Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Resilient low-inertia power systems through asynchronous energy balancing

Abstract

Low-carbon power systems with decreasing inertia are challenging traditional operational principles based on a global synchronous frequency, turning rigid synchronism into a growing threat to power system stability. In this Perspective, we discuss a bottom-up vision for compartmentalizing power systems into multiple asynchronous and independent subsystems. These subsystems, operating under different technologies, can form an asynchronous power system architecture that balances energy through a store-and-forward-like approach. Building on advances in smart power electronics, the proposed asynchronous conjecture avoids synchronism by proactively routing dynamic energy streams between those asynchronous subsystems, drawing inspiration from the principles of the Internet and telecommunications. Cyber–physical system theory, low-latency communication systems, novel abstraction and modelling principles, and the growing availability of energy storage emerge as enablers for this shift. The new paradigm can enhance power system resilience, support long-term sustainability goals, maximize energy independence and energy security, and create socio-economic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Frequency in past versus future power systems.
Fig. 2: Compartmentalization of power systems.
Fig. 3: Internet inspiration for asynchronous power systems.
Fig. 4: Power balance in synchronous versus energy balance in asynchronous power systems.
Fig. 5: Layered, bottom-up architecture for asynchronous power systems.

Similar content being viewed by others

References

  1. Monti, A., Milano, F., Bompard, E. & Guillaud, X. Converter-based Dynamics and Control of Modern Power Systems (Academic, 2021).

  2. Xu, L. et al. Resilience of renewable power systems under climate risks. Nat. Rev. Electr. Eng. 1, 53–66 (2024).

    Article  Google Scholar 

  3. Xu, L., Lin, N., Poor, H. V., Xi, D. & Perera, A. T. D. Quantifying cascading power outages during climate extremes considering renewable energy integration. Nat. Commun. 16, 2582 (2025).

    Article  Google Scholar 

  4. Ulbig, A. & Andersson, G. Analyzing operational flexibility of electric power systems. Int. J. Electr. Power Energy Syst. 72, 155–164 (2015).

    Article  Google Scholar 

  5. Dall’Anese, E., Mancarella, P. & Monti, A. Unlocking flexibility: integrated optimization and control of multienergy systems. IEEE Power Energy Mag. 15, 43–52 (2017).

    Article  Google Scholar 

  6. Figgener, J. et al. The development of stationary battery storage systems in Germany—status 2020. J. Energy Storage 33, 101982 (2021).

    Article  Google Scholar 

  7. Gunkel, P. A., Klinge Jacobsen, H., Bergaentzlé, C.-M., Scheller, F. & Møller Andersen, F. Variability in electricity consumption by category of consumer: the impact on electricity load profiles. Int. J. Electr. Power Energy Syst. 147, 108852 (2023).

    Article  Google Scholar 

  8. Ferreira Costa, L., Carne, G., de, Buticchi, G. & Liserre, M. The smart transformer: a solid-state transformer tailored to provide ancillary services to the distribution grid. IEEE Power Electron. Mag. 4, 56–67 (2017).

    Article  Google Scholar 

  9. International Renewable Energy Agency. World Energy Transitions Outlook 2023: 1.5°C Pathway (IRENA, 2023).

  10. Saboori, H. et al. Reactive power implications of penetrating inverter-based renewable and storage resources in future grids toward energy transition—a review. Proc. IEEE 113, 66–104 (2025).

    Article  Google Scholar 

  11. Poolla, B. K., Groß, D. & Dörfler, F. Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans. Power Syst. 34, 3035–3046 (2019).

    Article  Google Scholar 

  12. Alandžak, M., Plavšić, T. & Franković, D. Provision of virtual inertia support using battery energy storage system. J. Energy 70, 13–19 (2021).

    Google Scholar 

  13. Al Kez, D., Foley, A. M., Ahmed, F. & Morrow, D. J. Overview of frequency control techniques in power systems with high inverter-based resources: challenges and mitigation measures. IET Smart Grid 6, 447–469 (2023).

    Article  Google Scholar 

  14. Fairley, P. Old coal’s new role. IEEE Spectr. 52, 16–17 (2015).

    Article  Google Scholar 

  15. Li, L. et al. Review of frequency regulation requirements for wind power plants in international grid codes. Renew. Sustain. Energy Rev. 187, 113731 (2023).

    Article  Google Scholar 

  16. Moore, P., Alimi, O. A. & Abu-Siada, A. A review of system strength and inertia in renewable-energy-dominated grids: challenges, sustainability, and solutions. Challenges 16, 12 (2025).

