Abstract
Skin-like soft electronics offer conformal, stable interfaces with biological tissues — including skin, heart, brain, muscle and gut — enabling health monitoring, disease diagnosis and closed-loop therapeutic interventions. Continuous, reliable data collection at the human–electronic interface is crucial for advancing both fundamental biological research and personalized health care. Towards this end, integrated circuits (ICs) made with high-performance intrinsically stretchable transistors are essential for monolithic integration with sensors for distributed signal conditioning and amplification. In this Review, we discuss the operational principles, device design, material selection and fabrication considerations that underpin the development of high-performance intrinsically stretchable transistors for wearable and implantable ICs. Key points include the need for high field-effect mobility in short-channel devices — achieved through innovations in materials, device architectures and processing — to push device performance and operation speed; mechanical robustness to maintain stable operation under large strains; low-voltage operation for safe, energy-efficient biomedical systems; and scalable fabrication methods that enable high device density, reproducibility and integration complexity. Looking ahead, advancing both device performance and integration complexity will be pivotal for realizing large-scale, multifunctional ICs that can transform applications in bioelectronics, wearable health monitoring, soft robotics and adaptive human–machine interfaces.
Key points
-
Intrinsically stretchable devices enable monolithic integration of the functional components, reduction of concentrated local strain, intimate contact with target objects and compatibility with soft tissue.
-
Developments in materials and fabrication process have promoted device scaling and integration of intrinsically stretchable electronics.
-
Improvements in materials, device engineering and fabrication processes will enable higher-performance and high-density intrinsically stretchable transistors, opening to functional circuits and systems.
-
Intrinsically stretchable integrated circuits will be the key for real-world soft applications.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).
Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).
Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).
Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).
Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).
Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2024).
Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).
Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).
Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).
Li, P., Kim, S. & Tian, B. Beyond 25 years of biomedical innovation in nano-bioelectronics. Device 2, 100401 (2024).
Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).
Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 42, 1836–1843 (2024).
Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).
Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).
Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).
Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).
Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).
Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).
Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).
Park, Y., Chung, T. S., Lee, G. & Rogers, J. A. Materials chemistry of neural interface technologies and recent advances in three-dimensional systems. Chem. Rev. 122, 5277–5316 (2022).
He, R. et al. Flexible miniaturized sensor technologies for long-term physiological monitoring. npj Flex. Electron. 6, 20 (2022).
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).
Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).
Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).
Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006). This work introduced buckling structures for extrinsically stretchable devices.
Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).
Lipomi, D. J., Tee, B. C.-K., Vosgueritchian, M. & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).
White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). This work introduced wrinkled structures for extrinsically stretchable devices.
Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015). This work introduced kirigami-based extrinsically stretchable graphene transistors.
Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).
Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).
Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).
Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).
Matsuhisa, N. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).
Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).
Chortos, A. et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv. Mater. 26, 4253–4259 (2014). One of the first works to report intrinsically stretchable transistors.
Nishio, Y., Hirotani, J., Kishimoto, S., Kataura, H. & Ohno, Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube integrated circuits with local strain suppression layer. Adv. Electron. Mater. 7, 2000674 (2021).
Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).
Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015). This work demonstrated rigid islands-based extrinsically stretchable transistors.
Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024). This work reported on CNT-based high-performance intrinsically stretchable transistors and ICs.
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). This work reported on the fabrication platform of intrinsically stretchable devices using shadow masks.
Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, 1969).
Razavi, B. Design of Analog CMOS Integrated Circuits (McGraw-Hill, Inc., 2000).
Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2018).
Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).
Nasr, J. R., Schulman, D. S., Sebastian, A., Horn, M. W. & Das, S. Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31, 1806020 (2019).
Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).
Pang, C.-S. et al. Mobility extraction in 2D transition metal dichalcogenide devices — avoiding contact resistance implicated overestimation. Small 17, 2100940 (2021).
Chang, H.-Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. https://doi.org/10.1063/1.4868536 (2014).
Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).
Zorn, N. F. & Zaumseil, J. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev. https://doi.org/10.1063/5.0065730 (2021).
Zhong, D. et al. Design considerations and fabrication protocols of high-performance intrinsically stretchable transistors and integrated circuits. ACS Nano 18, 33011–33031 (2024). This work reported on the fabrication protocol of CNT-based high-performance intrinsically stretchable transistors and ICs.
Ashizawa, M., Zheng, Y., Tran, H. & Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 100, 101181 (2020).
Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).
Bradley, K., Cumings, J., Star, A., Gabriel, J.-C. P. & Grüner, G. Influence of mobile ions on nanotube based FET devices. Nano Lett. 3, 639–641 (2003).
Datye, I. M. et al. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 6, 011004 (2019).
Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).
Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).
Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). This work reported on the low-voltage intrinsically stretchable devices using shadow masks.
Wei, T. et al. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25, 105160 (2022).
Qiu, C. et al. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9, 969–977 (2015).
Xu, L., Qiu, C., Peng, L.-M. & Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res. 14, 976–981 (2021).
Ghoneim, H. et al. Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.3266526 (2009).
Jing, G., Datta, S. & Lundstrom, M. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron. Devices 51, 172–177 (2004).
Srimani, T. et al. Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.5098322 (2019).
Schroder, D. K. Semiconductor Material and Device Characterization (Wiley-Interscience, 2006).
Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021). This work reported on high-density intrinsically organic stretchable transistors and ICs.
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).
Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 4, 811–819 (2009).
Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).
Xu, P. et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023).
Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).
Xu, J. et al. Tuning conjugated polymer chain packing for stretchable semiconductors. Adv. Mater. 34, 2104747 (2022).
Li, Y. et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14, 4488 (2023).
Götte, M. J. W. et al. Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J. Am. Coll. Cardiol. 37, 808–817 (2001).
Kim, D.-H. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl Acad. Sci. USA 109, 19910–19915 (2012).
Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).
Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).
Kim, J.-H. et al. Understanding mechanical behavior and reliability of organic electronic materials. MRS Bull. 42, 115–123 (2017).
Jeong, J.-W. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).
Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).
Razavi, B., Ran-Hong, Y. & Lee, K. F. Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 750–754 (1994).
Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).
Takagi, S., Toriumi, A., Iwase, M. & Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: part I — effects of substrate impurity concentration. IEEE Trans. Electron. Devices 41, 2357–2362 (1994).
Drennan, P. G. & McAndrew, C. C. Understanding MOSFET mismatch for analog design. IEEE J. Solid-State Circuits 38, 450–456 (2003).
Kinget, P. R. Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40, 1212–1224 (2005).
Franklin, A. D., Farmer, D. B. & Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 8, 7333–7339 (2014).
Zeng, J. et al. Ultralow contact resistance in organic transistors via orbital hybridization. Nat. Commun. 14, 324 (2023).
Waldrip, M., Jurchescu, O. D., Gundlach, D. J. & Bittle, E. G. Contact resistance in organic field-effect transistors: conquering the barrier. Adv. Funct. Mater. 30, 1904576 (2020).
Nikolka, M. A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors. MRS Commun. 10, 98–111 (2020).
Bobbert, P. A., Sharma, A., Mathijssen, S. G. J., Kemerink, M. & de Leeuw, D. M. Operational stability of organic field-effect transistors. Adv. Mater. 24, 1146–1158 (2012).
Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).
Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023).
Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).
Gundlach, D. J. et al. An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. https://doi.org/10.1063/1.2215132 (2006).
Cao, C., Andrews, J. B., Kumar, A. & Franklin, A. D. Improving contact interfaces in fully printed carbon nanotube thin-film transistors. ACS Nano 10, 5221–5229 (2016).
Black, J. R. Electromigration — a brief survey and some recent results. IEEE Trans. Electron. Devices 16, 338–347 (1969).
Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).
Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).
Park, J. et al. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 3, 916 (2012).
Kim, M.-G., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).
Liu, T., Sen, P. & Kim, C. J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J. Microelectromech. Syst. 21, 443–450 (2012).
Dickey, M. D. et al. Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).
Ladd, C., So, J.-H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).
Boley, J. W., White, E. L., Chiu, G. T.-C. & Kramer, R. K. Direct writing of gallium–indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).
Pan, C. et al. Visually imperceptible liquid–metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30, 1706937 (2018).
Lee, G.-H. et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 13, 2643 (2022).
Kazem, N., Hellebrekers, T. & Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017).
Fan, X. et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6, 1900813 (2019).
Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).
Alemu Mengistie, D., Wang, P.-C. & Chu, C.-W. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 1, 9907–9915 (2013).
Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).
Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).
Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).
Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).
Xu, F. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).
Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).
Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).
Liu, D. et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J. Am. Chem. Soc. 143, 11679–11689 (2021).
Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).
Noh, J., Jeong, S. & Lee, J.-Y. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate. Nat. Commun. 7, 12374 (2016).
Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).
Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).
Wu, M.-Y., Wang, J. & Arnold, M. S. Channel length scaling of over 100% biaxially stretchable carbon nanotube transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.5088358 (2019).
Molina-Lopez, F. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019).
Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).
Tait, J. G., De Volder, M. F. L., Cheyns, D., Heremans, P. & Rand, B. P. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Nanoscale 7, 7259–7266 (2015).
Søndergaard, R. R., Hösel, M. & Krebs, F. C. Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci. Part B Polym. Phys. 51, 16–34 (2013).
Mattana, G. et al. Inkjet-printing: a new fabrication technology for organic transistors. Adv. Mater. Technol. 2, 1700063 (2017).
Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).
Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022).
Lee, B. et al. Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat. Electron. 6, 307–318 (2023).
Byun, J. et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3, eaas9020 (2018).
Byun, J. et al. Fully printable, strain-engineered electronic wrap for customizable soft electronics. Sci. Rep. 7, 45328 (2017).
Cai, L., Zhang, S., Miao, J., Yu, Z. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).
Park, Y.-G., An, H. S., Kim, J.-Y. & Park, J.-U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, eaaw2844 (2019).
Park, Y.-G. et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett. 19, 4866–4872 (2019).
Parida, K. et al. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019).
Andrews, J. B. et al. Patterned liquid metal contacts for printed carbon nanotube transistors. ACS Nano 12, 5482–5488 (2018).
Kim, C.-H. et al. All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale 15, 3263–3272 (2023).
Jiao, H. et al. Intrinsically stretchable all-carbon-nanotube transistors with styrene–ethylene–butylene–styrene as gate dielectrics integrated by photolithography-based process. RSC Adv. 10, 8080–8086 (2020).
Xiaohong, P. & Sansen, W. AC boosting compensation scheme for low-power multistage amplifiers. IEEE J. Solid-State Circuits 39, 2074–2079 (2004).
Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).
Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).
Gao, X. et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022).
Jiang, C. et al. In 2021 IEEE International Electron Devices Meeting (IEDM) 16.14.11–16.14.14 (IEDM, 2021).
Liu, K. et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv. Mater. 35, 2207006 (2023).
Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).
Indiveri, G. & Liu, S. C. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).
Shim, H. et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022). This work reported on the ionically gated intrinsically stretchable organic transistors and ICs.
Dai, S. et al. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter 5, 3375–3390 (2022).
Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).
Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).
Rao, Y.-L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).
Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).
Shih, C.-C., Lee, W.-Y., Lu, C., Wu, H.-C. & Chen, W.-C. Enhancing the mechanical durability of an organic field effect transistor through a fluoroelastomer substrate with a crosslinking-induced self-wrinkled structure. Adv. Electron. Mater. 3, 1600477 (2017).
Lu, C., Lee, W.-Y., Shih, C.-C., Wen, M.-Y. & Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 9, 25522–25532 (2017).
Kang, B. et al. Stretchable polymer gate dielectric with segmented elastomeric network for organic soft electronics. Chem. Mater. 30, 6353–6360 (2018).
Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097 (2019).
Zheng, Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).
Ren, H. et al. Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. J. Mater. Chem. C 8, 15646–15654 (2020).
Ren, H. et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl. Electron. Mater. 3, 1458–1467 (2021).
Liu, K. et al. Carbon nanotube-based van der Waals heterojunction electrodes for high-performance intrinsically stretchable organic photoelectric transistors. Giant 7, 100060 (2021).
Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).
Acknowledgements
The authors acknowledge financial support from Army Research Office (grant no. W911NF-23-1-0282). Y.N. is in part supported by a Funai Overseas Scholarship from the Funai Foundation for Information Technology and the ANRI Fellowship. Z.B. is a Chan Zuckerberg Biohub San Francisco investigator and an Arc Institute innovation investigator. The authors thank Y. M. Liu and S. F. Fung for their generous support of the Bao Group’s research at Stanford University. The authors thank B. Lee for illustrations and feedback on this manuscript.
Author information
Authors and Affiliations
Contributions
Y.N. and D.Z. contributed equally to this paper. Y.N., D.Z., K.K.K., Q.L. and C.W. collected literature information. Y.N., D.Z. and Z.B. defined the scope and content. Y.N., D.Z., K.K.K., Q.L. and C.W. wrote the first draft of the manuscript. Y.N., D.Z., J.B.-H.T., B.M. and Z.B. reviewed and edited the manuscript. All authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks Annalisa Bonfiglio, Tsuyoshi Sekitani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nishio, Y., Zhong, D., Kim, K.K. et al. Intrinsically stretchable transistors and integrated circuits. Nat Rev Electr Eng 2, 715–735 (2025). https://doi.org/10.1038/s44287-025-00220-3
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44287-025-00220-3


