Table 2 Comparison test of AD-SVFD with seven alternative registration methods

From: Deformable registration and generative modelling of aortic anatomies by auto-decoders and neural ODEs

 

Method

Multi shape

DL

Max. errors (in cm)

    

Direct

Inverse

    

FLD

BLD

FLD

BLD

P#090

CPD

1.4321

2.0983

1.3985

2.9714

 

TPS

0.2918

0.2615

0.4305

0.3674

 

LDDMM

0.1813

0.1227

0.2625

0.3332

 

ResNet

0.2470

0.2806

0.4393

0.6520

 

I-ResNet

0.1948

0.2269

0.2139

0.2466

 

SVFD

0.1339

0.1479

0.1674

0.1659

 

SDF4CHD

0.3861

1.7831

0.6250

0.4207

 

AD-SVFD

0.1693

0.1923

0.2071

0.1719

P#278

CPD

1.5265

1.1772

1.3802

2.0471

 

TPS

0.5092

0.3521

0.7974

0.7104

 

LDDMM

0.1281

0.1681

0.5160

0.5441

 

ResNet

0.3085

0.2720

0.3546

0.3594

 

I-ResNet

0.2805

0.2498

0.2986

0.3367

 

SVFD

0.1343

0.1614

0.2248

0.2259

 

SDF4CHD

0.2598

1.2918

1.0277

0.2754

 

AD-SVFD

0.2166

0.1807

0.2817

0.2933

  1. In particular, we report the maximal pointwise errors on patients P#090 and P#278, obtained considering CPD40, TPS54, LDDMM9, ResNet-LDDMM 28 (optionally endowed with a penalty of the inverse deformation, I-ResNet-LDDMM), SVFD (i.e., our model without auto-decoder structure), SDF4CHD33, and AD-SVFD. The errors are quantified through the forward and backward local distances (FLD and BLD), expressed in cm. The column Multi Shape identifies methods that allow for the simultaneous registration of multiple shapes; the column DL identifies deep learning models. The best results for single-shape approaches are shown in bold; the best results for multi-shape approaches are underlined. For reference, the inlet diameters are: 1.31 cm for P#091 (template); 1.22 cm for P#090; 1.52 cm for P#278.