    Article  Google Scholar 

  17. Hatziargyriou, N. et al. Definition and classification of power system stability—revisited & extended. IEEE Trans. Power Syst. 36, 3271–3281 (2021).

    Article  Google Scholar 

  18. IEEE Standards Association. IEEE Standard for interconnection and interoperability of inverter-based resources (IBRs) interconnecting with associated transmission electric power systems. IEEE Standard 2800-2022 (IEEE, 2022).

  19. Dozein, M. G., Berry, B., Milanović, J. V. & Mancarella, P. System strength beyond fault level. IEEE Access 13, 104184–104200 (2025).

    Article  Google Scholar 

  20. Fang, J., Li, H., Tang, Y. & Blaabjerg, F. On the inertia of future more-electronics power systems. IEEE J. Emerg. Sel. Top. Power Electron. 7, 2130–2146 (2019).

    Article  Google Scholar 

  21. Cheng, Y. et al. Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources. IEEE Trans. Power Syst. 38, 316–330 (2023).

    Article  Google Scholar 

  22. Mancarella, P. & Billimoria, F. The fragile grid: the physics and economics of security services in low-carbon power systems. IEEE Power Energy Mag. 19, 79–88 (2021).

    Article  Google Scholar 

  23. Australian Energy Market Operator. Black System South Australia 28 September 2016 – Final Report (AEMO, 2017).

  24. Office of Gas and Electricity Markets. 9 August 2019 power outage report (Ofgem, 2020).

  25. ICS Investigation Expert Panel. Continental Europe Synchronous Area Separation on 08 January 2021 (ENTSO-E, 2021).

  26. ICS Investigation Expert Panel. Grid Incident in Spain and Portugal on 28 April 2025 (ENTSO-E, 2025).

  27. Yan, R., Masood, N.-A., Kumar Saha, T., Bai, F. & Gu, H. The anatomy of the 2016 South Australia blackout: a catastrophic event in a high renewable network. IEEE Trans. Power Syst. 33, 5374–5388 (2018).

    Article  Google Scholar 

  28. Bialek, J. What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems? Energy Policy 146, 111821 (2020).

    Article  Google Scholar 

  29. European Network of Transmission System Operators for Electricity. European Resource Adequacy Assessment, 2024 Edition, ACER’s approved and amended version (August 2025). ERAA 2024: Executive Report (ENTSO-E, 2025).

  30. North American Electric Reliability Corporation. 2023 Long-Term Reliability Assessment (NERC, 2023).

  31. International Energy Agency. Electricity grids and secure energy transitions - Enhancing the foundations of resilient, sustainable and affordable power systems (IEA, 2023).

  32. European Network of Transmission System Operators for Electricity. Completing the map - Power system needs in 2030 and 2040 (ENTSO-E, 2021).

  33. International Energy Agency. The role of critical minerals in clean energy transitions. World Energy Outlook Special Report (IEA, 2022).

  34. Liang, Y., Kleijn, R., Tukker, A. & van der Voet, E. Material requirements for low-carbon energy technologies: a quantitative review. Renew. Sustain. Energy Rev. 161, 112334 (2022).

    Article  Google Scholar 

  35. Vidal, O., Le Boulzec, H., Andrieu, B. & Verzier, F. Modelling the demand and access of mineral resources in a changing world. Sustainability 14, 11 (2022).

    Article  Google Scholar 

  36. International Energy Agency. World energy employment 2023 (IEA, 2023).

  37. Lienert, P., Suetterlin, B. & Siegrist, M. Public acceptance of the expansion and modification of high-voltage power lines in the context of the energy transition. Energy Policy 87, 573–583 (2015).

    Article  Google Scholar 

  38. Schäfer, B. et al. Understanding Braess’ Paradox in power grids. Nat. Commun. 13, 5396 (2022).

    Article  Google Scholar 

  39. Lasseter, R. H., Chen, Z. & Pattabiraman, D. Grid-forming inverters: a critical asset for the power grid. IEEE J. Emerg. Sel. Top. Power Electron. 8, 925–935 (2020).

    Article  Google Scholar 

  40. Espín-Sarzosa, D. et al. Microgrid modeling for stability analysis. IEEE Trans. Smart Grid 15, 2459–2479 (2024).

    Article  Google Scholar 

  41. Alhelou, H. H., Bahrani, B., Ma, J. & Hill, D. J. Australia’s power system frequency: current situation, industrial challenges, efforts, and future research directions. IEEE Trans. Power Syst. 39, 5204–5218 (2024).

    Article  Google Scholar 

  42. Sun, L., Jiang, W., Hashimoto, S., Lin, Z. & Kawaguchi, T. Multiport energy router for DC grid clusters. IEEE J. Emerg. Sel. Top. Power Electron. 12, 1666–1682 (2024).

    Article  Google Scholar 

  43. Liserre, M. et al. The smart transformer: impact on the electric grid and technology challenges. IEEE Ind. Electron. Mag. 10, 46–58 (2016).

    Article  Google Scholar 

  44. Liu, B. et al. Design and implementation of multiport energy routers toward future Energy Internet. IEEE Trans. Ind. Appl. 57, 1945–1957 (2021).

    Article  Google Scholar 

  45. Doyle, J. C. et al. The “robust yet fragile” nature of the Internet. Proc. Natl Acad. Sci. USA 102, 14497–14502 (2005).

    Article  Google Scholar 

  46. Kouveliotis-Lysikatos, I., Hatziargyriou, N., Liu, Y. & Wu, F. Towards an Internet-like power grid. J. Mod. Power Syst. Clean. Energy 10, 1–11 (2022).

    Article  Google Scholar 

  47. Hussain, H. M., Narayanan, A., Nardelli, P. H. J. & Yang, Y. What is Energy Internet? concepts, technologies, and future directions. IEEE Access 8, 183127–183145 (2020).

    Article  Google Scholar 

  48. Wang, K. et al. A survey on Energy Internet: architecture, approach, and emerging technologies. IEEE Syst. J. 12, 2403–2416 (2018).

    Article  Google Scholar 

  49. Zou, Z., Tang, J., Buticchi, G. & Liserre, M. Stabilization of distribution grids with high penetration of renewables: the path from decentralized control to a centralized one. IEEE Ind. Electron. Mag. 18, 17–31 (2024).

    Article  Google Scholar 

  50. Hayward, S., Merlin, M., Williams, M. & Morstyn, T. Coordination of smart hybrid transformers in distribution networks. IEEE Trans. Smart Grid 16, 973–988 (2025).

    Article  Google Scholar 

  51. Nielsen, M. R. et al. High-power electronic applications enabled by medium voltage silicon-carbide technology: an overview. IEEE Trans. Power Electron. 40, 987–1011 (2025).

    Article  Google Scholar 

  52. Khan, M. M., Imdadullah, Nebhen, J. & Rahman, H. Research on variable frequency transformer: a smart power transmission technology. IEEE Access 9, 105588–105605 (2021).

    Article  Google Scholar 

  53. Wilms, H. et al. Microgrid field trials in Sweden: expanding the electric infrastructure in the village of Simris. IEEE Electrification Mag. 6, 48–62 (2018).

    Article  Google Scholar 

  54. Zamora, R. & Srivastava, A. K. Multi-layer architecture for voltage and frequency control in networked microgrids. IEEE Trans. Smart Grid 9, 2076–2085 (2018).

    Google Scholar 

  55. Ge, P., Teng, F., Konstantinou, C. & Hu, S. A resilience-oriented centralised-to-decentralised framework for networked microgrids management. Appl. Energy 308, 118234 (2022).

    Article  Google Scholar 

  56. Schwarz, S., Flamme, H., Gürses-Tran, G., Cupelli, M. & Monti, A. Agent-based power scheduling framework for interconnected local energy communities incorporating DSO objectives. In Proc. 45th Annual Conference of the IEEE Industrial Electronics Society 6642–6648 (IEEE, 2019).

  57. Hirsch, A., Parag, Y. & Guerrero, J. Microgrids: a review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 90, 402–411 (2018).

    Article  Google Scholar 

  58. Zamora, R. & Srivastava, A. K. Controls for microgrids with storage: review, challenges, and research needs. Renew. Sustain. Energy Rev. 14, 2009–2018 (2010).

    Article  Google Scholar 

  59. Johnson, B. B., Sinah, M., Ainsworth, N. G., Dörfler, F. & Dhople, S. V. Synthesizing virtual oscillators to control islanded inverters. IEEE Trans. Power Electron. 31, 6002–6015 (2016).

    Article  Google Scholar 

  60. Raisz, D., Thai, T. T. & Monti, A. Power control of virtual oscillator controlled inverters in grid-connected mode. IEEE Trans. Power Electron. 34, 5916–5926 (2019).

    Article  Google Scholar 

  61. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56, 900–906 (2009).

    Article  Google Scholar 

  62. Korompili, A. & Monti, A. Active disturbance rejection control for DC/DC converters in MTDC systems. In Proc. 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (IEEE, 2020).

  63. Chen, B., Wang, J. & Shahidehpour, M. Cyber–physical perspective on smart grid design and operation. IET Cyber-Physical Systems: Theory Appl. 3, 129–141 (2018).

    Article  Google Scholar 

  64. Happ, S., Dähling, S. & Monti, A. Scalable assessment method for agent-based control in cyber–physical distribution grids. IET Cyber-Physical Systems: Theory Appl. 5, 283–291 (2020).

    Article  Google Scholar 

  65. Corzine, K. A. Energy packets enabling the Energy Internet. In Proc. 2014 Clemson University Power Systems Conference (IEEE, 2014).

  66. Gelenbe, E. & Ceran, E. T. Energy packet networks with energy harvesting. IEEE Access 4, 1321–1331 (2016).

    Article  Google Scholar 

  67. Takahashi, R., Tashiro, K. & Hikihara, T. Router for power packet distribution network: design and experimental verification. IEEE Trans. Smart Grid 6, 618–626 (2015).

    Article  Google Scholar 

  68. Hoeher, P. A., Leng, Y., Zhu, R. & Liserre, M. Talkative power conversion: a tutorial. Proc. IEEE 113, 344–369 (2025).

    Article  Google Scholar 

  69. Wiegel, F. et al. A novel receiver design for energy packet-based dispatching. Energy Technol. https://doi.org/10.1002/ente.202000937 (2021).

  70. Abe, R., Taoka, H. & McQuilkin, D. Digital grid: communicative electrical grids of the future. IEEE Trans. Smart Grid 2, 399–410 (2011).

    Article  Google Scholar 

  71. Almassalkhi, M. et al. in Energy Markets and Responsive Grids Vol. 162 (eds Meyn, S. et al.) 333–361 (Springer, 2018).

  72. Dong, X., Lin, H., Tan, R., Iyer, R. K. & Kalbarczyk, Z. Software-defined networking for smart grid resilience: opportunities and challenges. In Proc. 1st ACM Workshop on Cyber-Physical System Security (eds Zhou, J. & Jones, D.) 61–68 (Association for Computing Machinery, 2015).

  73. Li, X. et al. Distributionally robust coordinated defense strategy for time-sensitive networking enabled cyber–physical power system. IEEE Trans. Smart Grid 15, 3278–3287 (2024).

    Article  Google Scholar 

  74. Mo, Y. et al. Cyber–physical security of a smart grid infrastructure. Proc. IEEE 100, 195–209 (2012).

    Article  Google Scholar 

  75. Strasser, T. I. & Pröstl Andrén, F. Engineering and validating cyber-physical energy systems: needs, status quo, and research trends. In Proc. 9th International Conference on International Conference on Industrial Applications of Holonic and Multi-Agent Systems (eds Mařík, V. et al.) 13–26 (Springer, 2019).

  76. Islam, M. Z., Lin, Y., Vokkarane, V. M. & Venkataramanan, V. Cyber–physical cascading failure and resilience of power grid: a comprehensive review. Front. Energy Res. https://doi.org/10.3389/fenrg.2023.1095303 (2023).

  77. Steinmetz, R. & Wehrle, K. Peer-to-Peer Systems and Applications (Springer, 2005).

  78. Sun, W., Yang, Z., Zhang, X. & Liu, Y. Energy-efficient neighbor discovery in mobile ad hoc and wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 16, 1448–1459 (2014).

    Article  Google Scholar 

  79. Xia, Y.-Q., Gao, Y.-L., Yan, L.-P. & Fu, M.-Y. Recent progress in networked control systems—a survey. Int. J. Autom. Comput. 12, 343–367 (2015).

    Article  Google Scholar 

  80. Hazra, A., Adhikari, M., Amgoth, T. & Srirama, S. N. A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions. ACM Comput. Surv. 55, 1–35 (2021).

    Article  Google Scholar 

  81. Ma, Z. et al. High-reliability and low-latency wireless communication for Internet of Things: challenges, fundamentals, and enabling technologies. IEEE Internet Things J. 6, 7946–7970 (2019).

    Article  Google Scholar 

  82. Hiller, J. et al. Secure low latency communication for constrained industrial iot scenarios. In Proc. 2018 IEEE 43rd Conference on Local Computer Networks 614–622 (IEEE, 2018).

  83. Panchal, A. C., Khadse, V. M. & Mahalle, P. N. Security issues in IIoT: a comprehensive survey of attacks on IIoT and its countermeasures. In Proc. 2018 IEEE Global Conference on Wireless Computing and Networking 124–130 (IEEE, 2018).

  84. Kunze, I. et al. Investigating the applicability of in-network computing to industrial scenarios. In Proc. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems 334–340 (IEEE, 2021).

  85. Kunze, I., Trossen, D. & Wehrle, K. Evolving the end-to-end transport layer in times of emerging computing in the network (COIN). In Proc. 2022 IEEE 30th International Conference on Network Protocols (IEEE, 2022).

  86. Kunze, I. et al. Detecting out-of-control sensor signals in sheet metal forming using in-network computing. In Proc. 2021 IEEE 30th International Symposium on Industrial Electronics (IEEE, 2021).

  87. Monti, A. et al. Simulation methods, models, and analysis techniques to represent the behavior of bulk power system connected inverter-based resources. Report No. PES-TR113 (IEEE Power & Energy Society, 2023).

  88. Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L. & Nee, H.-P. Dynamic analysis of modular multilevel converters. IEEE Trans. Ind. Electron. 60, 2526–2537 (2013).

    Article  Google Scholar 

  89. Wang, Y., Wang, X., Chen, Z. & Blaabjerg, F. Small-signal stability analysis of inverter-fed power systems using component connection method. IEEE Trans. Smart Grid 9, 5301–5310 (2018).

    Article  Google Scholar 

  90. Amin, M., Molinas, M., Lyu, J. & Cai, X. Impact of power flow direction on the stability of VSC-HVDC seen from the impedance Nyquist plot. IEEE Trans. Power Electron. 32, 8204–8217 (2017).

    Article  Google Scholar 

  91. Riccobono, A. et al. Stability of shipboard DC power distribution: online impedance-based systems methods. IEEE Electrification Mag. 5, 55–67 (2017).

    Article  Google Scholar 

  92. Wang, X., Blaabjerg, F. & Wu, W. Modeling and analysis of harmonic stability in an AC power-electronics-based power system. IEEE Trans. Power Electron. 29, 6421–6432 (2014).

    Article  Google Scholar 

  93. Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. Eur. J. Control. 19, 477–485 (2013).

    Article  MathSciNet  Google Scholar 

  94. Rashad, R., Califano, F., Vander Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA J. Math. Control. Inf. https://doi.org/10.1093/imamci/dnaa018 (2020).

  95. Cupelli, M., Bhanderi, S., Gurumurthy, S. K. & Monti, A. A structure preserving approach for control of future distribution grids and microgrids guaranteeing large signal stability. In Proc. 2018 IEEE Conference on Control Technology and Applications 1166–1173 (IEEE, 2018).

  96. Cupelli, M., Gurumurthy, S. K., Bhanderi, S., Cupelli, L. & Monti, A. Power sharing control in microgrids - an approach guaranteeing large signal stability. In Proc. 2019 IEEE Conference on Power Electronics and Renewable Energy 379–384 (IEEE, 2019).

  97. Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023).

    Article  MathSciNet  Google Scholar 

  98. Huang, X., Qi, L. & Pan, J. A new protection scheme for MMC-based MVdc distribution systems with complete converter fault current handling capability. IEEE Trans. Ind. Appl. 55, 4515–4523 (2019).

    Article  Google Scholar 

  99. Leterme, W., Jahn, I., Ruffing, P., Sharifabadi, K. & van Hertem, D. Designing for high-voltage DC grid protection: fault clearing strategies and protection algorithms. IEEE Power Energy Mag. 17, 73–81 (2019).

    Article  Google Scholar 

  100. Kaharević, A., Ramos, J. C., Jahn, I., Ponci, F. & Monti, A. A review of HVDC and MVDC grid protection. In Proc. 19th International Conference on AC and DC Power Transmission 271–280 (IET, 2023).

  101. Beck, M. On the hourglass model. Commun. ACM 62, 48–57 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Union (European Research Council (ERC), ERC Synergy Grant SAFEr Grid, 101166783). Views and opinions expressed, however, are those of the authors only and do not necessarily reflect those of the European Union or the ERC Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sebastian Schwarz, Subham Sahoo or Frede Blaabjerg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Igor Kuzle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, S., Sahoo, S., Stoffers, M. et al. Resilient low-inertia power systems through asynchronous energy balancing. Nat Rev Electr Eng (2026). https://doi.org/10.1038/s44287-025-00256-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44287-025-00256-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing