Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Successes and failures of conservation actions to halt global river biodiversity loss

Abstract

To address the losses of river biodiversity worldwide, various conservation actions have been implemented to promote recovery of species and ecosystems. In this Review, we assess the effectiveness of these actions globally and regionally, and identify causes of success and failure. Overall, actions elicit little improvement in river biodiversity, in contrast with reports from terrestrial and marine ecosystems. This lack of improvement does not necessarily indicate a failure of any individual action. Rather, it can be attributed in part to remaining unaddressed stressors driving biodiversity loss; a poor match between the spatial scale of action and the scale of the affected area; and absence of adequate monitoring, including insufficient timescales, missing reference and control sites or insufficient selection of targeted taxa. Furthermore, outcomes are often not reported and are unevenly distributed among actions, regions and organism groups. Expanding from local-scale actions to coordinated, transformative, catchment-scale management approaches shows promise for improving outcomes. Such approaches involve identifying major stressors, appropriate conservation actions and source populations for recolonization, as well as comprehensive monitoring, relevant legislation and engaging all stakeholders to promote the recovery of river biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major policies affecting conservation actions in river ecosystems.
Fig. 2: Weighted averages of study outcomes for each of the nine conservation action categories at the global and continental scale.
Fig. 3: Distribution and proportion of the nine conservation action categories across 26 regions.
Fig. 4: Comparing combined stress from drivers of biodiversity loss with conservation actions across 26 regions.

Similar content being viewed by others

References

  1. Everard, M. What have rivers ever done for us? Ecosystem services and river systems. In River Conservation and Management (eds Boon, P. J. & Raven, P. J) Ch. 25 (John Wiley & Sons, 2012).

  2. Feio, M. J. et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Change Biol. 29, 355–374 (2023).

    CAS  Google Scholar 

  3. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Google Scholar 

  4. Langhammer, P. F. et al. The positive impact of conservation action. Science 384, 453–458 (2024).

    CAS  Google Scholar 

  5. Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    Google Scholar 

  6. Lake, P. S., Bond, N. & Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 52, 597–615 (2007).

    Google Scholar 

  7. Britton, J. R. et al. Preventing and controlling nonnative species invasions to bend the curve of global freshwater biodiversity loss. Environ. Rev. 31, 310–326 (2023).

    Google Scholar 

  8. Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).

    Google Scholar 

  9. Bernhardt, E. S. & Palmer, M. A. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 21, 1926–1931 (2011).

    Google Scholar 

  10. Ockendon, N. et al. Effectively integrating experiments into conservation practice. Ecol. Solut. Evid. 2, e12069 (2021).

    Google Scholar 

  11. Brudvig, L. A. & Catano, C. P. Prediction and uncertainty in restoration science. Restor. Ecol. 32, e13380 (2021).

    Google Scholar 

  12. Dawson, N. M. et al. Reviewing the science on 50 years of conservation: knowledge production biases and lessons for practice. Ambio 53, 1395–1413 (2024).

    Google Scholar 

  13. Toszogyova, A., Smyčka, J. & Storch, D. Mathematical biases in the calculation of the Living Planet Index lead to overestimation of vertebrate population decline. Nat. Commun. 15, 5295 (2024).

    CAS  Google Scholar 

  14. Torres-Romero, E. J., Fisher, J. T., Nijman, V., He, F. & Eppley, T. M. Accelerated human-induced extinction crisis in the world’s freshwater mammals. Glob. Environ. Change Adv. 2, 100006 (2024).

    Google Scholar 

  15. He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 (2019).

    Google Scholar 

  16. Deinet, S. et al. The Living Planet Index (LPI) for migratory freshwater fish. World Fish Migration Foundation http://worldfishmigrationfoundation.com/wp-content/uploads/2020/07/LPI_report_2020.pdf (2020).

  17. Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Google Scholar 

  18. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://www.ipbes.net/global-assessment (2019).

  19. Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Google Scholar 

  20. Jakubínský, J. et al. Managing floodplains using nature‐based solutions to support multiple ecosystem functions and services. WIREs Water 8, e1545 (2021).

    Google Scholar 

  21. Van Rees, C. B. et al. The potential for nature-based solutions to combat the freshwater biodiversity crisis. PLOS Water 2, e0000126 (2023).

    Google Scholar 

  22. Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based solutions to address global societal challenges. IUCN https://portals.iucn.org/library/sites/library/files/documents/2016-036.pdf (2016).

  23. Van Rees, C. B. et al. An interdisciplinary overview of levee setback benefits: supporting spatial planning and implementation of riverine nature‐based solutions. WIREs Water 11, e1750 (2024).

    Google Scholar 

  24. Palmer, M. A., Menninger, H. L. & Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw. Biol. 55, 205–222 (2010).

    Google Scholar 

  25. Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: if you remove it, what’s to come? BioScience 69, 26–39 (2019).

    Google Scholar 

  26. Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish. Fish 19, 340–362 (2018).

    Google Scholar 

  27. Roni, P., Hanson, K. & Beechie, T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North. Am. J. Fish. Manag. 28, 856–890 (2008).

    Google Scholar 

  28. Al-Zankana, A. F. A., Matheson, T. & Harper, D. M. How strong is the evidence—based on macroinvertebrate community responses—that river restoration works? Ecohydrol. Hydrobiol. 20, 196–214 (2020).

    Google Scholar 

  29. Kail, J., Brabec, K., Poppe, M. & Januschke, K. The effect of river restoration on fish, macroinvertebrates and aquatic macrophytes: a meta-analysis. Ecol. Indic. 58, 311–321 (2015).

    Google Scholar 

  30. Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resour. Res. 51, 5974–5997 (2015).

    Google Scholar 

  31. Lu, W., Arias Font, R., Cheng, S., Wang, J. & Kollmann, J. Assessing the context and ecological effects of river restoration—a meta-analysis. Ecol. Eng. 136, 30–37 (2019).

    Google Scholar 

  32. Sundermann, A., Stoll, S. & Haase, P. River restoration success depends on the species pool of the immediate surroundings. Ecol. Appl. 21, 1962–1971 (2011).

    Google Scholar 

  33. Rogosch, J. S. et al. Evaluating effectiveness of restoration to address current stressors to riverine fish. Freshw. Biol. 69, 607–622 (2024).

    Google Scholar 

  34. Atristain, M., Solagaistua, L., Larrañaga, A., Von Schiller, D. & Elosegi, A. Slow drawdown, fast recovery: stream macroinvertebrate communities improve quickly after large dam decommissioning. J. Appl. Ecol. 61, 1481–1491 (2024).

    Google Scholar 

  35. Hansen, J. F. & Hayes, D. B. Long-term implications of dam removal for macroinvertebrate communities in Michigan and Wisconsin rivers, United States. River Res. Appl. 28, 1540–1550 (2012).

    Google Scholar 

  36. Poulos, H. M. et al. Dam removal effects on benthic macroinvertebrate dynamics: a New England stream case study (Connecticut, USA). Sustainability 11, 2875 (2019).

    Google Scholar 

  37. Roscoe, D. W. & Hinch, S. G. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish. Fish 11, 12–33 (2010).

    Google Scholar 

  38. Pompeu, P. S., Agostinho, A. A. & Pelicice, F. M. Existing and future challenges: the concept of successful fish passage in South America. River Res. Appl. 28, 504–512 (2012).

    Google Scholar 

  39. Lira, N. A. et al. Fish passages in South America: an overview of studied facilities and research effort. Neotropical Ichthyol. 15, https://doi.org/10.1590/1982-0224-20160139 (2017).

  40. Arthington, A. H. et al. Accelerating environmental flow implementation to bend the curve of global freshwater biodiversity loss. Environ. Rev. 32, 387–413 (2023).

    Google Scholar 

  41. Messager, M. L. et al. A metasystem approach to designing environmental flows. BioScience 73, 643–662 (2023).

    Google Scholar 

  42. Datry, T. et al. Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2023).

    Google Scholar 

  43. Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).

    Google Scholar 

  44. Dourado, G. F., Rallings, A. M. & Viers, J. H. Overcoming persistent challenges in putting environmental flow policy into practice: a systematic review and bibliometric analysis. Environ. Res. Lett. 18, 043002 (2023).

    Google Scholar 

  45. Cheng, L. et al. Managing the three gorges dam to implement environmental flows in the Yangtze River. Front. Environ. Sci. 6, 64 (2018).

    Google Scholar 

  46. Pander, J., Knott, J., Mueller, M. & Geist, J. Effects of environmental flows in a restored floodplain system on the community composition of fish, macroinvertebrates and macrophytes. Ecol. Eng. 132, 75–86 (2019).

    Google Scholar 

  47. Kiernan, J. D., Moyle, P. B. & Crain, P. K. Restoring native fish assemblages to a regulated California stream using the natural flow regime concept. Ecol. Appl. 22, 1472–1482 (2012).

    Google Scholar 

  48. Salinas-Rodríguez, S. et al. What do environmental flows mean for long-term freshwater ecosystems’ protection? Assessment of the mexican water reserves for the environment program. Sustainability 13, 1240 (2021).

    Google Scholar 

  49. Schlatter, K. J., Grabau, M. R., Shafroth, P. B. & Zamora-Arroyo, F. Integrating active restoration with environmental flows to improve native riparian tree establishment in the Colorado River Delta. Ecol. Eng. 106, 661–674 (2017).

    Google Scholar 

  50. Walter, C. A., Nelson, D. & Earle, J. I. Assessment of stream restoration: sources of variation in macroinvertebrate recovery throughout an 11‐year study of coal mine drainage treatment. Restor. Ecol. 20, 431–440 (2012).

    Google Scholar 

  51. Erős, T., Takács, P., Czeglédi, I., Sály, P. & Specziár, A. Taxonomic- and trait-based recolonization dynamics of a riverine fish assemblage following a large-scale human-mediated disturbance: the red mud disaster in Hungary. Hydrobiologia 758, 31–45 (2015).

    Google Scholar 

  52. Fritz, K. M. et al. Structural and functional characteristics of natural and constructed channels draining a reclaimed mountaintop removal and valley fill coal mine. J. North. Am. Benthol. Soc. 29, 673–689 (2010).

    Google Scholar 

  53. Pond, G. J. et al. Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. Environ. Manag. 54, 919–933 (2014).

    Google Scholar 

  54. Palmer, M. A. & Hondula, K. L. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia. Environ. Sci. Technol. 48, 10552–10560 (2014).

    CAS  Google Scholar 

  55. Jones, E. R., Van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).

    Google Scholar 

  56. Boets, P. et al. Do investments in water quality and habitat restoration programs pay off? An analysis of the chemical and biological water quality of a lowland stream in the Zwalm River basin (Belgium). Environ. Sci. Policy 124, 115–124 (2021).

    CAS  Google Scholar 

  57. Kesler, M., Kangur, M. & Vetemaa, M. Natural re‐establishment of Atlantic salmon reproduction and the fish community in the previously heavily polluted River Purtse, Baltic Sea. Ecol. Freshw. Fish. 20, 472–477 (2011).

    Google Scholar 

  58. Gibson-Reinemer, D. K. et al. Ecological recovery of a river fish assemblage following the implementation of the Clean Water Act. BioScience 67, 957–970 (2017).

    Google Scholar 

  59. Artz, C., Pyron, M. & Bowley, L. Long-term macroinvertebrate assemblages of the West Fork White River, Indiana improve following the Clean Water Act. Am. Midl. Nat. 184, 233–247 (2020).

  60. Dyer, S. D. & Wang, X. A comparison of stream biological responses to discharge from wastewater treatment plants in high and low population density areas. Environ. Toxicol. Chem. 21, 1065–1075 (2002).

    CAS  Google Scholar 

  61. Jones, E. R. et al. Current wastewater treatment targets are insufficient to protect surface water quality. Commun. Earth Environ. 3, 221 (2022).

    Google Scholar 

  62. Trejos Delgado, C., Dombrowski, A. & Oehlmann, J. Assessing the impact of two conventional wastewater treatment plants on small streams with effect-based methods. PeerJ 12, e17326 (2024).

    Google Scholar 

  63. Muñoz, I. et al. Effects of emerging contaminants on biodiversity, community structure, and adaptation of River Biota. In Emerging Contaminants in River Ecosystems (eds Petrovic, M. et al.) 79–119 (Springer, 2015).

  64. Khasawneh, O. F. S. & Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process. Saf. Environ. Prot. 150, 532–556 (2021).

    CAS  Google Scholar 

  65. Rout, P. R., Zhang, T. C., Bhunia, P. & Surampalli, R. Y. Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci. Total. Environ. 753, 141990 (2021).

    CAS  Google Scholar 

  66. Owolabi, T. A., Mohandes, S. R. & Zayed, T. Investigating the impact of sewer overflow on the environment: a comprehensive literature review paper. J. Environ. Manag. 301, 113810 (2022).

    Google Scholar 

  67. Kayhanian, M. Trend and concentrations of legacy lead (Pb) in highway runoff. Environ. Pollut. 160, 169–177 (2012).

    CAS  Google Scholar 

  68. Palt, M., Hering, D. & Kail, J. Context‐specific positive effects of woody riparian vegetation on aquatic invertebrates in rural and urban landscapes. J. Appl. Ecol. 60, 1010–1021 (2023).

    Google Scholar 

  69. Klein, M. et al. Risk mitigation measures for pesticide runoff: how effective are they? Pest. Manag. Sci. 79, 4897–4905 (2023).

    CAS  Google Scholar 

  70. Stoddard, J. L. et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401, 575–578 (1999).

    CAS  Google Scholar 

  71. Sullivan, T. J. et al. Air pollution success stories in the United States: the value of long-term observations. Environ. Sci. Policy 84, 69–73 (2018).

    CAS  Google Scholar 

  72. Lin, J. et al. Clean Air Act policies reduced stream nitrogen concentrations over time in deposition dominated watersheds of the conterminous US (2000–2014). EPA https://assessments.epa.gov/risk/document/&deid%3D350435 (2020).

  73. Murphy, J. F. et al. Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: a 20-year time series. Ecol. Indic. 37, 330–340 (2014).

    CAS  Google Scholar 

  74. Pharaoh, E., Diamond, M., Ormerod, S. J., Rutt, G. & Vaughan, I. P. Evidence of biological recovery from gross pollution in English and Welsh rivers over three decades. Sci. Total. Environ. 878, 163107 (2023).

    CAS  Google Scholar 

  75. Vaughan, I. P. & Ormerod, S. J. Large‐scale, long‐term trends in British river macroinvertebrates. Glob. Change Biol. 18, 2184–2194 (2012).

    Google Scholar 

  76. Baker, N. J., Pilotto, F., Jourdan, J., Beudert, B. & Haase, P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total. Environ. 758, 143685 (2021).

    CAS  Google Scholar 

  77. Qu, Y. et al. Significant improvement in freshwater invertebrate biodiversity in all types of English rivers over the past 30 years. Sci. Total. Environ. 905, 167144 (2023).

    CAS  Google Scholar 

  78. Fraker, M. E. et al. Projecting the effects of agricultural conservation practices on stream fish communities in a changing climate. Sci. Total. Environ. 747, 141112 (2020).

    CAS  Google Scholar 

  79. Tibbetts, J., Krause, S., Lynch, I. & Sambrook Smith, G. H. Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water 10, 1597 (2018).

    CAS  Google Scholar 

  80. Kukkola, A. et al. Prevailing impacts of river management on microplastic transport in contrasting US streams: rethinking global microplastic flux estimations. Water Res. 240, 120112 (2023).

    CAS  Google Scholar 

  81. Lorion, C. M. & Kennedy, B. P. Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshw. Biol. 54, 165–180 (2009).

    CAS  Google Scholar 

  82. Collins, K. E., Doscher, C., Rennie, H. G. & Ross, J. G. The effectiveness of riparian ‘restoration’ on water quality—a case study of lowland streams in Canterbury, New Zealand. Restor. Ecol. 21, 40–48 (2013).

    Google Scholar 

  83. Koehnken, L. et al. Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36, 362–370 (2020).

    Google Scholar 

  84. Dankel, D. J., Skagen, D. W. & Ulltang, Ø. Fisheries management in practice: review of 13 commercially important fish stocks. Rev. Fish Biol. Fish. 18, 201–233 (2008).

    Google Scholar 

  85. Arostegui, M. C. et al. Approaches to regulating recreational fisheries: balancing biology with angler satisfaction. Rev. Fish Biol. Fish. 31, 573–598 (2021).

    Google Scholar 

  86. Cowx, I. G. Characterisation of inland fisheries in Europe. Fish. Manag. Ecol. 22, 78–87 (2015).

    Google Scholar 

  87. Hunt, T. L. & Jones, P. Informing the great fish stocking debate: an Australian case study. Rev. Fish. Sci. Aquac. 26, 275–308 (2018).

    Google Scholar 

  88. White, J. et al. Incorporating conservation limit variability and stock risk assessment in precautionary salmon catch advice at the river scale. ICES J. Mar. Sci. 80, 803–822 (2023).

    Google Scholar 

  89. Acuña-Alonso, C., Varandas, S., Álvarez, X. & Martinho, A. Analysis of the evolution of a fisheries management plan based on environmental governance: living laboratory in the Olo River, Portugal. Fish. Res. 260, 106595 (2023).

    Google Scholar 

  90. Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A. Lessons from integrating fishers of arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ. Manag. 43, 197–209 (2009).

    Google Scholar 

  91. Cote, D., Van Leeuwen, T. E., Bath, A. J., Gonzales, E. K. & Cote, A. L. Social–ecological management results in sustained recovery of an imperiled salmon population. Restor. Ecol. 29, e13401 (2021).

    Google Scholar 

  92. Dadswell, M. et al. The decline and impending collapse of the Atlantic salmon (Salmo salar) population in the North Atlantic Ocean: a review of possible causes. Rev. Fish. Sci. Aquac. 30, 215–258 (2022).

    Google Scholar 

  93. Andrew King, R., Miller, A. L. & Stevens, J. R. Has stocking contributed to an increase in the rod catch of anadromous trout (Salmo trutta L.) in the Shetland Islands, UK? J. Fish. Biol. 99, 980–989 (2021).

    CAS  Google Scholar 

  94. Righi, T., Fasola, E., Iaia, M., Stefani, F. & Volta, P. Limited contribution of hatchery-produced individuals to the sustainment of wild marble trout (Salmo marmoratus Cuvier, 1829) in an Alpine basin. Sci. Total. Environ. 892, 164555 (2023).

    CAS  Google Scholar 

  95. Baer, J., Blasel, K. & Diekmann, M. Benefits of repeated stocking with adult, hatchery‐reared brown trout, Salmo trutta, to recreational fisheries? Fish. Manag. Ecol. 14, 51–59 (2007).

    Google Scholar 

  96. Hulme, P. E. Beyond control: wider implications for the management of biological invasions. J. Appl. Ecol. 43, 835–847 (2006).

    Google Scholar 

  97. Olden, J. D., Whattam, E. & Wood, S. A. Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia 848, 1967–1979 (2021).

    Google Scholar 

  98. Yick, J. L., Wisniewski, C., Diggle, J. & Patil, J. G. Eradication of the invasive common carp, Cyprinus carpio from a large lake: lessons and insights from the Tasmanian experience. Fishes 6, 6 (2021).

    Google Scholar 

  99. Fausch, K. D., Rieman, B. E., Dunham, J. B., Young, M. K. & Peterson, D. P. Invasion versus isolation: trade‐offs in managing native salmonids with barriers to upstream movement. Conserv. Biol. 23, 859–870 (2009).

    Google Scholar 

  100. Jones, P. E. et al. The use of barriers to limit the spread of aquatic invasive animal species: a global review. Front. Ecol. Evol. 9, 611631 (2021).

    Google Scholar 

  101. Leung, B. et al. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. B 269, 2407–2413 (2002).

    Google Scholar 

  102. Hussner, A. et al. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat. Bot. 136, 112–137 (2017).

    Google Scholar 

  103. Gosling, L. M. & Baker, S. J. The eradication of muskrats and coypus from Britain. Biol. J. Linn. Soc. 38, 39–51 (1989).

    Google Scholar 

  104. Bryce, R. et al. Turning back the tide of American mink invasion at an unprecedented scale through community participation and adaptive management. Biol. Conserv. 144, 575–583 (2011).

    Google Scholar 

  105. Caffrey, J. Rapid response achieves eradication—chub in Ireland. Manag. Biol. Invasions 9, 475–482 (2018).

    Google Scholar 

  106. Van Der Walt, J. A. et al. Successful mechanical eradication of spotted bass (Micropterus punctulatus (Rafinesque, 1819)) from a South African river. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 303–311 (2019).

    Google Scholar 

  107. Lintermans, M. Recolonization by the mountain galaxias Galaxias olidus of a montane stream after the eradication of rainbow trout Oncorhynchus mykiss. Mar. Freshw. Res. 52, 257 (2001).

    Google Scholar 

  108. Weyl, O. L. F., Finlayson, B., Impson, N. D., Woodford, D. J. & Steinkjer, J. Threatened endemic fishes in South Africa’s Cape floristic region: a new beginning for the Rondegat River. Fisheries 39, 270–279 (2014).

    Google Scholar 

  109. June-Wells, M. et al. Seventeen years of grass carp: an examination of vegetation management and collateral impacts in Ball Pond, New Fairfield, Connecticut. Lake Reserv. Manag. 33, 84–100 (2017).

    Google Scholar 

  110. Dalu, T. et al. Ecosystem responses to the eradication of common carp Cyprinus carpio using rotenone from a reservoir in South Africa. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 2284–2297 (2020).

    Google Scholar 

  111. Dibble, E. D. & Kovalenko, K. Ecological impact of grass carp: a review of the available data. J Aquat. Plant Manag. 47, 1–15 (2009).

    Google Scholar 

  112. Gherardi, F., Aquiloni, L., Diéguez-Uribeondo, J. & Tricarico, E. Managing invasive crayfish: is there a hope? Aquat. Sci. 73, 185–200 (2011).

    Google Scholar 

  113. Rytwinski, T. et al. The effectiveness of non-native fish removal techniques in freshwater ecosystems: a systematic review. Environ. Rev. 27, 71–94 (2019).

    Google Scholar 

  114. Moorhouse, T. P. & Macdonald, D. W. Are invasives worse in freshwater than terrestrial ecosystems? WIREs Water 2, 1–8 (2015).

    Google Scholar 

  115. Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A. & Curry, R. A. Preserving, augmenting, and creating cold‐water thermal refugia in rivers: concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8, 1095–1108 (2015).

    Google Scholar 

  116. Feng, M., Zolezzi, G. & Pusch, M. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Sci. Total. Environ. 612, 1266–1275 (2018).

    CAS  Google Scholar 

  117. Salerno, F., Gaetano, V. & Gianni, T. Urbanization and climate change impacts on surface water quality: enhancing the resilience by reducing impervious surfaces. Water Res. 144, 491–502 (2018).

    Google Scholar 

  118. Moore, T. L., Gulliver, J. S., Stack, L. & Simpson, M. H. Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts. Clim. Change 138, 491–504 (2016).

    CAS  Google Scholar 

  119. Rahel, F. J. Managing freshwater fish in a changing climate: resist, accept, or direct. Fisheries 47, 245–255 (2022).

    Google Scholar 

  120. Bond, N. R., Thomson, J. R. & Reich, P. Incorporating climate change in conservation planning for freshwater fishes. Divers. Distrib. 20, 931–942 (2014).

    Google Scholar 

  121. Palmer, M. A. et al. Climate change and the world’s river basins: anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).

    Google Scholar 

  122. Wilby, R. L. et al. Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Sci. Total. Environ. 408, 4150–4164 (2010).

    CAS  Google Scholar 

  123. Williams, J. E., Isaak, D. J., Imhof, J., Hendrickson, D. A. & McMillan, J. R. Cold-water fishes and climate change in North America. In Reference Module in Earth Systems and Environmental Sciences 1–10 (Elsevier, 2015).

  124. Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).

    Google Scholar 

  125. Gonçalves, D. V. & Hermoso, V. Global goals overlook freshwater conservation. Science 377, 380–380 (2022).

    Google Scholar 

  126. Caldwell, I. R. et al. Global trends and biases in biodiversity conservation research. Cell Rep. Sustain. 1, 100082 (2024).

    Google Scholar 

  127. Leal, C. G. et al. Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science 370, 117–121 (2020).

    CAS  Google Scholar 

  128. Mancini, L. et al. Biological quality of running waters in protected areas: the influence of size and land use. Biodivers. Conserv. 14, 351–364 (2005).

    Google Scholar 

  129. Nogueira, J. G., Teixeira, A., Varandas, S., Lopes‐Lima, M. & Sousa, R. Assessment of a terrestrial protected area for the conservation of freshwater biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 520–530 (2021).

    Google Scholar 

  130. Acreman, M., Hughes, K. A., Arthington, A. H., Tickner, D. & Dueñas, M. Protected areas and freshwater biodiversity: a novel systematic review distils eight lessons for effective conservation. Conserv. Lett. 13, e12684 (2020).

    Google Scholar 

  131. Hermoso, V., Filipe, A. F., Segurado, P. & Beja, P. Filling gaps in a large reserve network to address freshwater conservation needs. J. Environ. Manag. 161, 358–365 (2015).

    Google Scholar 

  132. Azevedo‐Santos, V. M. et al. Protected areas: a focus on Brazilian freshwater biodiversity. Divers. Distrib. 25, 442–448 (2019).

    Google Scholar 

  133. Cid, N. et al. From meta‐system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 20, 49–57 (2022).

    Google Scholar 

  134. Zhang, H., Wang, Q., Li, G., Zhang, H. & Zhang, J. Losses of ecosystem service values in the Taihu Lake Basin from 1979 to 2010. Front. Earth Sci. 11, 310–320 (2017).

    Google Scholar 

  135. Dudley, N., Parrish, J. D., Redford, K. H. & Stolton, S. The revised IUCN protected area management categories: the debate and ways forward. Oryx 44, 485–490 (2010).

    Google Scholar 

  136. Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biol. Conserv. 169, 355–361 (2014).

    Google Scholar 

  137. European Red List of Habitats. Part 2: Terrestrial and Freshwater Habitats. European Commission: Directorate-General for Environment https://op.europa.eu/en/publication-detail/-/publication/22542b64-c501-11e7-9b01-01aa75ed71a1/language-en (2016).

  138. Nel, J. L., Reyers, B., Roux, D. J. & Cowling, R. M. Expanding protected areas beyond their terrestrial comfort zone: identifying spatial options for river conservation. Biol. Conserv. 142, 1605–1616 (2009).

    Google Scholar 

  139. Hermoso, V., Vasconcelos, R. P., Henriques, S., Filipe, A. F. & Carvalho, S. B. Conservation planning across realms: enhancing connectivity for multi‐realm species. J. Appl. Ecol. 58, 644–654 (2021).

    Google Scholar 

  140. Cooke, S. J. et al. Is it a new day for freshwater biodiversity? Reflections on outcomes of the Kunming–Montreal Global Biodiversity Framework. PLOS Sustain. Transform. 2, e0000065 (2023).

    Google Scholar 

  141. Kura, Y. et al. Conservation for sustaining livelihoods: adaptive co-management of fish no-take zones in the Mekong River. Fish. Res. 265, 106744 (2023).

    Google Scholar 

  142. Koning, A. A., Perales, K. M., Fluet-Chouinard, E. & McIntyre, P. B. A network of grassroots reserves protects tropical river fish diversity. Nature 588, 631–635 (2020).

    CAS  Google Scholar 

  143. Jumani, S., Hull, V., Dandekar, P. & Mahesh, N. Community-based fish sanctuaries: untapped potential for freshwater fish conservation. Oryx 57, 522–531 (2023).

    Google Scholar 

  144. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215 (2019).

    CAS  Google Scholar 

  145. The IUCN Red List of Threatened Species. IUCN www.iucnredlist.org (2024).

  146. The EU birds and habitats directives—for nature and people in Europe. European Commission: Directorate-General for Environment https://op.europa.eu/en/publication-detail/-/publication/7230759d-f136-44ae-9715-1eacc26a11af (2015).

  147. Report to Congress on the Recovery of Threatened and Endangered Species Fiscal Years 2017–2020. United States Fish and Wildlife Service www.fws.gov/media/report-congress-recovery-threatened-and-endangered-species-fiscal-years-2017-2020 (2022).

  148. Tsakiris, E. T., Randklev, C. R., Blair, A., Fisher, M. & Conway, K. W. Effects of translocation on survival and growth of freshwater mussels within a West Gulf Coastal Plain river system. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1240–1250 (2017).

    Google Scholar 

  149. Vught, I., De Charleroy, D., Van Liefferinge, C., Coenen, E. & Coeck, J. Conservation of bullhead Cottus perifretum in the Demer River (Belgium) basin using re-introduction. J. Appl. Ichthyol. 27, 60–65 (2011).

    Google Scholar 

  150. Thiem, J. D. et al. Recovery from a fish kill in a semi‐arid Australian river: can stocking augment natural recruitment processes? Austral Ecol. 42, 218–226 (2017).

    Google Scholar 

  151. Betts, J. et al. A framework for evaluating the impact of the IUCN Red List of threatened species. Conserv. Biol. 34, 632–643 (2020).

    Google Scholar 

  152. Sayer, C. A. et al. One-quarter of freshwater fauna threatened with extinction. Nature https://doi.org/10.1038/s41586-024-08375-z (2025).

    Article  Google Scholar 

  153. Lopes-Lima, M. et al. Major shortfalls impairing knowledge and conservation of freshwater molluscs. Hydrobiologia 848, 2831–2867 (2021).

    Google Scholar 

  154. Bourlat, S. J., Tschan, G. F., Martin, S., Iqram, M. & Leidenberger, S. A red listing gap analysis of molluscs and crustaceans in Northern Europe: what has happened in the last 10 years? Biol. Conserv. 286, 110247 (2023).

    Google Scholar 

  155. Chilcott, S. et al. Extinct habitat, extant species: lessons learned from conservation recovery actions for the Pedder galaxias (Galaxias pedderensis) in south-west Tasmania, Australia. Mar. Freshw. Res. 64, 864 (2013).

    Google Scholar 

  156. Moy, K. et al. Alternative conservation outcomes from aquatic fauna translocations: losing and saving the Running River rainbowfish. Aquat. Conserv. Mar. Freshw. Ecosyst. 33, 1445–1459 (2023).

    Google Scholar 

  157. Worthington, T. et al. The re-introduction of the burbot to the United Kingdom and Flanders. In Global Re-Introduction Perspectives: Re-Introduction Case-Studies from Around the Globe (ed. Soorae, P. S.) 284 (IUCN/SSC Re-introduction Specialist Group, 2008).

  158. Kubota, H., Watanabe, K., Sakai, T. & Takahashi, T. Supportive breeding of the Tokyo bitterling in Tochigi Prefecture, Japan. In Global Re-Introduction Perspectives: Additional Case-Studies from Around the Globe (ed. Soorae, P. S.) 352 (IUCN/SSC Re-introduction Specialist Group, 2010).

  159. Jourdan, J. et al. Reintroduction of freshwater macroinvertebrates: challenges and opportunities: reintroduction of freshwater macroinvertebrates. Biol. Rev. 94, 368–387 (2019).

    Google Scholar 

  160. Watson, A. S. & Castillo, L. Are protected areas working for endangered frogs in the Peruvian Andes? Biodivers. Conserv. 31, 1847–1866 (2022).

    Google Scholar 

  161. Van Rijssel, J. C. et al. Reintroducing Atlantic salmon in the river Rhine for decades: why did it not result in the return of a viable population? River Res. Appl. 40, 1164–1182 (2024).

  162. Rao, R. J. Supplementation of Indian Gharial in protected areas of Madhya Pradesh, India. In Global Re-Introduction Perspectives: Additional Case-Studies from Around the Globe (ed. Soorae, P. S.) 284 (IUCN/SSC Re-introduction Specialist Group, 2008).

  163. Whiterod, N. S., Asmus, M., Zukowski, S., Gilligan, D. & Daly, T. Reintroduction to re-establish locally extirpated populations of the Murray crayfish—second largest freshwater crayfish in the world—in S.E. Australia. In Global Conservation Translocation Perspectives: Case Studies From Around The Globe (ed. Soorae, P. S.) (IUCN/SSC Conservation Translocation Specialist Group, Environment Agency, 2021).

  164. Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).

  165. Bunt, C. M., Castro‐Santos, T. & Haro, A. Performance of fish passage structures at upstream barriers to mitigation. River Res. Appl. 28, 457–478 (2012).

    Google Scholar 

  166. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Google Scholar 

  167. Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).

    Google Scholar 

  168. Reich, P. et al. Aquatic invertebrate responses to riparian restoration and flow extremes in three degraded intermittent streams: an eight‐year field experiment. Freshw. Biol. 68, 325–339 (2023).

    Google Scholar 

  169. Sinclair, J. S., Mademann, J. A., Haubrock, P. J. & Haase, P. Primarily neutral effects of river restoration on macroinvertebrates, macrophytes, and fishes after a decade of monitoring. Restor. Ecol. 31, e13840 (2023).

    Google Scholar 

  170. Johnson, M. F. & Wilby, R. L. Seeing the landscape for the trees: metrics to guide riparian shade management in river catchments. Water Resour. Res. 51, 3754–3769 (2015).

    Google Scholar 

  171. Fausch, K. D., Torgersen, C. E., Baxter, C. V. & Li, H. W. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52, 483 (2002).

    Google Scholar 

  172. Stoll, S., Breyer, P., Tonkin, J. D., Früh, D. & Haase, P. Scale-dependent effects of river habitat quality on benthic invertebrate communities—implications for stream restoration practice. Sci. Total. Environ. 553, 495–503 (2016).

    CAS  Google Scholar 

  173. Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    Google Scholar 

  174. White, E. R. Minimum time required to detect population trends: the need for long-term monitoring programs. BioScience 69, 40–46 (2019).

    Google Scholar 

  175. England, J. et al. Best practices for monitoring and assessing the ecological response to river restoration. Water 13, 3352 (2021).

    Google Scholar 

  176. Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).

    Google Scholar 

  177. Bouwer, H. Integrated water management: emerging issues and challenges. Agric. Water Manag. 45, 217–228 (2000).

    Google Scholar 

  178. Palmer, M. A., Hondula, K. L. & Koch, B. J. Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 45, 247–269 (2014).

    Google Scholar 

  179. Brachet, C. & Valensuela, D. A Handbook for Integrated Water Resources Management in Basins (Global Water Partnership/International Network of Basin Organizations, 2009).

  180. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Water Framework Directive https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (2000).

  181. Hillman, M. Integrating knowledge: the key challenge for a new paradigm in river management. Geogr. Compass 3, 1988–2010 (2009).

    Google Scholar 

  182. Wyborn, C. et al. Co-producing sustainability: reordering the governance of science, policy, and practice. Annu. Rev. Environ. Resour. 44, 319–346 (2019).

    Google Scholar 

  183. Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).

    Google Scholar 

  184. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869 (text with EEA relevance). EUR-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R1991 (2024).

Download references

Acknowledgements

Funding was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement 871128 to P.H., D.C.-G. and J.S.S.) and by the Collaborative Research Centre RESIST funded by the DFG (German Research Foundation) (grant CRC 1439/2 – project number: 426547801 to P.H.). M.A.P. was supported by the US National Science Foundation (award DEB-1856200). F.H. acknowledges support from the Chinese Academy of Sciences (E355S122).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.H., J.S.S. and R.B.S. Data curation: D.C.-G. & J.S.S. Funding acquisition: P.H. Investigation: P.H., D.C.-G., F.H., J.J., T.M., F.M.P., M.A.P., R.J.R., R.B.S., E.A.R.W. and J.S.S. Methodology: D.C.-G., J.S.S. and P.H. Supervision: P.H. Visualization: P.H., D.C.-G., J.J. and E.A.R.W. Writing (original draft preparation): P.H. and J.S.S. with contributions from D.C.-G., F.H., T.M., F.M.P., M.A.P., R.B.S. and E.A.R.W. Review and editing: all authors.

Corresponding author

Correspondence to Peter Haase.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Steve Ormerod and Charles van Rees for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Convention on International Trade in Endangered Species of Wild Fauna and Flora: https://cites.org/eng

Convention on Migratory Species: https://www.cms.int/

WASH: https://www.unwater.org/water-facts/wash-water-sanitation-and-hygiene

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, P., Cortés-Guzmán, D., He, F. et al. Successes and failures of conservation actions to halt global river biodiversity loss. Nat. Rev. Biodivers. 1, 104–118 (2025). https://doi.org/10.1038/s44358-024-00012-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-024-00012-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing