Abstract
Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Crowell, M., Edelman, S., Coulton, K. & McAfee, S. How many people live in coastal areas? J. Coast. Res. 23, iii–vi (2007).
Lefcheck, J. S. et al. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 12, e12645 (2019).
Li, J., Hughes, A. C. & Dudgeon, D. Mapping wader biodiversity along the East Asian — Australasian flyway. PLoS ONE 14, e0210552 (2019).
van Bijsterveldt, C. E. J. et al. Can cheniers protect mangroves along eroding coastlines? — The effect of contrasting foreshore types on mangrove stability. Ecol. Eng. 187, 106863 (2023).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Temmerman, S. et al. Marshes and mangroves as nature-based coastal storm buffers. Annu. Rev. Mar. Sci. 15, 95–118 (2023).
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).
Reis-Filho, J. A., Harvey, E. S. & Giarrizzo, T. Impacts of small-scale fisheries on mangrove fish assemblages. ICES J. Mar. Sci. 76, 153–164 (2019).
Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5, 371–392 (2013).
Wernberg, T. et al. Impacts of climate change on marine foundation species. Annu. Rev. Mar. Sci. 16, 247–282 (2024).
He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29, R1021–R1035 (2019).
Aburto-Oropeza, O. et al. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 105, 10456–10459 (2008).
Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).
Campbell, A. D., Fatoyinbo, L., Goldberg, L. & Lagomasino, D. Global hotspots of salt marsh change and carbon emissions. Nature 612, 701–706 (2022).
Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA 106, 7357–7360 (2009).
Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Wang, X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 4, 1076–1083 (2021).
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).
Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).
Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
Saintilan, N. et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature 621, 112–119 (2023).
Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F. & Skov, M. W. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion. Geophys. Res. Lett. 46, 11178–11187 (2019).
Yousefi Lalimi, F., Marani, M., Heffernan, J. B., D’Alpaos, A. & Murray, A. B. Watershed and ocean controls of salt marsh extent and resilience. Earth Surf. Process. Landf. 45, 1456–1468 (2020).
Belliard, J.-P., Gourgue, O., Govers, G., Kirwan, M. L. & Temmerman, S. Coastal wetland adaptability to sea level rise: the neglected role of semi-diurnal vs. diurnal tides. Limnol. Oceanogr. Lett. 8, 340–349 (2023).
Bertness, M. D., Brisson, C. P. & Crotty, S. M. Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience. Oecologia 178, 231–237 (2015).
Hensel, M. J. S. et al. A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions. Nat. Commun. 12, 6290 (2021).
Crotty, S. M. et al. Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes. Nat. Commun. 14, 881 (2023).
Cahoon, D. R., McKee, K. L. & Morris, J. T. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries Coasts 44, 883–898 (2021).
Kauffman, J. B. et al. Total ecosystem carbon stocks at the marine–terrestrial interface: blue carbon of the Pacific Northwest Coast, United States. Glob. Change Biol. 26, 5679–5692 (2020).
Endris, C. et al. Lost and found coastal wetlands: lessons learned from mapping estuaries across the USA. Biol. Conserv. 299, 110779 (2024).
Schmidt-Traub, G. National climate and biodiversity strategies are hamstrung by a lack of maps. Nat. Ecol. Evol. 5, 1325–1327 (2021).
Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).
Zhang, X. et al. GWL_FCS30: a global 30m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 15, 265–293 (2023).
Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).
He, Z. et al. Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6, 738–749 (2022).
Kunza, A. E. & Pennings, S. C. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries Coasts 31, 673–681 (2008).
Richards, C. L., Hamrick, J. L., Donovan, L. A. & Mauricio, R. Unexpectedly high clonal diversity of two salt marsh perennials across a severe environmental gradient. Ecol. Lett. 7, 1155–1162 (2004).
Bruschi, P., Angeletti, C., González, O., Adele Signorini, M. & Bagnoli, F. Genetic and morphological variation of Rhizophora mangle (red mangrove) along the northern Pacific coast of Nicaragua. Nord. J. Bot. 32, 320–329 (2014).
Li, C. et al. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat. Commun. 14, 8076 (2023).
Thomas, B. & Connolly, R. Fish use of subtropical saltmarshes in Queensland, Australia: relationships with vegetation, water depth and distance onto the marsh. Mar. Ecol. Prog. Ser. 209, 275–288 (2001).
Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
Ji, M. et al. Temporal turnover of viral biodiversity and functional potential in intertidal wetlands. npj Biofilms Microbiomes 10, 48 (2024).
Calabon, M. S., Jones, E. B. G., Promputtha, I. & Hyde, K. D. Fungal biodiversity in salt marsh ecosystems. J. Fungi 7, 648 (2021).
Pennings, S. C. & Bertness, M. D. in Marine Community Ecology (eds Bertness, M. D., Gaines, S. D. & Hay, M. E.) 289–316 (Sinauer, 2001).
Ma, W., Wang, W., Tang, C., Chen, G. & Wang, M. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecol. Evol. 10, 7404–7418 (2020).
Janousek, C. N. & Folger, C. L. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients. J. Veg. Sci. 25, 534–545 (2014).
Desender, K. & Maelfait, J.-P. Diversity and conservation of terrestrial arthropods in tidal marshes along the River Schelde: a gradient analysis. Biol. Conserv. 87, 221–229 (1999).
Qiu, D. et al. How vegetation influence the macrobenthos distribution in different saltmarsh zones along coastal topographic gradients. Mar. Environ. Res. 151, 104767 (2019).
Crain, C. M., Silliman, B. R., Bertness, S. L. & Bertness, M. D. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85, 2539–2549 (2004).
Greenwood, M. F. D. Nekton community change along estuarine salinity gradients: can salinity zones be defined? Estuaries Coasts 30, 537–542 (2007).
Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).
Connolly, R. M. in Australian Saltmarsh Ecology (ed. Saintilan, N.) 131–147 (CSIRO Publishing, 2009).
Wu, J., Chen, H. & Zhang, Y. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecol. Evol. 6, 8018–8027 (2016).
Saintilan, N. Biogeography of Australian saltmarsh plants. Austral Ecol. 34, 929–937 (2009).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Threlfall, C. G. et al. Toward cross-realm management of coastal urban ecosystems. Front. Ecol. Environ. 19, 225–233 (2021).
Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).
Newton, A. et al. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. 8, 144 (2020).
Xiong, Y. et al. Influence of human activities and climate change on wetland landscape pattern — a review. Sci. Total. Environ. 879, 163112 (2023).
Nicholson, E. & Clark, P. The Iraqi Marshlands: A Human and Environmental Study (Politicos, 2003).
Ladd, C. J. T. Review on processes and management of saltmarshes across Great Britain. Proc. Geol. Assoc. 132, 269–283 (2021).
Knottnerus, O. S. History of human settlement, cultural change and interference with the marine environment. Helgol. Mar. Res. 59, 2–8 (2005).
Meier, D. Man and environment in the marsh area of Schleswig–Holstein from Roman until late Medieval times. Quat. Int. 112, 55–69 (2004).
Seasholes, N. S. Gaining Ground: A History of Landmaking in Boston (MIT Press, 2003).
Li, B. et al. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol. Eng. 35, 511–520 (2009).
Silliman, B. R., Grosholz, E. D. & Bertness, M. D. in Human Impacts on Salt Marshes: A Global Perspective (eds Silliman, B. R., Grosholz, E. D. & Bertness, M. D.) 103–114 (Univ. California Press, 2009).
Strong, D. R. & Ayres, D. R. Ecological and evolutionary misadventures of Spartina. Annu. Rev. Ecol. Evol. Syst. 44, 389–410 (2013).
Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).
Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote. Sens. 7, 2715–2730 (2015).
Bittencourt, L., Barbosa, M., Bisi, T. L., Lailson-Brito, J. & Azevedo, A. F. Anthropogenic noise influences on marine soundscape variability across coastal areas. Mar. Pollut. Bull. 160, 111648 (2020).
Ouyang, X. et al. Fate and effects of macro- and microplastics in coastal wetlands. Environ. Sci. Technol. 56, 2386–2397 (2022).
Huff, T. P. & Feagin, R. A. Restoring tidal equilibrium: removing a hydrologic barrier and lowering salinity at the Magnolia Inlet, Texas. J. Coast. Res. 77, 97–103 (2017).
Tognin, D., D’Alpaos, A., Marani, M. & Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice lagoon. Nat. Geosci. 14, 906–911 (2021).
Adams, J. B., Taljaard, S. & Van Niekerk, L. Water releases from dams improve ecological health and societal benefits in downstream estuaries. Estuaries Coasts 46, 2244–2258 (2023).
Lovelock, C. E., Ball, M. C., Martin, K. C. & Feller, I. C. Nutrient enrichment increases mortality of mangroves. PLoS ONE 4, e5600 (2009).
Sciance, M. B. et al. Local and regional disturbances associated with the invasion of Chesapeake Bay marshes by the common reed Phragmites australis. Biol. Invas. 18, 2661–2677 (2016).
Bertness, M. D., Ewanchuk, P. J. & Silliman, B. R. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. USA 99, 1395–1398 (2002).
Wu, H. et al. Mariculture pond influence on mangrove areas in south China: significantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange. Aquaculture 426–427, 204–212 (2014).
Jiang, Z. et al. Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China. Mar. Pollut. Bull. 199, 115934 (2024).
Wiberg, P. L., Taube, S. R., Ferguson, A. E., Kremer, M. R. & Reidenbach, M. A. Wave attenuation by oyster reefs in shallow coastal bays. Estuaries Coasts 42, 331–347 (2019).
McAfee, D. et al. Multi-habitat seascape restoration: optimising marine restoration for coastal repair and social benefit. Front. Mar. Sci. 9, 910467 (2022).
Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C. & Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93, 1402–1410 (2012).
Silliman, B. R. & Bertness, M. D. A trophic cascade regulates salt marsh primary production. Proc. Natl. Acad. Sci. USA 99, 10500–10505 (2002).
Pittman, S., Davis, B. & Santos, R. O. in Seascape Ecology (ed. Pittman, S.) 189–227 (John Wiley & Sons, 2018).
The IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2023).
Van Goor, M. A., Zitman, T. J., Wang, Z. B. & Stive, M. J. F. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar. Geol. 202, 211–227 (2003).
Dissanayake, D. M. P. K., Ranasinghe, R. & Roelvink, J. A. The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim. Change 113, 253–276 (2012).
Cartaxana, P. et al. Effects of elevated temperature and CO2 on intertidal microphytobenthos. BMC Ecol. 15, 10 (2015).
Zhu, C., Langley, J. A., Ziska, L. H., Cahoon, D. R. & Megonigal, J. P. Accelerated sea-level rise is suppressing CO2 stimulation of tidal marsh productivity: a 33-year study. Sci. Adv. 8, eabn0054 (2022).
Moki, H., Yanagita, K., Kondo, K. & Kuwae, T. Projections of changes in the global distribution of shallow water ecosystems through 2100 due to climate change. PLoS Clim. 2, e0000298 (2023).
Duke, N. C., Hutley, L. B., Mackenzie, J. R. & Burrows, D. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 221–264 (Springer, 2021).
McKee, K., Mendelssohn, I. & Materne, M. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob. Ecol. Biogeogr. 13, 65–73 (2004).
Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt marsh dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).
Hughes, A. L. H., Wilson, A. M. & Morris, J. T. Hydrologic variability in a salt marsh: assessing the links between drought and acute marsh dieback. Estuar. Coast. Shelf Sci. 111, 95–106 (2012).
Watson, E. B. et al. Sea level rise, drought and the decline of Spartina patens in New England marshes. Biol. Conserv. 196, 173–181 (2016).
Isla, M. F., Guisado-Pintado, E., Rodríguez-Galiano, V. F. & López-Nieta, D. Effects of major storms over a spit-tidal flat interaction system (Punta Rasa-Samborombón, Argentina). Sci. Total. Environ. 930, 172818 (2024).
Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).
Meyer, J. & Riebesell, U. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682 (2015).
Abraham, K. F., Jefferies, R. L. & Alisauskas, R. T. The dynamics of landscape change and snow geese in mid-continent North America. Glob. Change Biol. 11, 841–855 (2005).
Jefferies, R. L., Jano, A. P. & Abraham, K. F. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J. Ecol. 94, 234–242 (2006).
Midwood, J. D. & Chow-Fraser, P. Connecting coastal marshes using movements of resident and migratory fishes. Wetlands 35, 69–79 (2015).
Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Eagles-Smith, C. A. & Ackerman, J. T. Mercury bioaccumulation in estuarine wetland fishes: evaluating habitats and risk to coastal wildlife. Environ. Pollut. 193, 147–155 (2014).
Tuohy, A. et al. Transport and deposition of heavy metals in the Ross Sea region, Antarctica. J. Geophys. Res. Atmos. 120, 10996–11011 (2015).
Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).
Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).
Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).
Krause, J. R., Watson, E. B., Wigand, C. & Maher, N. Are tidal salt marshes exposed to nutrient pollution more vulnerable to sea level rise. Wetlands 40, 1539–1548 (2020).
Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).
Goldman Martone, R. & Wasson, K. Impacts and interactions of multiple human perturbations in a California salt marsh. Oecologia 158, 151–163 (2008).
Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 115, F02009 (2010).
Stagg, C. L. et al. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss. Ann. Bot. 125, 365–376 (2020).
Ma, S. et al. Hydrological control of threshold transitions in vegetation over early-period wetland development. J. Hydrol. 610, 127931 (2022).
Törnqvist, T. E., Cahoon, D. R., Morris, J. T. & Day, J. W. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Adv. 2, e2020AV000334 (2021).
Branoff, B. L. Mangrove disturbance and response following the 2017 hurricane season in Puerto Rico. Estuaries Coasts 43, 1248–1262 (2020).
Ning, Z. et al. Tidal channel-mediated gradients facilitate Spartina alterniflora invasion in coastal ecosystems: implications for invasive species management. Mar. Ecol. Prog. Ser. 659, 59–73 (2021).
Ford, H., Garbutt, A., Ladd, C., Malarkey, J. & Skov, M. W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. J. Veg. Sci. 27, 259–268 (2016).
Salo, T. & Gustafsson, C. The effect of genetic diversity on ecosystem functioning in vegetated coastal ecosystems. Ecosystems 19, 1429–1444 (2016).
Guo, Z. et al. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Glob. Change Biol. 24, 1741–1748 (2018).
Vahsen, M. L. et al. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 379, 393–398 (2023).
Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
Douglas, E. J. et al. Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20, 1324–1336 (2017).
Harris, R. J., Pilditch, C. A., Greenfield, B. L., Moon, V. & Kröncke, I. The influence of benthic macrofauna on the erodibility of intertidal sediments with varying mud content in three New Zealand estuaries. Estuaries Coasts 39, 815–828 (2016).
Power, M. E. et al. Challenges in the quest for keystones. BioScience 46, 609–620 (1996).
Huxham, M. et al. Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Phil. Trans. R. Soc. B 365, 2127–2135 (2010).
Farrer, E. C., Van Bael, S. A., Clay, K. & Smith, M. K. H. Plant-microbial symbioses in coastal systems: their ecological importance and role in coastal restoration. Estuaries Coasts 45, 1805–1822 (2022).
Bertness, M. D. Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65, 1794–1807 (1984).
Crotty, S. M. & Angelini, C. Geomorphology and species interactions control facilitation cascades in a salt marsh ecosystem. Curr. Biol. 30, 1562–1571 (2020).
Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).
Bilkovic, D. M., Mitchell, M. M., Isdell, R. E., Schliep, M. & Smyth, A. R. Mutualism between ribbed mussels and cordgrass enhances salt marsh nitrogen removal. Ecosphere 8, e01795 (2017).
Silliman, B. R., van de Koppel, J., Bertness, M. D., Stanton, L. E. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).
He, Q., Silliman, B. R., Liu, Z. & Cui, B. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecol. Lett. 20, 194–201 (2017).
Angelini, C., van Montfrans, S. G., Hensel, M. J. S., He, Q. & Silliman, B. R. The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 187, 205–217 (2018).
Elschot, K. et al. Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale. PLoS ONE 12, e0169960 (2017).
Silliman, B. R. & Newell, S. Y. Fungal farming in a snail. Proc. Natl. Acad. Sci. USA 100, 15643–15648 (2003).
Bertness, M. D. & Coverdale, T. C. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94, 1937–1943 (2013).
Wu, C. & He, Q. Co-restoring keystone predators and foundation species to recover a coastal wetland. J. Appl. Ecol. 61, 379–389 (2024).
Soares, C. & Sobral, P. Bioturbation and erodibility of sediments from the Tagus estuary. J. Coast. Res. 56, 1429–1433 (2009).
Farron, S. J., Hughes, Z. J., FitzGerald, D. M. & Strom, K. B. The impacts of bioturbation by common marsh crabs on sediment erodibility: a laboratory flume investigation. Estuar. Coast. Shelf Sci. 238, 106710 (2020).
Daleo, P. et al. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecol. Lett. 10, 902–908 (2007).
Beheshti, K., Endris, C., Goodwin, P., Pavlak, A. & Wasson, K. Burrowing crabs and physical factors hasten marsh recovery at panne edges. PLoS ONE 17, e0249330 (2022).
Vu, H. D., Wie˛ski, K. & Pennings, S. C. Ecosystem engineers drive creek formation in salt marshes. Ecology 98, 162–174 (2017).
Crotty, S. M. et al. Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proc. Natl. Acad. Sci. USA 117, 17891–17902 (2020).
Rocca, C. et al. Flood-stimulated herbivory drives range retraction of a plant ecosystem. J. Ecol. 109, 3541–3554 (2021).
Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Nat. 169, 195–206 (2007).
Guo, H., Zhang, Y., Lan, Z. & Pennings, S. C. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Glob. Change Biol. 19, 2765–2774 (2013).
Smith, R. S., Blaze, J. A. & Byers, J. E. Negative indirect effects of hurricanes on recruitment of range-expanding mangroves. Mar. Ecol. Prog. Ser. 644, 65–74 (2020).
Nagelkerken, I. Ecological Connectivity among Tropical Coastal Ecosystems (Springer, 2009).
Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).
Sharp, S. J. & Angelini, C. The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion. Biol. Invas. 21, 2857–2869 (2019).
Hughes, B. B. et al. Top-predator recovery abates geomorphic decline of a coastal ecosystem. Nature 626, 111–118 (2024).
Huiskes, A. H. L. et al. Seed dispersal of halophytes in tidal salt marshes. J. Ecol. 83, 559–567 (1995).
Wolters, M., Garbutt, A. & Bakker, J. P. Plant colonization after managed realignment: the relative importance of diaspore dispersal. J. Appl. Ecol. 42, 770–777 (2005).
Zhu, Z. et al. The role of tides and winds in shaping seed dispersal in coastal wetlands. Limnol. Oceanogr. 67, 646–659 (2022).
Chang, E. R., Zozaya, E. L., Kuijper, D. P. J. & Bakker, J. P. Seed dispersal by small herbivores and tidal water: are they important filters in the assembly of salt-marsh communities. Funct. Ecol. 19, 665–673 (2005).
Streever, W. J. & Genders, A. J. Effect of improved tidal flushing and competitive interactions at the boundary between salt marsh and pasture. Estuaries 20, 807–818 (1997).
Jobe, J. G. D. IV & Gedan, K. Species-specific responses of a marsh-forest ecotone plant community responding to climate change. Ecology 102, e03296 (2021).
Kottler, E. J. & Gedan, K. B. Sexual reproduction is light-limited as marsh grasses colonize maritime forest. Am. J. Bot. 109, 514–525 (2022).
Kirwan, M. L., Murray, A. B. & Boyd, W. S. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35, L05403 (2008).
Sharp, S. J. & Angelini, C. Predators enhance resilience of a saltmarsh foundation species to drought. J. Ecol. 109, 975–986 (2021).
Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).
Holland, R. A., Wikelski, M. & Wilcove, D. S. How and why do insects migrate? Science 313, 794–796 (2006).
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).
Secor, D. H. Migration Ecology of Marine Fishes (Johns Hopkins Univ. Press, 2015).
Compte, J., Gascón, S., Quintana, X. D. & Boix, D. Fish effects on benthos and plankton in a Mediterranean salt marsh. J. Exp. Mar. Biol. Ecol. 409, 259–266 (2011).
Barra, P., de la, Skov, M. W., Lawrence, P. J., Schiaffi, J. I. & Hiddink, J. G. Tidal water exchange drives fish and crustacean abundances in salt marshes. Mar. Ecol. Prog. Ser. 694, 61–72 (2022).
Davidson, N. C., Doody, J. P. & Way, L. S. Nature Conservation and Estuaries in Great Britain (Nature Conservancy Council, 1991).
Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: six decades’ lessons from China. Sci. Total. Environ. 566–567, 205–214 (2016).
Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
Ren, J. et al. An invasive species erodes the performance of coastal wetland protected areas. Sci. Adv. 7, eabi8943 (2021).
Epanchin-Niell, R., Kousky, C., Thompson, A. & Walls, M. Threatened protection: Sea level rise and coastal protected lands of the eastern United States. Ocean. Coast. Manag. 137, 118–130 (2017).
Bunting, P. et al. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. Remote. Sens. 14, 3657 (2022).
Dijkema, K. S. in Vegetation between Land and Sea (eds Huiskes, A. H. L., Blom, C. W. P. M. & Rozema, J.) 42–51 (Springer, 1987).
Bromberg, K. D. & Bertness, M. D. Reconstructing New England salt marsh losses using historical maps. Estuaries 28, 823–832 (2005).
Van Dyke, E. & Wasson, K. Historical ecology of a central California estuary: 150 years of habitat change. Estuaries 28, 173–189 (2005).
Dallimer, M. & Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30, 132–139 (2015).
Bennett, N. J. et al. Conservation social science: understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).
He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).
Temmink, R. J. M. et al. Mimicry of emergent traits amplifies coastal restoration success. Nat. Commun. 11, 3668 (2020).
Derksen-Hooijberg, M. et al. Mutualistic interactions amplify saltmarsh restoration success. J. Appl. Ecol. 55, 405–414 (2018).
Olds, A. D. et al. Quantifying the conservation value of seascape connectivity: a global synthesis. Glob. Ecol. Biogeogr. 25, 3–15 (2016).
Milbrandt, E. C., Thompson, M., Coen, L. D., Grizzle, R. E. & Ward, K. A multiple habitat restoration strategy in a semi-enclosed Florida embayment, combining hydrologic restoration, mangrove propagule plantings and oyster substrate additions. Ecol. Eng. 83, 394–404 (2015).
Saintilan, N., Rogers, K. & McKee, K. L. in Coastal Wetlands (eds Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 915–945 (Elsevier, 2019).
Loch, T. K. & Riechers, M. Integrating indigenous and local knowledge in management and research on coastal ecosystems in the Global South: a literature review. Ocean. Coast. Manag. 212, 105821 (2021).
Ravaoarinorotsihoarana, L. A. et al. Combining traditional ecological knowledge and scientific observations to support mangrove restoration in Madagascar. Forests 14, 1368 (2023).
Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl. Acad. Sci. USA 112, 14295–14300 (2015).
Zhao, Z., Zhang, L., Yuan, L. & Bouma, T. J. Pinpointing stage-specific causes of recruitment bottlenecks to optimize seed-based wetland restoration. J. Appl. Ecol. 60, 330–341 (2023).
Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B 287, 20200421 (2020).
D. Vinebrooke, R. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co‐tolerance. Oikos 104, 451–457 (2004).
Frishkoff, L. O., Echeverri, A., Chan, K. M. A. & Karp, D. S. Do correlated responses to multiple environmental changes exacerbate or mitigate species loss? Oikos 127, 1724–1734 (2018).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Foster, C. N., Sato, C. F., Lindenmayer, D. B. & Barton, P. S. Integrating theory into disturbance interaction experiments to better inform ecosystem management. Glob. Change Biol. 22, 1325–1335 (2016).
Sturtevant, B. R. & Fortin, M.-J. Understanding and modeling forest disturbance interactions at the landscape level. Front. Ecol. Evol. 9, 653647 (2021).
Paramor, Oa. L. & Hughes, R. G. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J. Appl. Ecol. 41, 449–463 (2004).
Xu, C. et al. Herbivory limits success of vegetation restoration globally. Science 382, 589–594 (2023).
McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLoS ONE 10, e0118571 (2015).
Hauer, M. E. et al. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 12, 6900 (2021).
Freire, S. & Pesaresi, M. GHS Population Grid, Derived from GPW4, Multitemporal (1975, 1990, 2000, 2015) (European Commission, Joint Research Centre, 2015).
Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).
McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).
Klinger, B. A. & Ryan, S. J. Population distribution within the human climate niche. PLOS Clim. 1, e0000086 (2022).
Worthington, T. A. et al. The distribution of global tidal marshes from Earth observation data. Glob. Ecol. Biogeogr. 33, e13852 (2024).
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration research. Front. Mar. Sci. 7, 484 (2020).
Woodwell, G. M., Rich, P. H. & Hall, C. A. Carbon in estuaries. Brookhaven Symp. Biol. 30, 221–240 (1973).
Mcowen, C. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).
Saenger, P., Hegerl, E. J. & Davie, J. D. S. Global Status of Mangrove Ecosystems (International Union for Conservation of Nature and Natural Resources, 1983).
Spalding, M. World Mangrove Atlas (International Society for Mangrove Ecosystems, 1997).
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Jia, M. et al. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 68, 1306–1316 (2023).
Leal, M. & Spalding, M. D. The State of the World’s Mangroves 2024 (Global Mangrove Alliance, 2024).
Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).
Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).
Bunting, P. et al. The Global Mangrove Watch — a new 2010 global baseline of mangrove extent. Remote. Sens. 10, 1669 (2018).
Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
Zhang, Z. et al. Stronger increases but greater variability in global mangrove productivity compared to that of adjacent terrestrial forests. Nat. Ecol. Evol. 8, 239–250 (2024).
Acknowledgements
The authors thank A. H. Altieri, M. D. Bertness, B. Cui, B. Li, B. R. Silliman and J. Wu for their advice about our coastal wetland studies over the years. We acknowledge the support of grants from the National Natural Science Foundation of China (32425037, 32271601) and the National Key Basic Research and Development Program (2022YFC3105402).
Author information
Authors and Affiliations
Contributions
Q.H. led the writing, with contributions from all authors. Z.L. and Q.H. researched data and conceptualized the figures for the article. All authors contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Kerstin Wasson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Blue Carbon Initiative: https://www.thebluecarboninitiative.org/
Chesapeake Bay Program: https://www.chesapeakebay.net/
International Union for Conservation of Nature Red List of Threatened Species: https://www.iucnredlist.org/
Kunming-Montreal Global Biodiversity Framework: https://www.cbd.int/gbf
Natura 2000 protected areas network: http://natura2000.eea.europa.eu/
Protected Planet: https://www.protectedplanet.net/
Ramsar Convention on Wetlands: https://www.ramsar.org/
United Nations’ Green Climate Fund: https://www.greenclimate.fund/
Supplementary information
Glossary
- Accretion
-
The build-up of habitats including wetlands through the deposition of sediments.
- Blue carbon
-
The carbon stored in coastal wetlands and other marine ecosystems, including tidal marshes, mangrove forests and tidal flats.
- Blue justice
-
The equitable use and management of marine resources by all stakeholders, particularly local communities.
- Coastal squeeze
-
The loss of coastal wetlands caused by rising sea levels at the seaward side and by human-made structures (such as seawalls) that prevent wetland migration at the landward side.
- Eutrophication
-
The process by which an ecosystem becomes excessively enriched with nutrients, particularly nitrogen and phosphorus.
- Evolutionary rescue
-
A process by which a population avoids extinction through genetic adaptation.
- Mangrove forests
-
Coastal wetlands characterized by the presence of salt-tolerant trees and shrubs adapted to thrive in the intertidal zones.
- Ocean acidification
-
The process by which the ocean becomes more acidic, often due to the absorption of carbon dioxide from the atmosphere.
- Portfolio effect
-
In a multi-species ecosystem, the statistical averaging of the different (even opposite) responses of individual species reduces overall variability.
- Rapid evolution
-
Substantial genetic changes in a population over a relatively short period of time, often in response to anthropogenic threats such as climate change or habitat loss.
- Resilience
-
The capacity to reduce the effects of a disturbance and subsequently recover from it.
- Tidal flats
-
Coastal wetlands flooded and drained by tides and characterized typically by soft sediments without the cover of vegetation or other conspicuous biotic structures.
- Tidal marshes
-
Coastal wetlands flooded and drained by tides, often covered by herbaceous plants such as grasses, sedges and forbs.
- Tidal prism
-
The volume of water contained in a coastal wetland between the mean high and low tides.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
He, Q., Li, Z., Daleo, P. et al. Coastal wetland resilience through local, regional and global conservation. Nat. Rev. Biodivers. 1, 50–67 (2025). https://doi.org/10.1038/s44358-024-00004-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44358-024-00004-x
This article is cited by
-
Cyperus malaccensis and Phragmites australis mediate the differential restoration of soil microecology in coastal wetlands
Plant and Soil (2026)
-
Restoration age enhances soil organic carbon sequestration primarily through plant-derived carbon in a coastal wetland
Plant and Soil (2026)
-
Marine fish diversity and nutritional insights from the East Coast of India
The Journal of Basic and Applied Zoology (2025)


