Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Parasitism as a driver of host diversification

Abstract

Parasites are ubiquitous and frequently impose strong deleterious fitness effects on host individuals. These effects often manifest at the microevolutionary scale through host assortative mating and local adaptation. At the macroevolutionary scale, parasite-mediated effects can not only cause population divergence leading to speciation but also cause extirpation of host populations, leading to extinction. The balance between parasite-mediated effects on both speciation and extinction determines species diversification patterns. However, empirical tests of the hypothesis that parasitism contributes to macroevolutionary dynamics of host speciation and extinction are lacking. In this Perspective, we discuss how parasites can affect host macroevolution and outline an approach to determine whether parasitism and diversification are linked. We predict that parasitism, similar to other species interactions, shapes the process of diversification specifically in host species. Testing this hypothesis will require further empirical research to investigate the role of parasitism driving host diversification across the tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parasite evolutionary strategies.
Fig. 2: Parasite infection strategies.
Fig. 3: Parasite-induced evolutionary effects.
Fig. 4: Framework to explore the link between parasitism and host diversification.

Similar content being viewed by others

References

  1. Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).

    Article  Google Scholar 

  2. Zeng, Y. & Wiens, J. J. Species interactions have predictable impacts on diversification. Ecol. Lett. 24, 239–248 (2021).

    Article  Google Scholar 

  3. Aristide, L. & Morlon, H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol. Lett. 22, 2006–2017 (2019).

    Article  Google Scholar 

  4. Nosil, P. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63, 1902–1912 (2009).

    Article  Google Scholar 

  5. Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  6. Fowler, M. S. Extinction cascades and the distribution of species interactions. Oikos 119, 864–873 (2010).

    Article  Google Scholar 

  7. Karvonen, A. & Seehausen, O. The role of parasitism in adaptive radiations — when might parasites promote and when might they constrain ecological speciation? Int. J. Ecol. https://doi.org/10.1155/2012/280169 (2012).

  8. Hasik, A. Z. & Siepielski, A. M. Parasitism shapes selection by drastically reducing host fitness and increasing host fitness variation. Biol. Lett. 18, 20220323 (2022).

    Article  Google Scholar 

  9. Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite‐mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).

    Article  Google Scholar 

  10. Gobbin, T. P., Vanhove, M. P. M., Veenstra, R., Maan, M. E. & Seehausen, O. Variation in parasite infection between replicates of speciation in Lake Victoria cichlid fish. Evolution 77, 1682–1690 (2023).

    Article  Google Scholar 

  11. Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 1–16 (2013).

    Article  Google Scholar 

  12. El Nagar, A. & MacColl, A. D. C. Parasites contribute to ecologically dependent postmating isolation in the adaptive radiation of three-spined stickleback. Proc. R. Soc. B 283, 20160691 (2016).

    Article  Google Scholar 

  13. Malmstrøm, M. et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat. Genet. 48, 1204–1210 (2016).

    Article  Google Scholar 

  14. Morand, S. (macro-) Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. Int. J. Parasitol. Parasites Wildl. 4, 80–87 (2015).

    Article  Google Scholar 

  15. Poulin, R. Parasite biodiversity revisited: frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).

    Article  Google Scholar 

  16. Price, P. W. Evolutionary Biology of Parasites Vol. 15 (Princeton Univ. Press, 1980).

  17. Ilvonen, J. J., Kaunisto, K. M. & Suhonen, J. Odonates, gregarines and water mites: why are the same host species infected by both parasites? Ecol. Entomol. 43, 591–600 (2018).

    Article  Google Scholar 

  18. Gehman, A.-L. M. et al. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite. Oecologia 183, 139–149 (2017).

    Article  Google Scholar 

  19. Lyberger, K., Farner, J., Couper, L. & Mordecai, E. A. A mosquito parasite is locally adapted to its host but not temperature. Am. Nat. 204, 121–132 (2024).

    Article  Google Scholar 

  20. Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).

    Article  CAS  Google Scholar 

  21. Zahavi, A. Mate selection — a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    Article  CAS  Google Scholar 

  22. Boots, M. & Sasaki, A. Parasite‐driven extinction in spatially explicit host–parasite systems. Am. Nat. 159, 706–713 (2002).

    Article  Google Scholar 

  23. Hwang, T.-W. & Kuang, Y. Deterministic extinction effect of parasites on host populations. J. Math. Biol. 46, 17–30 (2003).

    Article  Google Scholar 

  24. Auld, S. K. J. R., Tinkler, S. K. & Tinsley, M. C. Sex as a strategy against rapidly evolving parasites. Proc. R. Soc. B 283, 20162226 (2016).

    Article  Google Scholar 

  25. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article  CAS  Google Scholar 

  26. Koch, H. R., Wagner, S. & Becks, L. Antagonistic species interaction drives selection for sex in a predator–prey system. J. Evol. Biol. 33, 1180–1191 (2020).

    Article  Google Scholar 

  27. Haldane, J. B. S. Disease and evolution. La Ricerca Scientifica 19, 68–76 (1949).

    Google Scholar 

  28. Summers, K. et al. Parasitic exploitation as an engine of diversity. Biol. Rev. 78, 639–675 (2003).

    Article  Google Scholar 

  29. Thompson, J. N. & Burdon, J. J. Gene-for-gene coevolution between plants and parasites. Nature 360, 121–125 (1992).

    Article  Google Scholar 

  30. Brown, J. K. M. & Tellier, A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49, 345–367 (2011).

    Article  CAS  Google Scholar 

  31. Garamszegi, L. Z. & Nunn, C. L. Parasite‐mediated evolution of the functional part of the MHC in primates. J. Evol. Biol. 24, 184–195 (2011).

    Article  CAS  Google Scholar 

  32. Klein, J., O’Huigin, C. & Deutsch, J. MHC polymorphism and parasites. Philos. Trans. R. Soc. B Biol. Sci. 346, 19940152 (1994).

    Google Scholar 

  33. Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. & Iskra-Caruana, M. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor. Appl. Genet. 106, 594–598 (2003).

    Article  CAS  Google Scholar 

  34. Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen. Virol. 81, 1579–1585 (2000).

    Article  CAS  Google Scholar 

  35. Ndowora, T. et al. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255, 214–220 (1999).

    Article  CAS  Google Scholar 

  36. Roy, R. P. Semi-lethal hybrids in crosses of species and synthetic amphidipîoids of Triticum and Aegilops. Indian J. Genet. 15, 88–98 (1955).

    Google Scholar 

  37. Sears, E. R. Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29, 113–127 (1944).

    Article  CAS  Google Scholar 

  38. Bomblies, K. & Weigel, D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8, 382–393 (2007).

    Article  CAS  Google Scholar 

  39. Engelstädter, J. & Fortun, N. Z. The dynamics of preferential host switching: host phylogeny as a key predictor of parasite distribution. Evolution 73, 1330–1340 (2019).

    Article  Google Scholar 

  40. Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    Article  CAS  Google Scholar 

  41. Daszak, P. et al. Emerging infectious diseases and amphibian population declines.Emerg. Infect. Dis. 5, 735–748 (1999).

    Article  CAS  Google Scholar 

  42. Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. R. Soc. B Biol. Sci. 284, 20171176 (2017).

    Article  Google Scholar 

  43. Castro, F. D. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article  Google Scholar 

  44. Safran, R. J., Scordato, E. S. C., Symes, L. B., Rodríguez, R. L. & Mendelson, T. C. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol. Evol. 28, 643–650 (2013).

    Article  Google Scholar 

  45. Hooper, P. L. & Miller, G. F. Mutual mate choice can drive costly signaling even under perfect monogamy. Adapt. Behav. 16, 53–70 (2008).

    Article  Google Scholar 

  46. Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138 (2013).

    Article  Google Scholar 

  47. Hechtel, L. J., Johnson, C. L. & Juliano, S. A. Modification of antipredator behavior of Caecidotea intermedius by its parasite Acanthocephalus dirus. Ecology 74, 710–713 (1993).

    Article  Google Scholar 

  48. Moore, J. Responses of an avian predator and its isopod prey to an acanthocephalan parasite. Ecology 64, 1000–1015 (1983).

    Article  Google Scholar 

  49. Maan, M. E., Van Rooijen, A. M. C., Van Alphen, J. J. M. & Seehausen, O. Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biol. J. Linn. Soc. 94, 53–60 (2008).

    Article  Google Scholar 

  50. Folstad, I., Hope, A. M., Karter, A. & Skorping, A. Sexually selected color in male sticklebacks: a signal of both parasite exposure and parasite resistance? Oikos 69, 511–515 (1994).

    Article  Google Scholar 

  51. Selz, O. M., Pierotti, M. E. R., Maan, M. E., Schmid, C. & Seehausen, O. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behav. Ecol. 25, 612–626 (2014).

    Article  Google Scholar 

  52. Milinski, M. & Bakker, T. C. M. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344, 330–333 (1990).

    Article  Google Scholar 

  53. Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host–parasite interactions in fish. Parasitology 137, 411–424 (2009).

    Article  Google Scholar 

  54. Huchard, E., Baniel, A., Schliehe-Diecks, S. & Kappeler, P. M. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Mol. Ecol. 22, 4071–4086 (2013).

    Article  Google Scholar 

  55. Dandine-Roulland, C., Laurent, R., Dall’Ara, I., Toupance, B. & Chaix, R. Genomic evidence for MHC disassortative mating in humans. Proc. R. Soc. B 286, 20182664 (2019).

    Article  Google Scholar 

  56. Penn, D. J., Damjanovich, K. & Potts, W. K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl Acad. Sci. USA 99, 11260–11264 (2002).

    Article  CAS  Google Scholar 

  57. Slade, J. W. G., Watson, M. J. & MacDougall-Shackleton, E. A. ‘Balancing’ balancing selection? Assortative mating at the major histocompatibility complex despite molecular signatures of balancing selection. Ecol. Evol. 9, 5146–5157 (2019).

    Article  Google Scholar 

  58. Sepil, I. et al. No evidence for MHC class I‐based disassortative mating in a wild population of great tits. J. Evol. Biol. 28, 642–654 (2015).

    Article  CAS  Google Scholar 

  59. Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Biol. 24, 3138–3150 (2015).

    Google Scholar 

  60. Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).

    Article  CAS  Google Scholar 

  61. Eizaguirre, C., Lenz, T. L., Traulsen, A. & Milinski, M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 12, 5–12 (2009).

    Article  Google Scholar 

  62. Preisser, W. Latitudinal gradients of parasite richness: a review and new insights from helminths of cricetid rodents. Ecography 42, 1315–1330 (2019).

    Article  Google Scholar 

  63. Bolnick, D. I., Resetarits, E. J., Ballare, K., Stuart, Y. E. & Stutz, W. E. Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity. Ecology 101, e03181 (2020).

    Article  Google Scholar 

  64. Hasik, A. Z. & Siepielski, A. M. A role for the local environment in driving species‐specific parasitism in a multi‐host parasite system. Freshw. Biol. 67, 1571–1583 (2022).

    Article  CAS  Google Scholar 

  65. Blasco-Costa, I., Rouco, C. & Poulin, R. Biogeography of parasitism in freshwater fish: spatial patterns in hot spots of infection. Ecography 38, 301–310 (2015).

    Article  Google Scholar 

  66. Hasik, A. Z., Bried, J. T., Bolnick, D. I. & Siepielski, A. M. Is the local environment more important than within-host interactions in determining coinfection? J. Anim. Ecol. 93, 1541–1555 (2024).

    Article  Google Scholar 

  67. Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    Article  Google Scholar 

  68. Céspedes, V., Stoks, R., Green, A. J. & Sánchez, M. I. Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity. Biol. Invasions 21, 2431–2445 (2019).

    Article  Google Scholar 

  69. Mesquita, A. F. C. et al. Low resistance to chytridiomycosis in direct-developing amphibians. Sci. Rep. 7, 16605 (2017).

    Article  Google Scholar 

  70. Hasik, A. Z., Tye, S. P., Ping, T. & Siepielski, A. M. A common measure of prey immune function is not constrained by the cascading effects of predators. Evol. Ecol. https://doi.org/10.1007/s10682-021-10124-x (2021).

  71. Worthen, W. B. & Turner, L. H. The effects of odonate species abundance and diversity on parasitism by water mites (Arrenurus spp.): testing the dilution effect. Int. J. Odonatol. 18, 233–248 (2015).

    Article  Google Scholar 

  72. Risely, A., Klaasen, M. & Hoye, B. J. Migratory animals feel the cost of getting sick: a meta-analysis across species. J. Anim. Ecol. 87, 301–314 (2017).

    Article  Google Scholar 

  73. Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl Acad. Sci. USA 115, 1552–1557 (2018).

    Article  CAS  Google Scholar 

  74. Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

    Article  CAS  Google Scholar 

  75. Altizer, S., Nunn, C. L. & Lindenfors, P. Do threatened hosts have fewer parasites? A comparative study in primates. J. Anim. Ecol. 76, 304–314 (2007).

    Article  Google Scholar 

  76. Bruns, E. L., Antonovics, J. & Hood, M. Is there a disease-free halo at species range limits? The codistribution of anther-smut disease and its host species. J. Ecol. 107, 1–11 (2019).

    Article  Google Scholar 

  77. Tompkins, D. M., White, A. R. & Boots, M. Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196 (2003).

    Article  Google Scholar 

  78. Atkinson, M. S. & Savage, A. E. Invasive amphibians alter host–pathogen interactions with primarily negative outcomes for native species. Biol. Conserv. 286, 110310 (2023).

    Article  Google Scholar 

  79. Wyatt, K. B. et al. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 3, e3602 (2008).

    Article  Google Scholar 

  80. Ryan, M. J., Lips, K. R. & Eichholz, M. W. Decline and extirpation of an endangered Panamanian stream frog population (Craugastor punctariolus) due to an outbreak of chytridiomycosis. Biol. Conserv. 141, 1636–1647 (2008).

    Article  Google Scholar 

  81. Hoyt, J. R. et al. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proc. R. Soc. B 283, 20152861 (2016).

    Article  Google Scholar 

  82. Hasik, A. Z. et al. Resetting our expectations for parasites and their effects on species interactions: a meta-analysis. Ecol. Lett. 26, 184–199 (2023).

    Article  Google Scholar 

  83. Reiczigel, J., Marozzi, M., Fábián, I. & Rózsa, L. Biostatistics for parasitologists — a primer to quantitative parasitology. Trends Parasitol. 35, 277–281 (2019).

    Article  Google Scholar 

  84. Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. B Biol. Sci. 291, 19810005 (1981).

    Google Scholar 

  85. Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article  Google Scholar 

  86. Poulin, R. et al. Evolutionary signature of ancient parasite pressures, or the ghost of parasitism past. Front. Ecol. Evol. 8, 195 (2020).

    Article  Google Scholar 

  87. Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).

    Article  Google Scholar 

  88. Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).

    Article  Google Scholar 

  89. Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  Google Scholar 

  90. Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article  Google Scholar 

  91. Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2015).

    Article  Google Scholar 

  92. Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state‐dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).

    Article  Google Scholar 

  93. Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).

    Article  Google Scholar 

  94. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article  CAS  Google Scholar 

  95. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article  CAS  Google Scholar 

  96. Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J. & Heath, T. A. The fossilized birth–death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447, 41–55 (2018).

    Article  Google Scholar 

  97. Leung, T. L. F. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol. Rev. 92, 410–430 (2015).

    Article  Google Scholar 

  98. Beaulieu, J. M. & O’Meara, B. C. Fossils do not substantially improve, and may even harm, estimates of diversification rate heterogeneity. Syst. Biol. 72, 50–61 (2023).

    Article  Google Scholar 

  99. Uyeda, J. C., Hansen, T. F. & McPeek, M. A. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011).

    Article  CAS  Google Scholar 

  100. Schluter, D. Variable success in linking micro- and macroevolution. Evol. J. Linn. Soc. 3, kzae016 (2024).

    Article  Google Scholar 

  101. Tsuboi, M. et al. The paradox of predictability provides a bridge between micro- and macroevolution. J. Evol. Biol. 37, 1413–1432 (2024).

    Article  Google Scholar 

  102. Ebert, D. & Fields, P. D. Host–parasite co-evolution and its genomic signature. Nat. Rev. Genet. 21, 754–768 (2020).

    Article  CAS  Google Scholar 

  103. Hasik, Z. A., King, C. K. & Hawlena, H. Interspecific host competition and parasite virulence evolution. Biol. Lett. 19, 20220553 (2023).

    Article  Google Scholar 

  104. Hite, J. L. & Cressler, C. E. Parasite-mediated anorexia and nutrition modulate virulence evolution. Integr. Comp. Biol. 59, 1264–1274 (2019).

    Article  Google Scholar 

  105. Poulin, R. Chapter 1 — the many roads to parasitism: a tale of convergence. Adv. Parasitol. 74, 1–40 (2011).

    Article  Google Scholar 

  106. Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    Article  Google Scholar 

  107. Bordes, F. & Morand, S. The impact of multiple infections on wild animal hosts: a review. Infect. Ecol. Epidemiol. 1, 7346 (2011).

    Google Scholar 

  108. Clerc, M., Fenton, A., Babayan, S. A. & Pedersen, A. B. Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology 146, 1096–1106 (2019).

    Article  CAS  Google Scholar 

  109. Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B 286, 20191109 (2019).

    Article  Google Scholar 

  110. Brooks, D. R., Hoberg, E. P. & Boeger, W. A. In the eye of the cyclops: the classic case of cospeciation and why paradigms are important. Comp. Parasitol. 82, 1–8 (2015).

    Article  Google Scholar 

  111. Pfenning-Butterworth, A. C., Davies, T. J. & Cressler, C. E. Identifying co-phylogenetic hotspots for zoonotic disease. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200363 (2021).

    Article  Google Scholar 

  112. Buckling, A. & Hodgson, D. J. Short-term rates of parasite evolution predict the evolution of host diversity. J. Evol. Biol. 20, 1682–1688 (2007).

    Article  CAS  Google Scholar 

  113. Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    Article  CAS  Google Scholar 

  114. Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).

    Article  CAS  Google Scholar 

  115. Nunn, C. L. et al. Parasites and the evolutionary diversification of primate clades. Am. Nat. 10.0003-0147/2004/1640S5-40138$15.00 (2004).

  116. Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).

    Article  CAS  Google Scholar 

  117. Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Article  Google Scholar 

  118. Albery, G. F. et al. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2023.0508 (2024).

  119. Albery, G. F. et al. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology 145, 1410–1420 (2018).

    Article  Google Scholar 

  120. Hite, J., Pfenning, A. C. & Cressler, C. E. Starving the enemy? Feeding behavior shapes host–parasite interactions. Trends Ecol. Evol. 35, 68–80 (2020).

    Article  Google Scholar 

  121. Revell, L. J. & Harmon, L. J. Phylogenetic Comparative Methods in R (Princeton Univ. Press, 2022).

  122. Weber, M. G. & Agrawal, A. A. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 27, 394–403 (2012).

    Article  Google Scholar 

  123. Osigus, H.-J., Rolfes, S., Herzog, R., Kamm, K. & Schierwater, B. Polyplacotoma mediterranea is a new ramified placozoan species. Curr. Biol. 29, R148–R149 (2019).

    Article  CAS  Google Scholar 

  124. Zhang, Z.-Q. Phylum arthropoda. Zootaxa 3703, 1–82 (2013).

    Google Scholar 

  125. Howard, V., Landis, J. B., Beaulieu, J. M. & Cellinese, N. Geophytism in monocots leads to higher rates of diversification. Phytologist 225, 1023–1032 (2020).

    Article  Google Scholar 

  126. Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B. & Fidelis, A. Unearthing belowground bud banks in fire-prone ecosystems. N. Phytol. 217, 1435–1448 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from NSF (DEB 2306183 awarded to A.M.S. and DEB 1916558 awarded to J.M.B.), Arkansas Biosciences Institute (A.M.S.), Academy of Finland (J.S.), University of Turku Graduate School (J.J.I.) and Emil Aaltonen Foundation (J.J.I.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content. A.Z.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Adam Z. Hasik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abundance

The mean number of parasite individuals per host individual, considering both infected and uninfected hosts.

Coevolutionary arms-race

Evolutionary scenario in which a competing set of co-evolving genotypes or phenotypes develop increasingly escalating adaptations and counter-adaptations.

Diversification

The process by which the diversity of a group of organisms increases over time.

Ecological speciation

The process by which new species form owing to the influence of divergent selection experienced in differing ecological environments.

Extinction

The termination of a taxon when the last member dies.

Extirpation

Complete elimination of a species from a specific area.

Gene-for-gene models

Infection model whereby a parasite has a ‘universal virulence’ allowing it to infect all host genotypes.

Hybrid necrosis

A type of postzygotic incompatibility seen across many species in which hybrid offspring are rarely able to reach their reproductive stage.

Infection profile

Both the number of individual parasites and parasite species infecting a given host.

Intensity

The mean number of parasite individuals per infected host individual.

Local adaptation

Process by which an individual (or group of individuals) performs better in their local habitat than they would in another locality within their species’ geographical range.

Matching allele infection models

Infection model whereby a parasite’s genotype must exactly match a host’s genotype to successfully infect the host.

Parasites

Organisms that have evolved to acquire resources from a host organism at the expense of the host.

Prevalence

The proportion of individuals within a given host population that are infected with a parasite.

Red Queen dynamics

Evolutionary scenario in which species must adapt to and overcome the fitness costs imposed on them by antagonistic species that are also evolving.

Reproductive isolation

Processes preventing members of different populations from successfully mating or producing viable offspring.

Stockholm Paradigm

An evolutionary framework explaining macroevolutionary mechanisms that incorporate evolutionary and ecological processes.

Tolerance

The strategy whereby hosts limit the harm suffered from increasing parasite loads.

Turnover

The process by which a clade changes as lineages appear and disappear over time.

Virulence

The harm to hosts caused by parasite infection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasik, A.Z., Ilvonen, J.J., Gobbin, T.P. et al. Parasitism as a driver of host diversification. Nat. Rev. Biodivers. 1, 401–410 (2025). https://doi.org/10.1038/s44358-025-00045-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00045-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing