 144305 (2018).

    Article  Google Scholar 

  26. Olson, J. R. et al. Thermal conductivity of diamond between 170 and 1200  K and the isotope effect. Phys. Rev. B 47, 14850 (1993).

    Article  Google Scholar 

  27. Katcho, N. A., Carrete, J. & Mingo, N. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green’s function approach. Phys. Rev. B 90, 094117 (2014).

    Article  Google Scholar 

  28. Sukhadolau, A. V. et al. Thermal conductivity of CVD diamond at elevated temperatures. Diam. Relat. Mater. 14, 589–593 (2005).

    Article  Google Scholar 

  29. Wang, T., Carrete, J., van Roekeghem, A., Mingo, N. & Madsen, G. K. H. Ab initio phonon scattering by dislocations. Phys. Rev. B 95, 245304 (2017).

    Article  Google Scholar 

  30. Cheng, Y., Nomura, M., Volz, S. & Xiong, S. Phonon–dislocation interaction and its impact on thermal conductivity. J. Appl. Phys. 130, 040902 (2021).

    Article  Google Scholar 

  31. Fischer, M., Gsell, S., Schreck, M. & Bergmaier, A. Growth sector dependence and mechanism of stress formation in epitaxial diamond growth. Appl. Phs. Lett. 100, 041906 (2012).

    Article  Google Scholar 

  32. Stehl, C. et al. Efficiency of dislocation density reducation during heteroepitaxial growth of diamond for detector applications. Appl. Phys. Lett. 103, 151905 (2013).

    Article  Google Scholar 

  33. Wang, W.-H. et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. N. Carbon Mater. 36, 1034–1045 (2021).

    Article  Google Scholar 

  34. Schreck, M. et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: a brief review. Phys. Status Solidi A 213, 2028–2035 (2016).

    Article  Google Scholar 

  35. Schreck, M., Gsell, S., Brescia, R. & Fischer, M. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 7, 44462 (2017).

    Article  Google Scholar 

  36. Chae, K.-W., Baik, Y.-J., Park, J.-K. & Lee, W.-S. The 8-inch free-standing CVD diamond wafer fabricated by DC-PACVD. Diam. Relat. Mater. 19, 1168–1171 (2010).

    Article  Google Scholar 

  37. Shu, G. et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond. Funct. Diam. 1, 47–62 (2021).

    Article  Google Scholar 

  38. Janssen, G. & Giling, L. J. “Mosaic” growth of diamond. Diam. Relat. Mater. 4, 1025–1031 (1995).

    Article  Google Scholar 

  39. Yamada, H. et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diam. Relat. Mater. 24, 29–33 (2012).

    Article  Google Scholar 

  40. Yamada, H., Chayahara, A., Mokuna, Y., Kato, Y. & Shikata, S. A 2-in. mosaic wafer made of a single-crystal diamond. Appl. Phys. Lett. 104, 102110 (2014).

    Article  Google Scholar 

  41. Shu, G. et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. J. Cryst. Growth 463, 19–26 (2017).

    Article  Google Scholar 

  42. Ralchenko, V. G. et al. Thermal conductivity of diamond mosaic crystals grown by chemical vapor deposition: thermal resistance of junctions. Phys. Rev. Appl. 16, 014049 (2021).

    Article  Google Scholar 

  43. Matsushita, A. et al. Evaluation of diamond mosaic wafer crystallinity by electron backscatter diffraction. Diam. Relat. Mater. 101, 107558 (2020).

    Article  Google Scholar 

  44. Vaissere, N. et al. Heteroepitaxial diamond on iridium: new insights on domain formation. Diam. Relat. Mater. 36, 16–25 (2013).

    Article  Google Scholar 

  45. Wang, W. et al. Heteroepitaxy of diamond semiconductor on iridium: a review. Funct. Diam. 2, 215–235 (2022). This work reviews heteroepitaxy of SCD.

    Article  Google Scholar 

  46. Wang, Y. et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study. J. Cryst. Growth 560-561, 126047 (2021).

    Article  Google Scholar 

  47. Kimura, Y., Oshima, R., Sawabe, A. & Aida, H. Analysis of the correlation between in-situ and ex-situ observations of the initial stages of growth of heteroepitaxial diamond on Ir(001)/MgO(001). J. Cryst. Growth 595, 126807 (2022).

    Article  Google Scholar 

  48. Kasu, M., Takaya, R. & Kim, S.-W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam. Relat. Mater. 126, 109086 (2022).

    Article  Google Scholar 

  49. Aida, H., Ihara, T., Oshima, R., Kimura, Y. & Sawabe, A. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir(001)/MgO(001) substrate. Diam. Relat. Mater. 136, 110026 (2023).

    Article  Google Scholar 

  50. Kimura, Y. et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam. Relat. Mater. 137, 110055 (2023).

    Article  Google Scholar 

  51. Li, L. et al. Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder. J. Cryst. Growth 579, 126457 (2022).

    Article  Google Scholar 

  52. Sang, L. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Funct. Diam. 1, 174–188 (2021).

    Article  Google Scholar 

  53. Tijent, F. Z., Faqir, M., Chouiyakh, H. & Essadiqi, E. H. Review—integration methods of GaN and diamond for thermal management optimization. ECS J. Solid. State Sci. Technol. 10, 074003 (2021).

    Article  Google Scholar 

  54. Chao, P.-C. et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans. Electron. Dev. 62, 3658–3664 (2015).

    Article  Google Scholar 

  55. Mendes, J. C., Lieher, M. & Li, C. Diamond/GaN HEMTs: where from and where to? Materials 15, 415 (2022).

    Article  Google Scholar 

  56. Du, L. & Hu, W. An overview of heat transfer enhancement methods in microchannel heat sinks. Chem. Eng. Sci. 280, 119081 (2023).

    Article  Google Scholar 

  57. Fu, J. et al. Investigation of the cooling enhancement of a single crystal diamond heat sink with embedded microfluidic channels. Diam. Relat. Mater. 130, 109470 (2022).

    Article  Google Scholar 

  58. Hartmann, J., Voigt, P. & Reichling, M. Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope. J. Appl. Phys. 81, 2966–2972 (1997).

    Article  Google Scholar 

  59. Anaya, J. et al. Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Mater. 103, 141–152 (2016).

    Article  Google Scholar 

  60. Sood, A. in Thermal Management of Gallium Nitride Electronics (ed. Tadjer, M. J. & Anderson, T. J.) 45–67 (Woodhead, 2022).

  61. Malakoutian, M. et al. Cooling future system-on-chips with diamond inter-tiers. Cell Rep. Phys. Sci. 4, 101686 (2023). This work showcases application of CVD-grown PCD as thermal management materials in semiconductor chips.

    Article  Google Scholar 

  62. Dong, H., Wen, B. & Melnik, R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037 (2014).

    Article  Google Scholar 

  63. Malakoutian, M., Soman, R., Woo, K. & Chowdhury, S. Development of 300–400 °C grown diamond for semiconductor devices thermal management. MRS Adv. 9, 7–11 (2024).

    Article  Google Scholar 

  64. Malakoutian, M. et al. Record-low thermal boundary resistance between diamond and GaN-on-SiC for enabling radiofrequency device cooling. ACS Appl. Mater. Interfaces 13, 60553–60560 (2021).

    Article  Google Scholar 

  65. Dumka, D. C. et al. Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. In Compound Semiconductor Integrated Circuit Symposium 1–4 (IEEE, 2013).

  66. Soman, R. et al. Novel all-around diamond integration with GaN HEMTs demonstrating highly efficient device cooling. In International Electron Devices Meeting 30.8.1–30.8.4 (IEEE, 2022).

  67. Woo, K. et al. Interlayer engineering to achieve <1 m2 K/GW thermal boundary resistances to diamond for effective device cooling. In International Electron Devices Meeting 1–4 (IEEE, 2023).

  68. Zhong et al. Low-temperature bonding of Si and polycrystalline diamond with ultra-low thermal boundary resistance by reactive nanolayers. J. Mater. Sci. Technol. 188, 37–43 (2024).

    Article  Google Scholar 

  69. Cheng, Z., Mu, F., Yates, L., Suga, T. & Graham, S. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 12, 8376–8384 (2020).

    Article  Google Scholar 

  70. Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. Rep. 37, 129–281 (2002).

    Article  Google Scholar 

  71. Marks, N. A., McKenzie, D. R., Pailthrope, B. A., Bernasconi, M. & Parrinello, M. Microscopic structure of tetrahedral amorphous carbon. Phys. Rev. Lett. 76, 768 (1996).

    Article  Google Scholar 

  72. Vetter, J. 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Tech. 257, 213–240 (2014).

    Article  Google Scholar 

  73. Shamsa, M. et al. Thermal conductivity of diamond-like carbon films. App. Phys. Lett. 89, 161921 (2006).

    Article  Google Scholar 

  74. Giri, A., Dionne, C. J. & Hopkins, P. E. Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon. NPJ Comput. Mater. 8, 55 (2022).

    Article  Google Scholar 

  75. Baranov, A. M. et al. Development of DLC film technology for electronic application. Diam. Relat. Mater. 9, 649–653 (2000).

    Article  Google Scholar 

  76. Xu, R. L. et al. Thermal conductivity of crystalline AlN and the influence of atomic-scale defects. J. Appl. Phys. 126, 185105 (2019).

    Article  Google Scholar 

  77. Slack, G. A., Tanzilli, R. A., Pohl, R. O. & Vandersande, J. W. The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids 48, 641–647 (1987).

    Article  Google Scholar 

  78. Cheng, Z. et al. Experimental observation of high intrinsic thermal conductivity of AlN. Phys. Rev. Mater. B 4, 044602 (2020).

    Google Scholar 

  79. Li, J., Nam, K., Nakarmi, M., Lin, J. & Jiang, H. Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83, 5163–5165 (2003).

    Article  Google Scholar 

  80. Feneberg, M., Leute, R. A. R., Neuschl, B., Thonke, K. & Bickermann, M. High-excitation and high-resolution photoluminescence spectra of bulk AlN. Phys. Rev. B 82, 1–8 (2010).

    Article  Google Scholar 

  81. Vaziri, S. et al. AlN: an engineered thermal material for 3D integrated circuits. Adv. Func. Mat. 35, 2402662 (2024). This work describes and reviews the status of low temperature deposited AlN as a thermal management material.

    Article  Google Scholar 

  82. Koh, Y. R. et al. Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl. Mater. Interfaces 12, 29443–29450 (2020).

    Google Scholar 

  83. Hoque, M. S. B. et al. High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15, 9588–9599 (2021).

    Article  Google Scholar 

  84. Aissa, K. A. et al. Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering. J. Phys. Appl. Phys. 47, 355303 (2014).

    Article  Google Scholar 

  85. Perez, C. et al. High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature. ACS Nano 17, 21240–21250 (2023).

    Article  Google Scholar 

  86. Duquenne, C. et al. Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. J. Phys. Appl. Phys. 45, 015301 (2011).

    Article  Google Scholar 

  87. Zhao, Y. et al. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films. J. Appl. Phys. 96, 4563–4568 (2004).

    Article  Google Scholar 

  88. Choi, S. R., Kim, D., Choa, S.-H., Lee, S.-H. & Kim, J.-K. Thermal conductivity of AlN and SiC thin films. Int. J. Thermophys. 27, 896–905 (2006).

    Article  Google Scholar 

  89. Jacquot, A. et al. Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 186, 507–512 (2002).

    Article  Google Scholar 

  90. Belkerk, B. E., Soussou, A., Carette, M., Djouadi, M. A. & Scudeller, Y. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering. Appl. Phys. Lett. 101, 151908 (2012).

    Article  Google Scholar 

  91. Belkerk, B. E. et al. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature. Appl. Phys. Lett. 105, 221905 (2014).

    Article  Google Scholar 

  92. Lee, P. C. et al. Achieving a high thermally conductive one micron AlN deposition by high power impulse magnetron sputtering plus kick. ACS Appl. Mater. Interfaces 16, 26664 (2024).

    Article  Google Scholar 

  93. Jarrige, J., Lecompte, J. P., Mullot, J. & Müller, G. Effect of oxygen on the thermal conductivity of aluminium nitride ceramics. J. Eur. Ceram. Soc. 17, 1891–1895 (1997).

    Article  Google Scholar 

  94. Kobayashi, R., Moriya, Y., Imamura, M., Oosawa, K. & Oh-Ishi, K. Relation between oxygen concentration in AlN lattice and thermal conductivity of AlN ceramics sintered with various sintering additives. J. Ceram. Soc. Jpn. 119, 291–294 (2011).

    Article  Google Scholar 

  95. Kim, J. et al. Direct evidence on effect of oxygen dissolution on thermal and electrical conductivity of AlN ceramics using Al solid-state NMR analysis. Materials 15, 8125 (2022).

    Article  Google Scholar 

  96. Ueda, S. T. et al. Tris(dimethylamido) aluminum(III) and N2H4: ideal precursors for the low-temperature deposition of large grain, oriented c-axis AlN on Si via atomic layer annealing. Appl. Surf. Sci. 554, 149656 (2021).

    Article  Google Scholar 

  97. Ozgit, C., Donmez, I., Alevli, M. & Biyikli, N. Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition. Thin Solid. Films 520, 2750–2755 (2012).

    Article  Google Scholar 

  98. Iqbal, A. & Mohd-Yasin, F. Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: a review. Sensors 18, 1797 (2018).

    Article  Google Scholar 

  99. Umeda, K., Takeuchi, M., Yamada, H., Kubo, R. & Yoshino, Y. Improvement of thickness uniformity and crystallinity of AlN films prepared by off-axis sputtering. Vacuum 80, 658–661 (2006).

    Article  Google Scholar 

  100. Deng, R., Muralt, P. & Gall, D. Biaxial texture development in aluminum nitride layers during off-axis sputter deposition. J. Vac. Sci. Technol. A 30, 051501 (2012).

    Article  Google Scholar 

  101. Lee, P.-C. et al. Achieving a high thermally conductive one micron AlN deposition by high power impulse magnetron sputtering plus kick. ACS Appl. Mater. Interfaces 16, 26664–26673 (2024).

    Article  Google Scholar 

  102. Jaramillo-Fernandez, J., Ordonez-Miranda, J., Ollier, E. & Volz, S. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation. Phys. Chem. Chem. Phys. 17, 8125–8137 (2015).

    Article  Google Scholar 

  103. Pan, T. S. et al. Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure. J. Appl. Phys. 112, 044905 (2012).

    Article  Google Scholar 

  104. Biswas, A. et al. Structural, optical, and thermal properties of BN thin films grown on diamond via pulsed laser deposition. Phys. Rev. Mater. 7, 094602 (2023).

    Article  Google Scholar 

  105. Monteiro, S. N. et al. Cubic boron nitride competing with diamond as a superhard engineering material—an overview. J. Mater. Res. Technol. 2, 68 (2013).

    Article  Google Scholar 

  106. Fukamachi, S. et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126–136 (2023).

    Article  Google Scholar 

  107. Cai, Q. et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5, eaav0129 (2019). This work discusses the thermal conductivity of intrinsic monolayer BN.

    Article  Google Scholar 

  108. Yuan, C. et al. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019).

    Article  Google Scholar 

  109. Jiang, P. Q., Qian, X., Yang, R. G. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).

    Article  Google Scholar 

  110. Sichel, E. K., Miller, R. E., Abrahams, M. S. & Buiocchi, C. J. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Phys. Rev. B. 13, 4607 (1976).

    Article  Google Scholar 

  111. Alvarez, G. A. et al. Cross-plane thermal conductivity of h-BN thin films grown by pulsed laser deposition. Appl. Phys. Lett. 122, 232101 (2023).

    Article  Google Scholar 

  112. Jiang, H. et al. Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity. Adv. Nanocomposites 1, 144 (2024).

    Article  Google Scholar 

  113. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550 (2013).

    Article  Google Scholar 

  114. Ying, H. et al. Tailoring the thermal transport properties of monolayer hexagonal boron nitride by grain size engineering. 2D Mater. 7, 015031 (2019).

    Article  Google Scholar 

  115. Wang, C. et al. Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep. 6, 25334 (2016).

    Article  Google Scholar 

  116. Zhou, H. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 7, 1232 (2014).

    Article  Google Scholar 

  117. Lindsay, L. & Broido, D. A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B. 84, 155421 (2011).

    Article  Google Scholar 

  118. Cai, Q. et al. Outstanding thermal conductivity of single atomic layer isotope-modified boron nitride. Phys. Rev. Lett. 125, 085902 (2020).

    Article  Google Scholar 

  119. Mercado, E. et al. Isotopically enhanced thermal conductivity in few-layer hexagonal boron nitride: implications for thermal management. ACS Appl. Nano Mater. 3, 12148 (2020).

    Article  Google Scholar 

  120. Choi, D. et al. Large reduction of hot spot temperature in graphene electronic devices with heat-spreading hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 11101 (2018).

    Article  Google Scholar 

  121. Zhang, H. et al. Implementation of high thermal conductivity and synaptic metaplasticity in vertically-aligned hexagonal boron nitride-based memristor. Sci. China Mater. 67, 1907–1914 (2024).

    Article  Google Scholar 

  122. Koroglu, C. & Pop, E. High thermal conductivity insulators for thermal management in 3D integrated circuits. IEEE Electron. Dev. Lett. 44, 496 (2023).

    Article  Google Scholar 

  123. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eeax1325 (2019).

    Article  Google Scholar 

  124. Kimoto, T. & Cooper, J. A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications 11–38 (Wiley, 2014).

  125. Zheng, Q. et al. Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Phys. Rev. Mater. 3, 014601 (2019).

    Article  Google Scholar 

  126. Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017).

    Article  Google Scholar 

  127. Cheng, Z. et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nat. Commun. 13, 7201 (2022). This work discusses the thermal conductivity of wafer-scale cubic SiC.

    Article  Google Scholar 

  128. Goela, J. S., Brese, N. E., Burns, L. E. & Pickering, M. A. in High Thermal Conductivity Materials (ed. Shinde, S. L. & Goela, J. S.) 167–198 (Springer, 2006).

  129. Tairov, Y. M. & Tsvetkov, V. F. Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209–212 (1978).

    Article  Google Scholar 

  130. Chaussende, D. et al. Prospects for 3C-SiC bulk crystal growth. J. Cryst. Growth 310, 976–981 (2008).

    Article  Google Scholar 

  131. Wang, G. et al. High-quality and wafer-scale cubic silicon carbide single crystals. Energy Environ. Mater. 7, e12678 (2023).

    Article  Google Scholar 

  132. La Via, F. et al. New approaches and understandings in the growth of cubic silicon carbide. Materials 14, 5348 (2021).

    Article  Google Scholar 

  133. Wellman, P. J. et al. Review of sublimation growth of SiC bulk crystals. Mater. Sci. Forum 1062, 104–112 (2022).

    Article  Google Scholar 

  134. Portail, M., Zielinski, M., Chassagne, M., Roy, S. & Nemoz, M. Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105, 083505 (2009).

    Article  Google Scholar 

  135. Kong, H. S., Glass, J. T. & Davis, R. F. Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates. J. Appl. Phys. 64, 2672–2679 (1988).

    Article  Google Scholar 

  136. Powell, J. A. et al. Controlled growth of 3C‐SiC and 6H‐SiC films on low‐tilt‐angle vicinal (0001) 6H‐SiC wafers. Appl. Phys. Lett. 59, 333–335 (1991).

    Article  Google Scholar 

  137. Leone, S. et al. Growth of smooth 4H-SiC epilayers on 4° off-axis substrates with chloride-based CVD at very high growth rate. Mater. Res. Bull. 46, 1272–1275 (2011).

    Article  Google Scholar 

  138. Xin, B. et al. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD. Appl. Surf. Sci. 357A, 985–993 (2015).

    Article  Google Scholar 

  139. Ramazanov, S. M. & Ramazanov, G. M. Relaxing layers of silicon carbide grown on a silicon substrate by magnetron sputtering. Tech. Phys. Lett. 40, 44–47 (2014).

    Article  Google Scholar 

  140. Wang, L. et al. Growth of 3C–SiC on 150-mm Si(100) substrates by alternating supply epitaxy at 1000 °C. Thin Solid. Films 519, 6443–6446 (2011).

    Article  Google Scholar 

  141. Wang, L. et al. Demonstration of p-type 3C–SiC grown on 150 mm Si(100) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011).

    Article  Google Scholar 

  142. Wu, Y.-F. et al. Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 48, 586–590 (2001).

    Article  Google Scholar 

  143. Gaska, R. et al. High-temperature performance of AlGaN/GaN HFETs on SiC substrates. IEEE Electron. Dev. Lett. 18, 492–494 (1997).

    Article  Google Scholar 

  144. Torvik, J. T., Leksono, M., Pankove, J. I. & Van Zeghbroeck, B. A GaN/4H-SiC heterojunction bipolar transistor with operation up to 300 °C. MRS Internet J. Nitride Semicond. Res. 4, 3 (1999).

    Article  Google Scholar 

  145. Keshmiri, N., Wang, D., Agrawal, B., Hou, R. & Emadi, A. Current status and future trends of GaN HEMTs in electrified transportation. IEEE Access. 8, 70553–70571 (2020).

    Article  Google Scholar 

  146. Sengupta, A. & Islam, A. Performance comparison of AlGaN/GaN HFET with sapphire and 4H-SiC substrate. In Devices for Integrated Circuit 190–195 (IEEE, 2017).

  147. Song, Y. et al. Ga2O3-on-SiC composite wafer for thermal management of ultrawide bandgap electronics. ACS Appl. Mater. Interfaces 13, 40817–40829 (2021).

    Article  Google Scholar 

  148. Song, Y. et al. Ultra-wide band gap Ga2O3-on-SiC MOSFETs. ACS Appl. Mater. Interfaces 15, 7137–7147 (2023).

    Article  Google Scholar 

  149. Leone, A. et al. Epitaxial growth optimization of AlGaN/GaN high electron mobility transistor structures on 3C-SiC/Si. J. Appl. Phys. 125, 235701 (2019).

    Article  Google Scholar 

  150. Meier, F. et al. Selective area growth of cubic gallium nitride on silicon (001) and 3C-silicon carbide (001). AIP Adv. 11, 075013 (2021).

    Article  Google Scholar 

  151. Minoura, Y. et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs. Jpn. J. Appl. Phys. 59, SGGD03 (2020).

    Article  Google Scholar 

  152. Ziabe, E. et al. Thermal transport through GaN–SiC interfaces from 300 to 600 K. Appl. Phys. Lett. 107, 091605 (2015).

    Article  Google Scholar 

  153. Mu, F. et al. High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces. ACS Appl. Mater. Interfaces 11, 33428–33434 (2019).

    Article  Google Scholar 

  154. Field, D. E. et al. Thermal characterization of direct wafer bonded Si-on-SiC. Appl. Phys. Lett. 120, 113503 (2022).

    Article  Google Scholar 

  155. Kuzmik, J. et al. Investigation of the thermal boundary resistance at the III-nitride/substrate interface using optical methods. J. Appl. Phys. 101, 054508 (2007).

    Article  Google Scholar 

  156. Zhan, T. et al. Effects of thermal boundary resistance on thermal management of gallium-nitride-based semiconductor devices: a review. Micromachines 14, 2076 (2023).

    Article  Google Scholar 

  157. Komiyama, J., Abe, Y., Suzuki, S. & Nakanishi, H. Suppression of crack generation in GaN epitaxy on Si using cubic SiC as intermediate layers. Appl. Phys. Lett. 88, 091901 (2006).

    Article  Google Scholar 

  158. Komiyama, J., Abe, Y., Suzuki, S. & Nakanishi, H. Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers. J. Appl. Phys. 100, 033519 (2006).

    Article  Google Scholar 

  159. Bae, D. G. et al. Embedded two-phase cooling of high heat flux electronics on silicon carbide (SiC) using thin-film evaporation and an enhanced delivery system (FEEDS) manifold-microchannel cooler. In Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 466–472 (IEEE, 2017).

  160. Cho, H. et al. Ultradeep, low-damage dry etching of SiC. Appl. Phys. Lett. 76, 739–741 (2000).

    Article  Google Scholar 

  161. Liu, R. et al. A dry etching method for 4H-SiC via using photoresist mask. J. Cryst. Growth 531, 125351 (2020).

    Article  Google Scholar 

  162. Racka-Szmidt, K., Stonio, B., Zelazko, J., Filipiak, M. & Sochacki, M. A review: inductively coupled plasma reactive ion etching of silicon carbide. Materials 15, 123 (2022).

    Article  Google Scholar 

  163. Shen, D. et al. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 7, 2606 (2017).

    Article  Google Scholar 

  164. Vu, M. C. et al. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 12, 23388–23398 (2020).

    Article  Google Scholar 

  165. Dai, W. et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 3, 4884–4891 (2015).

    Article  Google Scholar 

  166. Dai, W. et al. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos. A Appl. Sci. Manuf. 76, 73–81 (2015).

    Article  Google Scholar 

  167. Song, J. & Zhang, S. Vertically aligned silicon carbide nanowires/reduced graphene oxide networks for enhancing the thermal conductivity of silicone rubber composites. Compos. A Appl. Sci. Manuf. 133, 105873 (2020).

    Article  Google Scholar 

  168. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018). This work reports high thermal conductivity observed in boron arsenide.

    Article  Google Scholar 

  169. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    Article  Google Scholar 

  170. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    Article  Google Scholar 

  171. Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).

    Article  Google Scholar 

  172. Tian, F. & Ren, Z. High thermal conductivity in boron arsenide: from prediction to reality. Angew. Chem. Int. Ed. 58, 5824 (2019).

    Article  Google Scholar 

  173. Singh, S. G. & Tan, C. S. Thermal mitigation using thermal through silicon via (TTSV) in 3-D ICs. In 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference 182–185 (IEEE, 2009).

  174. Kuang, Y., Lindsay, L., Shi, S., Wang, X. & Huang, B. Thermal conductivity of graphene mediated by strain and size. Int. J. Heat. Mass. Transf. 101, 772–778 (2016).

    Article  Google Scholar 

  175. Singh, D., Murthy, J. Y. & Fisher, T. S. Mechanism of thermal conductivity reduction in few-layer graphene. J. Appl. Phys. 110, 044317 (2017).

    Article  Google Scholar 

  176. Ghosh, S. et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  177. Guo, Z., Zhang, D. & Gong, X.-G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009).

    Article  Google Scholar 

  178. Fugallo, G. et al. Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109–61104 (2014).

    Article  Google Scholar 

  179. Han, Z. & Ruan, X. Thermal conductivity of monolayer graphene: convergent and lower than diamond. Phys. Rev. B 108, L121412 (2023). This work reviews and discusses the debates around thermal conductivity in graphene.

    Article  Google Scholar 

  180. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 903–907 (2008).

    Article  Google Scholar 

  181. Chen, S. et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321–328 (2011).

    Article  Google Scholar 

  182. Lee, J. U., Yoon, D., Kim, H., Lee, S. W. & Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419(R) (2011).

    Article  Google Scholar 

  183. Jang, W., Chen, Z., Bao, W., Lau, C. N. & Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909–3913 (2010).

    Article  Google Scholar 

  184. Shtein, M., Nadiv, R., Buzaglo, M. & Regev, O. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Interfaces 7, 23725–23730 (2015).

    Article  Google Scholar 

  185. Zhang, K. & Yuen, M. M. F. Heat spreader with aligned CNTs designed for thermal management of HB-LED packaging and microelectronic packaging. In 7th International Conference on Electronics Packaging 1–4 (IEEE, 2006).

  186. Xin, G. et al. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014).

    Article  Google Scholar 

  187. Luo, H., Ajmal, K. M., Liu, W., Yamamura, K. & Deng, H. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives. Int. J. Extrem. Manuf. 3, 022003 (2021).

    Article  Google Scholar 

  188. Xiao, C., Hsia, F.-C., Sutton-Cook, A., Weber, B. & Franklin, S. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes. Carbon 196, 29–48 (2022).

    Article  Google Scholar 

  189. Eon, D. Diamonds in the current: navigating challenges for the integration of diamond in power electronics. Phys. Status Solidi A 221, 2400085 (2024).

    Article  Google Scholar 

  190. Zheng, Y., Muehle, M., Lai, J., Albrecht, J. D. & Seo, J.-H. Bilayer metal etch mask strategy for deep diamond etching. J. Vac. Sci. Technol. B 40, 022210 (2022).

    Article  Google Scholar 

  191. Baldwin, C. G., Downes, J. E. & Mildren, R. P. Enhanced etch rate of deep-UV laser induced etching of diamond in low pressure conditions. Appl. Phys. Lett. 117, 111601 (2020).

    Article  Google Scholar 

  192. Zheng, Y. et al. Fast smoothing on diamond surface by inductively coupled plasma reactive ion etching. J. Mater. Res. 35, 462–472 (2020).

    Article  Google Scholar 

  193. Toros, A. et al. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst. Nanoeng. 4, 12 (2018).

    Article  Google Scholar 

  194. Tang, Y. & Aslam, D. M. Technology of polycrystalline diamond thin films for microsystems applications. J. Vac. Sci. Technol. B 23, 1088–1095 (2005).

    Article  Google Scholar 

  195. Whiteley, S. et al. Dopant selective photoelectrochemical etching of SiC. J. Electrochem. Soc. 170, 036508 (2023).

    Article  Google Scholar 

  196. Hochreiter, A., Groß, F., Möller, M. N., Krieger, M. & Weber, H. B. Electrochemical etching strategy for shaping monolithic 3D structures from 4H-SiC wafers. Sci. Rep. 13, 19086 (2023).

    Article  Google Scholar 

  197. Minowa, Y., Matsumae, T., Hayase, M., Kurashima, Y. & Takagi, H. Direct bonding of germanium and diamond substrates by reduction process. In International Conference on Electronics Packaging 119–120 (IEEE, 2024).

  198. Kobayashi, A. et al. Room-temperature bonding of GaN and diamond via a SiC layer. Funct. Diam. 2, 142–150 (2022).

    Article  Google Scholar 

  199. Matsumae, T., Takigawa, R., Kurashuma, Y., Takagi, H. & Higurashi, E. Low-temperature direct bonding of InP and diamond substrates under atmospheric conditions. Sci. Rep. 11, 11109 (2021).

    Article  Google Scholar 

  200. Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 11, 689–694 (1978).

    Article  Google Scholar 

  201. Oliva, A. I. & Lugo, J. M. Measurement of the temperature coefficient of resistance in metallic films and nano-thickness. Int. J. Thermophys. 37, 35 (2016).

    Article  Google Scholar 

  202. Belser, R. B. & Hicklin, W. H. Temperature coefficients of resistance of metallic films in the temperature range 25° to 600 °C. J. Appl. Phys. 30, 313–322 (1959).

    Article  Google Scholar 

  203. Warzoha, R. J., Smith, A. N. & Harris, M. Maximum resolution of a probe-based, steady-state thermal interface material characterization instrument. J. Electron. Packag. 139, 011004 (2017).

    Article  Google Scholar 

  204. Warzoha, R. J., Smith, A. N., Boteler, L. & Bajwa, A. Design considerations for miniaturized steady-state thermal characterization instruments. IEEE Trans. Comp. Pack. Manuf. 8, 1401–1410 (2018).

    Google Scholar 

  205. Wojciechowski, K. T., Zybala, R. & Mania, R. Application of DLC layers in 3-omega thermal conductivity method. J. Achiev. Mater. Manuf. Eng. 37, 512–517 (2009).

    Google Scholar 

  206. Ramu, A. T. & Bowers, J. E. Analysis of the “3-Omega” method for substrates and thick films of anisotropic thermal conductivity. J. Appl. Phys. 112, 043516 (2012). This work introduces 3ω methods for thermal characterization in general.

    Article  Google Scholar 

  207. Chernodoubov, D. A. & Inyushkin, A. V. Automatic thermal conductivity measurements with 3-omega technique. Rev. Sci. Instrum. 90, 024904 (2019).

    Article  Google Scholar 

  208. Kommandur, S. & Yee, S. A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Rev. Sci. Instrum. 89, 114905 (2018).

    Article  Google Scholar 

  209. Landry, D., Flores, R. & Goodman, R. B. Estimating the thermal conductivity of thin films: a novel approach using the transient plane source method. J. Heat. Mass. Transf. 146, 031004 (2023).

    Article  Google Scholar 

  210. Zhang, Q., Zhu, W., Zhou, J. & Deng, Y. Realizing the accurate measurements of thermal conductivity over a wide range by scanning thermal microscopy combined with quantitative prediction of thermal contact resistance. Small 19, 2300968 (2023).

    Article  Google Scholar 

  211. Juszczyk, J., Kazmierczak-Balata, A., Firek, P. & Bodzenta, J. Measuring thermal conductivity of thin films by scanning thermal microscopy combined with thermal spreading resistance analysis. Ultramicroscopy 175, 81–86 (2017).

    Article  Google Scholar 

  212. Bodzenta, J. & Kazmierczak-Balata, A. Scanning thermal microscopy and its applications for quantitative thermal measurements. J. Appl. Phys. 132, 140902 (2022).

    Article  Google Scholar 

  213. Jiang, P., Xin, Q. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018). This work introduces TDTR methods for thermal characterization of bulk and thin films.

    Article  Google Scholar 

  214. Schmidt, J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009). This work introduces FDTR methods for thermal characterization.

    Article  Google Scholar 

  215. Braun, J. L., Olson, D. H., Gaskins, J. T. & Hopkins, P. E. A steady-state thermoreflectance method to measure thermal conductivity. Rev. Sci. Instrum. 90, 024905 (2019). This work introduces SSTR methods for thermal characterization.

    Article  Google Scholar 

  216. Minnich, A. J. Multidimensional quasiballistic thermal transport in transient grating spectroscopy. Phys. Rev. B 92, 085203 (2015).

    Article  Google Scholar 

  217. Sood, A. et al. Quasi-ballistic thermal transport across MoS2 thin films. Nano Lett. 19, 2434–2442 (2019).

    Article  Google Scholar 

  218. Carslaw, H. & Jaeger, J. C. Conduction of Heat in Solids 109–112 (Oxford Univ. Press, 1959).

  219. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  Google Scholar 

  220. Braun, J. L. & Hopkins, P. E. Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: a numerical study. J. Appl. Phys. 121, 175107 (2017).

    Article  Google Scholar 

  221. Ruoho, M., Valset, K., Finstad, T. & Tittonen, I. Measurement of thin film thermal conductivity using the laser flash method. Nanotechnology 26, 195706 (2015).

    Article  Google Scholar 

  222. Reparaz, J. S. et al. A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. Rev. Sci. Instrum. 85, 034901 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

W.-Y.W., A.K., J.-R.W., K.K.H., M.M., J.-H.J., S.V., I.D., C.C.S., J.F.H. and Y.W. researched data for the article. W.-Y.W., A.K., J.-R.W., K.K.H., M.M., J.-H.J., S.V., I.D., C.C.S., J.F.H., M.N. and S.S.L. substantially contributed to the discussion of the content. W.-Y.W., A.K., J.-R.W., K.K.H., S.V., J.F.H., M.N. and S.S.L. wrote the manuscript. W.-Y.W., X.-Y. B., S.C. and S.S.L. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to W.-Y. Woon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woon, WY., Kasperovich, A., Wen, JR. et al. Thermal management materials for 3D-stacked integrated circuits. Nat Rev Electr Eng 2, 598–613 (2025). https://doi.org/10.1038/s44287-025-00196-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00196-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing