Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intrinsically stretchable transistors and integrated circuits

Abstract

Skin-like soft electronics offer conformal, stable interfaces with biological tissues — including skin, heart, brain, muscle and gut — enabling health monitoring, disease diagnosis and closed-loop therapeutic interventions. Continuous, reliable data collection at the human–electronic interface is crucial for advancing both fundamental biological research and personalized health care. Towards this end, integrated circuits (ICs) made with high-performance intrinsically stretchable transistors are essential for monolithic integration with sensors for distributed signal conditioning and amplification. In this Review, we discuss the operational principles, device design, material selection and fabrication considerations that underpin the development of high-performance intrinsically stretchable transistors for wearable and implantable ICs. Key points include the need for high field-effect mobility in short-channel devices — achieved through innovations in materials, device architectures and processing — to push device performance and operation speed; mechanical robustness to maintain stable operation under large strains; low-voltage operation for safe, energy-efficient biomedical systems; and scalable fabrication methods that enable high device density, reproducibility and integration complexity. Looking ahead, advancing both device performance and integration complexity will be pivotal for realizing large-scale, multifunctional ICs that can transform applications in bioelectronics, wearable health monitoring, soft robotics and adaptive human–machine interfaces.

Key points

  • Intrinsically stretchable devices enable monolithic integration of the functional components, reduction of concentrated local strain, intimate contact with target objects and compatibility with soft tissue.

  • Developments in materials and fabrication process have promoted device scaling and integration of intrinsically stretchable electronics.

  • Improvements in materials, device engineering and fabrication processes will enable higher-performance and high-density intrinsically stretchable transistors, opening to functional circuits and systems.

  • Intrinsically stretchable integrated circuits will be the key for real-world soft applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Intrinsically stretchable transistors.
Fig. 3: Intrinsically stretchable materials.
Fig. 4: Patterning of intrinsically stretchable materials.
Fig. 5: Examples of stretchable integrated circuit components and application.

Similar content being viewed by others

References

  1. Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article  Google Scholar 

  2. Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Article  Google Scholar 

  3. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article  Google Scholar 

  4. Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    Article  Google Scholar 

  5. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    Article  Google Scholar 

  6. Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2024).

    Article  Google Scholar 

  7. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  Google Scholar 

  8. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  Google Scholar 

  9. Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article  Google Scholar 

  10. Li, P., Kim, S. & Tian, B. Beyond 25 years of biomedical innovation in nano-bioelectronics. Device 2, 100401 (2024).

    Article  Google Scholar 

  11. Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article  Google Scholar 

  12. Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 42, 1836–1843 (2024).

    Article  Google Scholar 

  13. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  14. Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article  Google Scholar 

  15. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  Google Scholar 

  16. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article  Google Scholar 

  17. Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article  Google Scholar 

  18. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  19. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  Google Scholar 

  20. Park, Y., Chung, T. S., Lee, G. & Rogers, J. A. Materials chemistry of neural interface technologies and recent advances in three-dimensional systems. Chem. Rev. 122, 5277–5316 (2022).

    Article  Google Scholar 

  21. He, R. et al. Flexible miniaturized sensor technologies for long-term physiological monitoring. npj Flex. Electron. 6, 20 (2022).

    Article  Google Scholar 

  22. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  Google Scholar 

  23. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  Google Scholar 

  24. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Article  Google Scholar 

  25. Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).

    Article  Google Scholar 

  26. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  Google Scholar 

  27. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006). This work introduced buckling structures for extrinsically stretchable devices.

    Article  Google Scholar 

  28. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  Google Scholar 

  29. Lipomi, D. J., Tee, B. C.-K., Vosgueritchian, M. & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).

    Article  Google Scholar 

  30. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).

    Article  Google Scholar 

  31. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). This work introduced wrinkled structures for extrinsically stretchable devices.

    Article  Google Scholar 

  32. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015). This work introduced kirigami-based extrinsically stretchable graphene transistors.

    Article  Google Scholar 

  33. Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).

    Article  Google Scholar 

  34. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  Google Scholar 

  35. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article  Google Scholar 

  36. Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article  Google Scholar 

  37. Matsuhisa, N. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).

    Article  Google Scholar 

  38. Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    Article  Google Scholar 

  39. Chortos, A. et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv. Mater. 26, 4253–4259 (2014). One of the first works to report intrinsically stretchable transistors.

    Article  Google Scholar 

  40. Nishio, Y., Hirotani, J., Kishimoto, S., Kataura, H. & Ohno, Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube integrated circuits with local strain suppression layer. Adv. Electron. Mater. 7, 2000674 (2021).

    Article  Google Scholar 

  41. Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article  Google Scholar 

  42. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  43. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  Google Scholar 

  44. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015). This work demonstrated rigid islands-based extrinsically stretchable transistors.

    Article  Google Scholar 

  45. Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024). This work reported on CNT-based high-performance intrinsically stretchable transistors and ICs.

    Article  Google Scholar 

  46. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). This work reported on the fabrication platform of intrinsically stretchable devices using shadow masks.

    Article  Google Scholar 

  47. Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, 1969).

  48. Razavi, B. Design of Analog CMOS Integrated Circuits (McGraw-Hill, Inc., 2000).

  49. Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2018).

    Article  Google Scholar 

  50. Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).

    Article  Google Scholar 

  51. Nasr, J. R., Schulman, D. S., Sebastian, A., Horn, M. W. & Das, S. Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31, 1806020 (2019).

    Article  Google Scholar 

  52. Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).

    Article  Google Scholar 

  53. Pang, C.-S. et al. Mobility extraction in 2D transition metal dichalcogenide devices — avoiding contact resistance implicated overestimation. Small 17, 2100940 (2021).

    Article  Google Scholar 

  54. Chang, H.-Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. https://doi.org/10.1063/1.4868536 (2014).

  55. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  Google Scholar 

  56. Zorn, N. F. & Zaumseil, J. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev. https://doi.org/10.1063/5.0065730 (2021).

  57. Zhong, D. et al. Design considerations and fabrication protocols of high-performance intrinsically stretchable transistors and integrated circuits. ACS Nano 18, 33011–33031 (2024). This work reported on the fabrication protocol of CNT-based high-performance intrinsically stretchable transistors and ICs.

    Article  Google Scholar 

  58. Ashizawa, M., Zheng, Y., Tran, H. & Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 100, 101181 (2020).

    Article  Google Scholar 

  59. Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    Article  Google Scholar 

  60. Bradley, K., Cumings, J., Star, A., Gabriel, J.-C. P. & Grüner, G. Influence of mobile ions on nanotube based FET devices. Nano Lett. 3, 639–641 (2003).

    Article  Google Scholar 

  61. Datye, I. M. et al. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 6, 011004 (2019).

    Article  Google Scholar 

  62. Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).

    Article  Google Scholar 

  63. Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).

    Article  Google Scholar 

  64. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). This work reported on the low-voltage intrinsically stretchable devices using shadow masks.

    Article  Google Scholar 

  65. Wei, T. et al. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25, 105160 (2022).

    Article  Google Scholar 

  66. Qiu, C. et al. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9, 969–977 (2015).

    Article  Google Scholar 

  67. Xu, L., Qiu, C., Peng, L.-M. & Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res. 14, 976–981 (2021).

    Article  Google Scholar 

  68. Ghoneim, H. et al. Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.3266526 (2009).

  69. Jing, G., Datta, S. & Lundstrom, M. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron. Devices 51, 172–177 (2004).

    Article  Google Scholar 

  70. Srimani, T. et al. Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.5098322 (2019).

  71. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley-Interscience, 2006).

  72. Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021). This work reported on high-density intrinsically organic stretchable transistors and ICs.

    Article  Google Scholar 

  73. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  Google Scholar 

  74. Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 4, 811–819 (2009).

    Article  Google Scholar 

  75. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  Google Scholar 

  76. Xu, P. et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14, 623 (2023).

    Article  Google Scholar 

  77. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  Google Scholar 

  78. Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article  Google Scholar 

  79. Xu, J. et al. Tuning conjugated polymer chain packing for stretchable semiconductors. Adv. Mater. 34, 2104747 (2022).

    Article  Google Scholar 

  80. Li, Y. et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14, 4488 (2023).

    Article  Google Scholar 

  81. Götte, M. J. W. et al. Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J. Am. Coll. Cardiol. 37, 808–817 (2001).

    Article  Google Scholar 

  82. Kim, D.-H. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl Acad. Sci. USA 109, 19910–19915 (2012).

    Article  Google Scholar 

  83. Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).

    Article  Google Scholar 

  84. Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article  Google Scholar 

  85. Kim, J.-H. et al. Understanding mechanical behavior and reliability of organic electronic materials. MRS Bull. 42, 115–123 (2017).

    Article  Google Scholar 

  86. Jeong, J.-W. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article  Google Scholar 

  87. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  Google Scholar 

  88. Razavi, B., Ran-Hong, Y. & Lee, K. F. Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 750–754 (1994).

    Article  Google Scholar 

  89. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  Google Scholar 

  90. Takagi, S., Toriumi, A., Iwase, M. & Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: part I — effects of substrate impurity concentration. IEEE Trans. Electron. Devices 41, 2357–2362 (1994).

    Article  Google Scholar 

  91. Drennan, P. G. & McAndrew, C. C. Understanding MOSFET mismatch for analog design. IEEE J. Solid-State Circuits 38, 450–456 (2003).

    Article  Google Scholar 

  92. Kinget, P. R. Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40, 1212–1224 (2005).

    Article  Google Scholar 

  93. Franklin, A. D., Farmer, D. B. & Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 8, 7333–7339 (2014).

    Article  Google Scholar 

  94. Zeng, J. et al. Ultralow contact resistance in organic transistors via orbital hybridization. Nat. Commun. 14, 324 (2023).

    Article  Google Scholar 

  95. Waldrip, M., Jurchescu, O. D., Gundlach, D. J. & Bittle, E. G. Contact resistance in organic field-effect transistors: conquering the barrier. Adv. Funct. Mater. 30, 1904576 (2020).

    Article  Google Scholar 

  96. Nikolka, M. A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors. MRS Commun. 10, 98–111 (2020).

    Article  Google Scholar 

  97. Bobbert, P. A., Sharma, A., Mathijssen, S. G. J., Kemerink, M. & de Leeuw, D. M. Operational stability of organic field-effect transistors. Adv. Mater. 24, 1146–1158 (2012).

    Article  Google Scholar 

  98. Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

    Article  Google Scholar 

  99. Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023).

    Article  Google Scholar 

  100. Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).

    Article  Google Scholar 

  101. Gundlach, D. J. et al. An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. https://doi.org/10.1063/1.2215132 (2006).

  102. Cao, C., Andrews, J. B., Kumar, A. & Franklin, A. D. Improving contact interfaces in fully printed carbon nanotube thin-film transistors. ACS Nano 10, 5221–5229 (2016).

    Article  Google Scholar 

  103. Black, J. R. Electromigration — a brief survey and some recent results. IEEE Trans. Electron. Devices 16, 338–347 (1969).

    Article  Google Scholar 

  104. Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Article  Google Scholar 

  105. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  106. Park, J. et al. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 3, 916 (2012).

    Article  Google Scholar 

  107. Kim, M.-G., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article  Google Scholar 

  108. Liu, T., Sen, P. & Kim, C. J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J. Microelectromech. Syst. 21, 443–450 (2012).

    Article  Google Scholar 

  109. Dickey, M. D. et al. Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    Article  Google Scholar 

  110. Ladd, C., So, J.-H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).

    Article  Google Scholar 

  111. Boley, J. W., White, E. L., Chiu, G. T.-C. & Kramer, R. K. Direct writing of gallium–indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).

    Article  Google Scholar 

  112. Pan, C. et al. Visually imperceptible liquid–metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30, 1706937 (2018).

    Article  Google Scholar 

  113. Lee, G.-H. et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 13, 2643 (2022).

    Article  Google Scholar 

  114. Kazem, N., Hellebrekers, T. & Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017).

    Article  Google Scholar 

  115. Fan, X. et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6, 1900813 (2019).

    Article  Google Scholar 

  116. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  Google Scholar 

  117. Alemu Mengistie, D., Wang, P.-C. & Chu, C.-W. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 1, 9907–9915 (2013).

    Article  Google Scholar 

  118. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  Google Scholar 

  119. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    Article  Google Scholar 

  120. Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).

    Article  Google Scholar 

  121. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  Google Scholar 

  122. Xu, F. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    Article  Google Scholar 

  123. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  Google Scholar 

  124. Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  Google Scholar 

  125. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  Google Scholar 

  126. Liu, D. et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J. Am. Chem. Soc. 143, 11679–11689 (2021).

    Article  Google Scholar 

  127. Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article  Google Scholar 

  128. Noh, J., Jeong, S. & Lee, J.-Y. Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate. Nat. Commun. 7, 12374 (2016).

    Article  Google Scholar 

  129. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  Google Scholar 

  130. Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).

    Article  Google Scholar 

  131. Wu, M.-Y., Wang, J. & Arnold, M. S. Channel length scaling of over 100% biaxially stretchable carbon nanotube transistors. Appl. Phys. Lett. https://doi.org/10.1063/1.5088358 (2019).

  132. Molina-Lopez, F. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019).

    Article  Google Scholar 

  133. Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article  MathSciNet  Google Scholar 

  134. Tait, J. G., De Volder, M. F. L., Cheyns, D., Heremans, P. & Rand, B. P. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Nanoscale 7, 7259–7266 (2015).

    Article  Google Scholar 

  135. Søndergaard, R. R., Hösel, M. & Krebs, F. C. Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci. Part B Polym. Phys. 51, 16–34 (2013).

    Article  Google Scholar 

  136. Mattana, G. et al. Inkjet-printing: a new fabrication technology for organic transistors. Adv. Mater. Technol. 2, 1700063 (2017).

    Article  Google Scholar 

  137. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  Google Scholar 

  138. Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022).

    Article  Google Scholar 

  139. Lee, B. et al. Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat. Electron. 6, 307–318 (2023).

    Article  Google Scholar 

  140. Byun, J. et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3, eaas9020 (2018).

    Article  MathSciNet  Google Scholar 

  141. Byun, J. et al. Fully printable, strain-engineered electronic wrap for customizable soft electronics. Sci. Rep. 7, 45328 (2017).

    Article  Google Scholar 

  142. Cai, L., Zhang, S., Miao, J., Yu, Z. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).

    Article  Google Scholar 

  143. Park, Y.-G., An, H. S., Kim, J.-Y. & Park, J.-U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, eaaw2844 (2019).

    Article  Google Scholar 

  144. Park, Y.-G. et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett. 19, 4866–4872 (2019).

    Article  Google Scholar 

  145. Parida, K. et al. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019).

    Article  Google Scholar 

  146. Andrews, J. B. et al. Patterned liquid metal contacts for printed carbon nanotube transistors. ACS Nano 12, 5482–5488 (2018).

    Article  Google Scholar 

  147. Kim, C.-H. et al. All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale 15, 3263–3272 (2023).

    Article  Google Scholar 

  148. Jiao, H. et al. Intrinsically stretchable all-carbon-nanotube transistors with styrene–ethylene–butylene–styrene as gate dielectrics integrated by photolithography-based process. RSC Adv. 10, 8080–8086 (2020).

    Article  Google Scholar 

  149. Xiaohong, P. & Sansen, W. AC boosting compensation scheme for low-power multistage amplifiers. IEEE J. Solid-State Circuits 39, 2074–2079 (2004).

    Article  Google Scholar 

  150. Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).

    Article  Google Scholar 

  151. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article  Google Scholar 

  152. Gao, X. et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022).

    Article  Google Scholar 

  153. Jiang, C. et al. In 2021 IEEE International Electron Devices Meeting (IEDM) 16.14.11–16.14.14 (IEDM, 2021).

  154. Liu, K. et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv. Mater. 35, 2207006 (2023).

    Article  Google Scholar 

  155. Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article  Google Scholar 

  156. Indiveri, G. & Liu, S. C. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).

    Article  Google Scholar 

  157. Shim, H. et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022). This work reported on the ionically gated intrinsically stretchable organic transistors and ICs.

    Article  Google Scholar 

  158. Dai, S. et al. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter 5, 3375–3390 (2022).

    Article  Google Scholar 

  159. Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    Article  Google Scholar 

  160. Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article  Google Scholar 

  161. Rao, Y.-L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    Article  Google Scholar 

  162. Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article  Google Scholar 

  163. Shih, C.-C., Lee, W.-Y., Lu, C., Wu, H.-C. & Chen, W.-C. Enhancing the mechanical durability of an organic field effect transistor through a fluoroelastomer substrate with a crosslinking-induced self-wrinkled structure. Adv. Electron. Mater. 3, 1600477 (2017).

    Article  Google Scholar 

  164. Lu, C., Lee, W.-Y., Shih, C.-C., Wen, M.-Y. & Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 9, 25522–25532 (2017).

    Article  Google Scholar 

  165. Kang, B. et al. Stretchable polymer gate dielectric with segmented elastomeric network for organic soft electronics. Chem. Mater. 30, 6353–6360 (2018).

    Article  Google Scholar 

  166. Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097 (2019).

    Article  Google Scholar 

  167. Zheng, Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Article  Google Scholar 

  168. Ren, H. et al. Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. J. Mater. Chem. C 8, 15646–15654 (2020).

    Article  Google Scholar 

  169. Ren, H. et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl. Electron. Mater. 3, 1458–1467 (2021).

    Article  Google Scholar 

  170. Liu, K. et al. Carbon nanotube-based van der Waals heterojunction electrodes for high-performance intrinsically stretchable organic photoelectric transistors. Giant 7, 100060 (2021).

    Article  Google Scholar 

  171. Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Army Research Office (grant no. W911NF-23-1-0282). Y.N. is in part supported by a Funai Overseas Scholarship from the Funai Foundation for Information Technology and the ANRI Fellowship. Z.B. is a Chan Zuckerberg Biohub San Francisco investigator and an Arc Institute innovation investigator. The authors thank Y. M. Liu and S. F. Fung for their generous support of the Bao Group’s research at Stanford University. The authors thank B. Lee for illustrations and feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. and D.Z. contributed equally to this paper. Y.N., D.Z., K.K.K., Q.L. and C.W. collected literature information. Y.N., D.Z. and Z.B. defined the scope and content. Y.N., D.Z., K.K.K., Q.L. and C.W. wrote the first draft of the manuscript. Y.N., D.Z., J.B.-H.T., B.M. and Z.B. reviewed and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Annalisa Bonfiglio, Tsuyoshi Sekitani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio, Y., Zhong, D., Kim, K.K. et al. Intrinsically stretchable transistors and integrated circuits. Nat Rev Electr Eng 2, 715–735 (2025). https://doi.org/10.1038/s44287-025-00220-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00220-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing