Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impacts of deglaciation on biodiversity and ecosystem function

Abstract

Glaciers and glacially influenced ecosystems host unique biodiversity spanning all kingdoms of life, but glaciers are retreating as the global climate warms, threatening specialist species, ecosystem functions and stability. We outline the impacts and consequences of glacier retreat, identifying key drivers and mechanisms of change, focusing on biodiversity and interactions among glacier, terrestrial, freshwater and marine ecosystems. We identify global glacial biodiversity patterns and local nuances, highlighting taxa that are likely to thrive or decline with the loss of glaciers. Following glacier retreat, the availability and size of ice-free areas initially increase, leading to a ‘biodiversity peak’. However, as glaciers disappear, the formation of novel habitats decreases while communities become more homogeneous and competition increases, leading to local-to-regional biodiversity decline. Glacier loss influences multiple ecosystem functions that contribute to climate regulation, freshwater resources, carbon and nutrient cycling, soil development, primary productivity and food-web stability. Key challenges in glacier ecosystem science include improving our knowledge of the relationships between biodiversity and ecosystem functions and quantifying species interactions at local-to-global scales to improve mechanistic understanding. Such advances will enhance predictions of how biodiversity will change with the loss of glaciers, enabling informed and effective conservation and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The various habitats comprising glacial landscapes.
Fig. 2: Mechanisms underlying biodiversity changes in response to glacier retreat.
Fig. 3: Winners and losers of deglaciation.
Fig. 4: Glacier retreat alters biodiversity and affects ecosystem functions.

Similar content being viewed by others

References

  1. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  2. Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article  CAS  Google Scholar 

  3. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://www.ipbes.net/global-assessment (2019).

  4. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  Google Scholar 

  5. Roe, G. H., Christian, J. E. & Marzeion, B. On the attribution of industrial-era glacier mass loss to anthropogenic climate change. