Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coastal wetland resilience through local, regional and global conservation

Abstract

Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coastal wetlands link the land and the ocean, and provide services to humans.
Fig. 2: Global patterns in the distribution and biodiversity of coastal wetlands.
Fig. 3: Anthropogenic threats to coastal wetlands.
Fig. 4: Ecological drivers of coastal wetland resilience.
Fig. 5: Conservation progress for coastal wetland resilience.

Similar content being viewed by others

References

  1. Crowell, M., Edelman, S., Coulton, K. & McAfee, S. How many people live in coastal areas? J. Coast. Res. 23, iii–vi (2007).

    Article  Google Scholar 

  2. Lefcheck, J. S. et al. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 12, e12645 (2019).

    Article  Google Scholar 

  3. Li, J., Hughes, A. C. & Dudgeon, D. Mapping wader biodiversity along the East Asian — Australasian flyway. PLoS ONE 14, e0210552 (2019).

    Article  Google Scholar 

  4. van Bijsterveldt, C. E. J. et al. Can cheniers protect mangroves along eroding coastlines? — The effect of contrasting foreshore types on mangrove stability. Ecol. Eng. 187, 106863 (2023).

    Article  Google Scholar 

  5. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  6. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  7. Temmerman, S. et al. Marshes and mangroves as nature-based coastal storm buffers. Annu. Rev. Mar. Sci. 15, 95–118 (2023).

    Article  Google Scholar 

  8. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  9. Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    Article  Google Scholar 

  10. Reis-Filho, J. A., Harvey, E. S. & Giarrizzo, T. Impacts of small-scale fisheries on mangrove fish assemblages. ICES J. Mar. Sci. 76, 153–164 (2019).

    Article  Google Scholar 

  11. Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5, 371–392 (2013).

    Article  Google Scholar 

  12. Wernberg, T. et al. Impacts of climate change on marine foundation species. Annu. Rev. Mar. Sci. 16, 247–282 (2024).

    Article  Google Scholar 

  13. He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29, R1021–R1035 (2019).

    Article  Google Scholar 

  14. Aburto-Oropeza, O. et al. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 105, 10456–10459 (2008).

    Article  Google Scholar 

  15. Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).

    Article  Google Scholar 

  16. Campbell, A. D., Fatoyinbo, L., Goldberg, L. & Lagomasino, D. Global hotspots of salt marsh change and carbon emissions. Nature 612, 701–706 (2022).

    Article  Google Scholar 

  17. Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA 106, 7357–7360 (2009).

    Article  Google Scholar 

  18. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article  Google Scholar 

  19. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article  Google Scholar 

  20. Wang, X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 4, 1076–1083 (2021).

    Article  Google Scholar 

  21. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  22. Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    Article  Google Scholar 

  23. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article  Google Scholar 

  24. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Article  Google Scholar 

  25. Saintilan, N. et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature 621, 112–119 (2023).

    Article  Google Scholar 

  26. Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F. & Skov, M. W. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion. Geophys. Res. Lett. 46, 11178–11187 (2019).

    Article  Google Scholar 

  27. Yousefi Lalimi, F., Marani, M., Heffernan, J. B., D’Alpaos, A. & Murray, A. B. Watershed and ocean controls of salt marsh extent and resilience. Earth Surf. Process. Landf. 45, 1456–1468 (2020).

    Article  Google Scholar 

  28. Belliard, J.-P., Gourgue, O., Govers, G., Kirwan, M. L. & Temmerman, S. Coastal wetland adaptability to sea level rise: the neglected role of semi-diurnal vs. diurnal tides. Limnol. Oceanogr. Lett. 8, 340–349 (2023).

    Article  Google Scholar 

  29. Bertness, M. D., Brisson, C. P. & Crotty, S. M. Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience. Oecologia 178, 231–237 (2015).

    Article  Google Scholar 

  30. Hensel, M. J. S. et al. A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions. Nat. Commun. 12, 6290 (2021).

    Article  Google Scholar 

  31. Crotty, S. M. et al. Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes. Nat. Commun. 14, 881 (2023).

    Article  Google Scholar 

  32. Cahoon, D. R., McKee, K. L. & Morris, J. T. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries Coasts 44, 883–898 (2021).

    Article  Google Scholar 

  33. Kauffman, J. B. et al. Total ecosystem carbon stocks at the marine–terrestrial interface: blue carbon of the Pacific Northwest Coast, United States. Glob. Change Biol. 26, 5679–5692 (2020).

    Article  Google Scholar 

  34. Endris, C. et al. Lost and found coastal wetlands: lessons learned from mapping estuaries across the USA. Biol. Conserv. 299, 110779 (2024).

    Article  Google Scholar 

  35. Schmidt-Traub, G. National climate and biodiversity strategies are hamstrung by a lack of maps. Nat. Ecol. Evol. 5, 1325–1327 (2021).

    Article  Google Scholar 

  36. Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    Article  Google Scholar 

  37. Zhang, X. et al. GWL_FCS30: a global 30m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 15, 265–293 (2023).

    Article  Google Scholar 

  38. Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).

    Google Scholar 

  39. He, Z. et al. Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6, 738–749 (2022).

    Article  Google Scholar 

  40. Kunza, A. E. & Pennings, S. C. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries Coasts 31, 673–681 (2008).

    Article  Google Scholar 

  41. Richards, C. L., Hamrick, J. L., Donovan, L. A. & Mauricio, R. Unexpectedly high clonal diversity of two salt marsh perennials across a severe environmental gradient. Ecol. Lett. 7, 1155–1162 (2004).

    Article  Google Scholar 

  42. Bruschi, P., Angeletti, C., González, O., Adele Signorini, M. & Bagnoli, F. Genetic and morphological variation of Rhizophora mangle (red mangrove) along the northern Pacific coast of Nicaragua. Nord. J. Bot. 32, 320–329 (2014).

    Article  Google Scholar 

  43. Li, C. et al. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat. Commun. 14, 8076 (2023).

    Article  Google Scholar 

  44. Thomas, B. & Connolly, R. Fish use of subtropical saltmarshes in Queensland, Australia: relationships with vegetation, water depth and distance onto the marsh. Mar. Ecol. Prog. Ser. 209, 275–288 (2001).

    Article  Google Scholar 

  45. Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).

    Article  Google Scholar 

  46. Ji, M. et al. Temporal turnover of viral biodiversity and functional potential in intertidal wetlands. npj Biofilms Microbiomes 10, 48 (2024).

    Article  Google Scholar 

  47. Calabon, M. S., Jones, E. B. G., Promputtha, I. & Hyde, K. D. Fungal biodiversity in salt marsh ecosystems. J. Fungi 7, 648 (2021).

    Article  Google Scholar 

  48. Pennings, S. C. & Bertness, M. D. in Marine Community Ecology (eds Bertness, M. D., Gaines, S. D. & Hay, M. E.) 289–316 (Sinauer, 2001).

  49. Ma, W., Wang, W., Tang, C., Chen, G. & Wang, M. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecol. Evol. 10, 7404–7418 (2020).

    Article  Google Scholar 

  50. Janousek, C. N. & Folger, C. L. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients. J. Veg. Sci. 25, 534–545 (2014).

    Article  Google Scholar 

  51. Desender, K. & Maelfait, J.-P. Diversity and conservation of terrestrial arthropods in tidal marshes along the River Schelde: a gradient analysis. Biol. Conserv. 87, 221–229 (1999).

    Article  Google Scholar 

  52. Qiu, D. et al. How vegetation influence the macrobenthos distribution in different saltmarsh zones along coastal topographic gradients. Mar. Environ. Res. 151, 104767 (2019).

    Article  Google Scholar 

  53. Crain, C. M., Silliman, B. R., Bertness, S. L. & Bertness, M. D. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85, 2539–2549 (2004).

    Article  Google Scholar 

  54. Greenwood, M. F. D. Nekton community change along estuarine salinity gradients: can salinity zones be defined? Estuaries Coasts 30, 537–542 (2007).

    Article  Google Scholar 

  55. Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).

    Article  Google Scholar 

  56. Connolly, R. M. in Australian Saltmarsh Ecology (ed. Saintilan, N.) 131–147 (CSIRO Publishing, 2009).

  57. Wu, J., Chen, H. & Zhang, Y. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecol. Evol. 6, 8018–8027 (2016).

    Article  Google Scholar 

  58. Saintilan, N. Biogeography of Australian saltmarsh plants. Austral Ecol. 34, 929–937 (2009).

    Article  Google Scholar 

  59. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  Google Scholar 

  60. Threlfall, C. G. et al. Toward cross-realm management of coastal urban ecosystems. Front. Ecol. Environ. 19, 225–233 (2021).

    Article  Google Scholar 

  61. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    Article  Google Scholar 

  62. Newton, A. et al. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. 8, 144 (2020).

    Article  Google Scholar 

  63. Xiong, Y. et al. Influence of human activities and climate change on wetland landscape pattern — a review. Sci. Total. Environ. 879, 163112 (2023).

    Article  Google Scholar 

  64. Nicholson, E. & Clark, P. The Iraqi Marshlands: A Human and Environmental Study (Politicos, 2003).

  65. Ladd, C. J. T. Review on processes and management of saltmarshes across Great Britain. Proc. Geol. Assoc. 132, 269–283 (2021).

    Article  Google Scholar 

  66. Knottnerus, O. S. History of human settlement, cultural change and interference with the marine environment. Helgol. Mar. Res. 59, 2–8 (2005).

    Article  Google Scholar 

  67. Meier, D. Man and environment in the marsh area of Schleswig–Holstein from Roman until late Medieval times. Quat. Int. 112, 55–69 (2004).

    Article  Google Scholar 

  68. Seasholes, N. S. Gaining Ground: A History of Landmaking in Boston (MIT Press, 2003).

  69. Li, B. et al. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol. Eng. 35, 511–520 (2009).

    Article  Google Scholar 

  70. Silliman, B. R., Grosholz, E. D. & Bertness, M. D. in Human Impacts on Salt Marshes: A Global Perspective (eds Silliman, B. R., Grosholz, E. D. & Bertness, M. D.) 103–114 (Univ. California Press, 2009).

  71. Strong, D. R. & Ayres, D. R. Ecological and evolutionary misadventures of Spartina. Annu. Rev. Ecol. Evol. Syst. 44, 389–410 (2013).

    Article  Google Scholar 

  72. Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).

    Article  Google Scholar 

  73. Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote. Sens. 7, 2715–2730 (2015).

    Article  Google Scholar 

  74. Bittencourt, L., Barbosa, M., Bisi, T. L., Lailson-Brito, J. & Azevedo, A. F. Anthropogenic noise influences on marine soundscape variability across coastal areas. Mar. Pollut. Bull. 160, 111648 (2020).

    Article  Google Scholar 

  75. Ouyang, X. et al. Fate and effects of macro- and microplastics in coastal wetlands. Environ. Sci. Technol. 56, 2386–2397 (2022).

    Article  Google Scholar 

  76. Huff, T. P. & Feagin, R. A. Restoring tidal equilibrium: removing a hydrologic barrier and lowering salinity at the Magnolia Inlet, Texas. J. Coast. Res. 77, 97–103 (2017).

    Article  Google Scholar 

  77. Tognin, D., D’Alpaos, A., Marani, M. & Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice lagoon. Nat. Geosci. 14, 906–911 (2021).

    Article  Google Scholar 

  78. Adams, J. B., Taljaard, S. & Van Niekerk, L. Water releases from dams improve ecological health and societal benefits in downstream estuaries. Estuaries Coasts 46, 2244–2258 (2023).

    Article  Google Scholar 

  79. Lovelock, C. E., Ball, M. C., Martin, K. C. & Feller, I. C. Nutrient enrichment increases mortality of mangroves. PLoS ONE 4, e5600 (2009).

    Article  Google Scholar 

  80. Sciance, M. B. et al. Local and regional disturbances associated with the invasion of Chesapeake Bay marshes by the common reed Phragmites australis. Biol. Invas. 18, 2661–2677 (2016).

    Article  Google Scholar 

  81. Bertness, M. D., Ewanchuk, P. J. & Silliman, B. R. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. USA 99, 1395–1398 (2002).

    Article  Google Scholar 

  82. Wu, H. et al. Mariculture pond influence on mangrove areas in south China: significantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange. Aquaculture 426–427, 204–212 (2014).

    Article  Google Scholar 

  83. Jiang, Z. et al. Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China. Mar. Pollut. Bull. 199, 115934 (2024).

    Article  Google Scholar 

  84. Wiberg, P. L., Taube, S. R., Ferguson, A. E., Kremer, M. R. & Reidenbach, M. A. Wave attenuation by oyster reefs in shallow coastal bays. Estuaries Coasts 42, 331–347 (2019).

    Article  Google Scholar 

  85. McAfee, D. et al. Multi-habitat seascape restoration: optimising marine restoration for coastal repair and social benefit. Front. Mar. Sci. 9, 910467 (2022).

    Article  Google Scholar 

  86. Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C. & Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93, 1402–1410 (2012).

    Article  Google Scholar 

  87. Silliman, B. R. & Bertness, M. D. A trophic cascade regulates salt marsh primary production. Proc. Natl. Acad. Sci. USA 99, 10500–10505 (2002).

    Article  Google Scholar 

  88. Pittman, S., Davis, B. & Santos, R. O. in Seascape Ecology (ed. Pittman, S.) 189–227 (John Wiley & Sons, 2018).

  89. The IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2023).

  90. Van Goor, M. A., Zitman, T. J., Wang, Z. B. & Stive, M. J. F. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar. Geol. 202, 211–227 (2003).

    Article  Google Scholar 

  91. Dissanayake, D. M. P. K., Ranasinghe, R. & Roelvink, J. A. The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim. Change 113, 253–276 (2012).

    Article  Google Scholar 

  92. Cartaxana, P. et al. Effects of elevated temperature and CO2 on intertidal microphytobenthos. BMC Ecol. 15, 10 (2015).

    Article  Google Scholar 

  93. Zhu, C., Langley, J. A., Ziska, L. H., Cahoon, D. R. & Megonigal, J. P. Accelerated sea-level rise is suppressing CO2 stimulation of tidal marsh productivity: a 33-year study. Sci. Adv. 8, eabn0054 (2022).

    Article  Google Scholar 

  94. Moki, H., Yanagita, K., Kondo, K. & Kuwae, T. Projections of changes in the global distribution of shallow water ecosystems through 2100 due to climate change. PLoS Clim. 2, e0000298 (2023).

    Article  Google Scholar 

  95. Duke, N. C., Hutley, L. B., Mackenzie, J. R. & Burrows, D. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 221–264 (Springer, 2021).

  96. McKee, K., Mendelssohn, I. & Materne, M. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob. Ecol. Biogeogr. 13, 65–73 (2004).

    Article  Google Scholar 

  97. Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt marsh dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).

    Article  Google Scholar 

  98. Hughes, A. L. H., Wilson, A. M. & Morris, J. T. Hydrologic variability in a salt marsh: assessing the links between drought and acute marsh dieback. Estuar. Coast. Shelf Sci. 111, 95–106 (2012).

    Article  Google Scholar 

  99. Watson, E. B. et al. Sea level rise, drought and the decline of Spartina patens in New England marshes. Biol. Conserv. 196, 173–181 (2016).

    Article  Google Scholar 

  100. Isla, M. F., Guisado-Pintado, E., Rodríguez-Galiano, V. F. & López-Nieta, D. Effects of major storms over a spit-tidal flat interaction system (Punta Rasa-Samborombón, Argentina). Sci. Total. Environ. 930, 172818 (2024).

    Article  Google Scholar 

  101. Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).

    Article  Google Scholar 

  102. Meyer, J. & Riebesell, U. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682 (2015).

    Article  Google Scholar 

  103. Abraham, K. F., Jefferies, R. L. & Alisauskas, R. T. The dynamics of landscape change and snow geese in mid-continent North America. Glob. Change Biol. 11, 841–855 (2005).

    Article  Google Scholar 

  104. Jefferies, R. L., Jano, A. P. & Abraham, K. F. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J. Ecol. 94, 234–242 (2006).

    Article  Google Scholar 

  105. Midwood, J. D. & Chow-Fraser, P. Connecting coastal marshes using movements of resident and migratory fishes. Wetlands 35, 69–79 (2015).

    Article  Google Scholar 

  106. Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).

    Article  Google Scholar 

  107. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    Article  Google Scholar 

  108. Eagles-Smith, C. A. & Ackerman, J. T. Mercury bioaccumulation in estuarine wetland fishes: evaluating habitats and risk to coastal wildlife. Environ. Pollut. 193, 147–155 (2014).

    Article  Google Scholar 

  109. Tuohy, A. et al. Transport and deposition of heavy metals in the Ross Sea region, Antarctica. J. Geophys. Res. Atmos. 120, 10996–11011 (2015).

    Article  Google Scholar 

  110. Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).

    Article  Google Scholar 

  111. Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    Article  Google Scholar 

  112. Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  Google Scholar 

  113. Krause, J. R., Watson, E. B., Wigand, C. & Maher, N. Are tidal salt marshes exposed to nutrient pollution more vulnerable to sea level rise. Wetlands 40, 1539–1548 (2020).

    Article  Google Scholar 

  114. Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).

    Article  Google Scholar 

  115. Goldman Martone, R. & Wasson, K. Impacts and interactions of multiple human perturbations in a California salt marsh. Oecologia 158, 151–163 (2008).

    Article  Google Scholar 

  116. Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 115, F02009 (2010).

    Google Scholar 

  117. Stagg, C. L. et al. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss. Ann. Bot. 125, 365–376 (2020).

    Google Scholar 

  118. Ma, S. et al. Hydrological control of threshold transitions in vegetation over early-period wetland development. J. Hydrol. 610, 127931 (2022).

    Article  Google Scholar 

  119. Törnqvist, T. E., Cahoon, D. R., Morris, J. T. & Day, J. W. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Adv. 2, e2020AV000334 (2021).

    Article  Google Scholar 

  120. Branoff, B. L. Mangrove disturbance and response following the 2017 hurricane season in Puerto Rico. Estuaries Coasts 43, 1248–1262 (2020).

    Article  Google Scholar 

  121. Ning, Z. et al. Tidal channel-mediated gradients facilitate Spartina alterniflora invasion in coastal ecosystems: implications for invasive species management. Mar. Ecol. Prog. Ser. 659, 59–73 (2021).

    Article  Google Scholar 

  122. Ford, H., Garbutt, A., Ladd, C., Malarkey, J. & Skov, M. W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. J. Veg. Sci. 27, 259–268 (2016).

    Article  Google Scholar 

  123. Salo, T. & Gustafsson, C. The effect of genetic diversity on ecosystem functioning in vegetated coastal ecosystems. Ecosystems 19, 1429–1444 (2016).

    Article  Google Scholar 

  124. Guo, Z. et al. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Glob. Change Biol. 24, 1741–1748 (2018).

    Article  Google Scholar 

  125. Vahsen, M. L. et al. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 379, 393–398 (2023).

    Article  Google Scholar 

  126. Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    Article  Google Scholar 

  127. Douglas, E. J. et al. Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20, 1324–1336 (2017).

    Article  Google Scholar 

  128. Harris, R. J., Pilditch, C. A., Greenfield, B. L., Moon, V. & Kröncke, I. The influence of benthic macrofauna on the erodibility of intertidal sediments with varying mud content in three New Zealand estuaries. Estuaries Coasts 39, 815–828 (2016).

    Article  Google Scholar 

  129. Power, M. E. et al. Challenges in the quest for keystones. BioScience 46, 609–620 (1996).

    Article  Google Scholar 

  130. Huxham, M. et al. Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Phil. Trans. R. Soc. B 365, 2127–2135 (2010).

    Article  Google Scholar 

  131. Farrer, E. C., Van Bael, S. A., Clay, K. & Smith, M. K. H. Plant-microbial symbioses in coastal systems: their ecological importance and role in coastal restoration. Estuaries Coasts 45, 1805–1822 (2022).

    Article  Google Scholar 

  132. Bertness, M. D. Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65, 1794–1807 (1984).

    Article  Google Scholar 

  133. Crotty, S. M. & Angelini, C. Geomorphology and species interactions control facilitation cascades in a salt marsh ecosystem. Curr. Biol. 30, 1562–1571 (2020).

    Article  Google Scholar 

  134. Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).

    Article  Google Scholar 

  135. Bilkovic, D. M., Mitchell, M. M., Isdell, R. E., Schliep, M. & Smyth, A. R. Mutualism between ribbed mussels and cordgrass enhances salt marsh nitrogen removal. Ecosphere 8, e01795 (2017).

    Article  Google Scholar 

  136. Silliman, B. R., van de Koppel, J., Bertness, M. D., Stanton, L. E. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).

    Article  Google Scholar 

  137. He, Q., Silliman, B. R., Liu, Z. & Cui, B. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecol. Lett. 20, 194–201 (2017).

    Article  Google Scholar 

  138. Angelini, C., van Montfrans, S. G., Hensel, M. J. S., He, Q. & Silliman, B. R. The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 187, 205–217 (2018).

    Article  Google Scholar 

  139. Elschot, K. et al. Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale. PLoS ONE 12, e0169960 (2017).

    Article  Google Scholar 

  140. Silliman, B. R. & Newell, S. Y. Fungal farming in a snail. Proc. Natl. Acad. Sci. USA 100, 15643–15648 (2003).

    Article  Google Scholar 

  141. Bertness, M. D. & Coverdale, T. C. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94, 1937–1943 (2013).

    Article  Google Scholar 

  142. Wu, C. & He, Q. Co-restoring keystone predators and foundation species to recover a coastal wetland. J. Appl. Ecol. 61, 379–389 (2024).

    Article  Google Scholar 

  143. Soares, C. & Sobral, P. Bioturbation and erodibility of sediments from the Tagus estuary. J. Coast. Res. 56, 1429–1433 (2009).

    Google Scholar 

  144. Farron, S. J., Hughes, Z. J., FitzGerald, D. M. & Strom, K. B. The impacts of bioturbation by common marsh crabs on sediment erodibility: a laboratory flume investigation. Estuar. Coast. Shelf Sci. 238, 106710 (2020).

    Article  Google Scholar 

  145. Daleo, P. et al. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecol. Lett. 10, 902–908 (2007).

    Article  Google Scholar 

  146. Beheshti, K., Endris, C., Goodwin, P., Pavlak, A. & Wasson, K. Burrowing crabs and physical factors hasten marsh recovery at panne edges. PLoS ONE 17, e0249330 (2022).

    Article  Google Scholar 

  147. Vu, H. D., Wie˛ski, K. & Pennings, S. C. Ecosystem engineers drive creek formation in salt marshes. Ecology 98, 162–174 (2017).

    Article  Google Scholar 

  148. Crotty, S. M. et al. Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proc. Natl. Acad. Sci. USA 117, 17891–17902 (2020).

    Article  Google Scholar 

  149. Rocca, C. et al. Flood-stimulated herbivory drives range retraction of a plant ecosystem. J. Ecol. 109, 3541–3554 (2021).

    Article  Google Scholar 

  150. Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Nat. 169, 195–206 (2007).

    Article  Google Scholar 

  151. Guo, H., Zhang, Y., Lan, Z. & Pennings, S. C. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Glob. Change Biol. 19, 2765–2774 (2013).

    Article  Google Scholar 

  152. Smith, R. S., Blaze, J. A. & Byers, J. E. Negative indirect effects of hurricanes on recruitment of range-expanding mangroves. Mar. Ecol. Prog. Ser. 644, 65–74 (2020).

    Article  Google Scholar 

  153. Nagelkerken, I. Ecological Connectivity among Tropical Coastal Ecosystems (Springer, 2009).

  154. Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

    Article  Google Scholar 

  155. Sharp, S. J. & Angelini, C. The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion. Biol. Invas. 21, 2857–2869 (2019).

    Article  Google Scholar 

  156. Hughes, B. B. et al. Top-predator recovery abates geomorphic decline of a coastal ecosystem. Nature 626, 111–118 (2024).

    Article  Google Scholar 

  157. Huiskes, A. H. L. et al. Seed dispersal of halophytes in tidal salt marshes. J. Ecol. 83, 559–567 (1995).

    Article  Google Scholar 

  158. Wolters, M., Garbutt, A. & Bakker, J. P. Plant colonization after managed realignment: the relative importance of diaspore dispersal. J. Appl. Ecol. 42, 770–777 (2005).

    Article  Google Scholar 

  159. Zhu, Z. et al. The role of tides and winds in shaping seed dispersal in coastal wetlands. Limnol. Oceanogr. 67, 646–659 (2022).

    Article  Google Scholar 

  160. Chang, E. R., Zozaya, E. L., Kuijper, D. P. J. & Bakker, J. P. Seed dispersal by small herbivores and tidal water: are they important filters in the assembly of salt-marsh communities. Funct. Ecol. 19, 665–673 (2005).

    Article  Google Scholar 

  161. Streever, W. J. & Genders, A. J. Effect of improved tidal flushing and competitive interactions at the boundary between salt marsh and pasture. Estuaries 20, 807–818 (1997).

    Article  Google Scholar 

  162. Jobe, J. G. D. IV & Gedan, K. Species-specific responses of a marsh-forest ecotone plant community responding to climate change. Ecology 102, e03296 (2021).

    Article  Google Scholar 

  163. Kottler, E. J. & Gedan, K. B. Sexual reproduction is light-limited as marsh grasses colonize maritime forest. Am. J. Bot. 109, 514–525 (2022).

    Article  Google Scholar 

  164. Kirwan, M. L., Murray, A. B. & Boyd, W. S. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35, L05403 (2008).

    Article  Google Scholar 

  165. Sharp, S. J. & Angelini, C. Predators enhance resilience of a saltmarsh foundation species to drought. J. Ecol. 109, 975–986 (2021).

    Article  Google Scholar 

  166. Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

    Article  Google Scholar 

  167. Holland, R. A., Wikelski, M. & Wilcove, D. S. How and why do insects migrate? Science 313, 794–796 (2006).

    Article  Google Scholar 

  168. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  Google Scholar 

  169. Secor, D. H. Migration Ecology of Marine Fishes (Johns Hopkins Univ. Press, 2015).

  170. Compte, J., Gascón, S., Quintana, X. D. & Boix, D. Fish effects on benthos and plankton in a Mediterranean salt marsh. J. Exp. Mar. Biol. Ecol. 409, 259–266 (2011).

    Article  Google Scholar 

  171. Barra, P., de la, Skov, M. W., Lawrence, P. J., Schiaffi, J. I. & Hiddink, J. G. Tidal water exchange drives fish and crustacean abundances in salt marshes. Mar. Ecol. Prog. Ser. 694, 61–72 (2022).

    Article  Google Scholar 

  172. Davidson, N. C., Doody, J. P. & Way, L. S. Nature Conservation and Estuaries in Great Britain (Nature Conservancy Council, 1991).

  173. Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: six decades’ lessons from China. Sci. Total. Environ. 566–567, 205–214 (2016).

    Article  Google Scholar 

  174. Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    Article  Google Scholar 

  175. Ren, J. et al. An invasive species erodes the performance of coastal wetland protected areas. Sci. Adv. 7, eabi8943 (2021).

    Article  Google Scholar 

  176. Epanchin-Niell, R., Kousky, C., Thompson, A. & Walls, M. Threatened protection: Sea level rise and coastal protected lands of the eastern United States. Ocean. Coast. Manag. 137, 118–130 (2017).

    Article  Google Scholar 

  177. Bunting, P. et al. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. Remote. Sens. 14, 3657 (2022).

    Article  Google Scholar 

  178. Dijkema, K. S. in Vegetation between Land and Sea (eds Huiskes, A. H. L., Blom, C. W. P. M. & Rozema, J.) 42–51 (Springer, 1987).

  179. Bromberg, K. D. & Bertness, M. D. Reconstructing New England salt marsh losses using historical maps. Estuaries 28, 823–832 (2005).

    Article  Google Scholar 

  180. Van Dyke, E. & Wasson, K. Historical ecology of a central California estuary: 150 years of habitat change. Estuaries 28, 173–189 (2005).

    Article  Google Scholar 

  181. Dallimer, M. & Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30, 132–139 (2015).

    Article  Google Scholar 

  182. Bennett, N. J. et al. Conservation social science: understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).

    Article  Google Scholar 

  183. He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).

    Article  Google Scholar 

  184. Temmink, R. J. M. et al. Mimicry of emergent traits amplifies coastal restoration success. Nat. Commun. 11, 3668 (2020).

    Article  Google Scholar 

  185. Derksen-Hooijberg, M. et al. Mutualistic interactions amplify saltmarsh restoration success. J. Appl. Ecol. 55, 405–414 (2018).

    Article  Google Scholar 

  186. Olds, A. D. et al. Quantifying the conservation value of seascape connectivity: a global synthesis. Glob. Ecol. Biogeogr. 25, 3–15 (2016).

    Article  Google Scholar 

  187. Milbrandt, E. C., Thompson, M., Coen, L. D., Grizzle, R. E. & Ward, K. A multiple habitat restoration strategy in a semi-enclosed Florida embayment, combining hydrologic restoration, mangrove propagule plantings and oyster substrate additions. Ecol. Eng. 83, 394–404 (2015).

    Article  Google Scholar 

  188. Saintilan, N., Rogers, K. & McKee, K. L. in Coastal Wetlands (eds Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 915–945 (Elsevier, 2019).

  189. Loch, T. K. & Riechers, M. Integrating indigenous and local knowledge in management and research on coastal ecosystems in the Global South: a literature review. Ocean. Coast. Manag. 212, 105821 (2021).

    Article  Google Scholar 

  190. Ravaoarinorotsihoarana, L. A. et al. Combining traditional ecological knowledge and scientific observations to support mangrove restoration in Madagascar. Forests 14, 1368 (2023).

    Article  Google Scholar 

  191. Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl. Acad. Sci. USA 112, 14295–14300 (2015).

    Article  Google Scholar 

  192. Zhao, Z., Zhang, L., Yuan, L. & Bouma, T. J. Pinpointing stage-specific causes of recruitment bottlenecks to optimize seed-based wetland restoration. J. Appl. Ecol. 60, 330–341 (2023).

    Article  Google Scholar 

  193. Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B 287, 20200421 (2020).

    Article  Google Scholar 

  194. D. Vinebrooke, R. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co‐tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  195. Frishkoff, L. O., Echeverri, A., Chan, K. M. A. & Karp, D. S. Do correlated responses to multiple environmental changes exacerbate or mitigate species loss? Oikos 127, 1724–1734 (2018).

    Article  Google Scholar 

  196. Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article  Google Scholar 

  197. Foster, C. N., Sato, C. F., Lindenmayer, D. B. & Barton, P. S. Integrating theory into disturbance interaction experiments to better inform ecosystem management. Glob. Change Biol. 22, 1325–1335 (2016).

    Article  Google Scholar 

  198. Sturtevant, B. R. & Fortin, M.-J. Understanding and modeling forest disturbance interactions at the landscape level. Front. Ecol. Evol. 9, 653647 (2021).

    Article  Google Scholar 

  199. Paramor, Oa. L. & Hughes, R. G. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J. Appl. Ecol. 41, 449–463 (2004).

    Article  Google Scholar 

  200. Xu, C. et al. Herbivory limits success of vegetation restoration globally. Science 382, 589–594 (2023).

    Article  Google Scholar 

  201. McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    Article  Google Scholar 

  202. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  Google Scholar 

  203. Hauer, M. E. et al. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 12, 6900 (2021).

    Article  Google Scholar 

  204. Freire, S. & Pesaresi, M. GHS Population Grid, Derived from GPW4, Multitemporal (1975, 1990, 2000, 2015) (European Commission, Joint Research Centre, 2015).

  205. Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).

    Article  Google Scholar 

  206. McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

    Article  Google Scholar 

  207. Klinger, B. A. & Ryan, S. J. Population distribution within the human climate niche. PLOS Clim. 1, e0000086 (2022).

    Article  Google Scholar 

  208. Worthington, T. A. et al. The distribution of global tidal marshes from Earth observation data. Glob. Ecol. Biogeogr. 33, e13852 (2024).

    Article  Google Scholar 

  209. Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    Article  Google Scholar 

  210. Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration research. Front. Mar. Sci. 7, 484 (2020).

    Article  Google Scholar 

  211. Woodwell, G. M., Rich, P. H. & Hall, C. A. Carbon in estuaries. Brookhaven Symp. Biol. 30, 221–240 (1973).

    Google Scholar 

  212. Mcowen, C. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).

    Article  Google Scholar 

  213. Saenger, P., Hegerl, E. J. & Davie, J. D. S. Global Status of Mangrove Ecosystems (International Union for Conservation of Nature and Natural Resources, 1983).

  214. Spalding, M. World Mangrove Atlas (International Society for Mangrove Ecosystems, 1997).

  215. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Article  Google Scholar 

  216. Jia, M. et al. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 68, 1306–1316 (2023).

    Article  Google Scholar 

  217. Leal, M. & Spalding, M. D. The State of the World’s Mangroves 2024 (Global Mangrove Alliance, 2024).

  218. Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    Article  Google Scholar 

  219. Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    Article  Google Scholar 

  220. Bunting, P. et al. The Global Mangrove Watch — a new 2010 global baseline of mangrove extent. Remote. Sens. 10, 1669 (2018).

    Article  Google Scholar 

  221. Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    Article  Google Scholar 

  222. Zhang, Z. et al. Stronger increases but greater variability in global mangrove productivity compared to that of adjacent terrestrial forests. Nat. Ecol. Evol. 8, 239–250 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. H. Altieri, M. D. Bertness, B. Cui, B. Li, B. R. Silliman and J. Wu for their advice about our coastal wetland studies over the years. We acknowledge the support of grants from the National Natural Science Foundation of China (32425037, 32271601) and the National Key Basic Research and Development Program (2022YFC3105402).

Author information

Authors and Affiliations

Authors

Contributions

Q.H. led the writing, with contributions from all authors. Z.L. and Q.H. researched data and conceptualized the figures for the article. All authors contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Qiang He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Kerstin Wasson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Blue Carbon Initiative: https://www.thebluecarboninitiative.org/

Chesapeake Bay Program: https://www.chesapeakebay.net/

International Union for Conservation of Nature Red List of Threatened Species: https://www.iucnredlist.org/

Kunming-Montreal Global Biodiversity Framework: https://www.cbd.int/gbf

Natura 2000 protected areas network: http://natura2000.eea.europa.eu/

Protected Planet: https://www.protectedplanet.net/

Ramsar Convention on Wetlands: https://www.ramsar.org/

United Nations’ Green Climate Fund: https://www.greenclimate.fund/

Supplementary information

Glossary

Accretion

The build-up of habitats including wetlands through the deposition of sediments.

Blue carbon

The carbon stored in coastal wetlands and other marine ecosystems, including tidal marshes, mangrove forests and tidal flats.

Blue justice

The equitable use and management of marine resources by all stakeholders, particularly local communities.

Coastal squeeze

The loss of coastal wetlands caused by rising sea levels at the seaward side and by human-made structures (such as seawalls) that prevent wetland migration at the landward side.

Eutrophication

The process by which an ecosystem becomes excessively enriched with nutrients, particularly nitrogen and phosphorus.

Evolutionary rescue

A process by which a population avoids extinction through genetic adaptation.

Mangrove forests

Coastal wetlands characterized by the presence of salt-tolerant trees and shrubs adapted to thrive in the intertidal zones.

Ocean acidification

The process by which the ocean becomes more acidic, often due to the absorption of carbon dioxide from the atmosphere.

Portfolio effect

In a multi-species ecosystem, the statistical averaging of the different (even opposite) responses of individual species reduces overall variability.

Rapid evolution

Substantial genetic changes in a population over a relatively short period of time, often in response to anthropogenic threats such as climate change or habitat loss.

Resilience

The capacity to reduce the effects of a disturbance and subsequently recover from it.

Tidal flats

Coastal wetlands flooded and drained by tides and characterized typically by soft sediments without the cover of vegetation or other conspicuous biotic structures.

Tidal marshes

Coastal wetlands flooded and drained by tides, often covered by herbaceous plants such as grasses, sedges and forbs.

Tidal prism

The volume of water contained in a coastal wetland between the mean high and low tides.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Li, Z., Daleo, P. et al. Coastal wetland resilience through local, regional and global conservation. Nat. Rev. Biodivers. 1, 50–67 (2025). https://doi.org/10.1038/s44358-024-00004-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-024-00004-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing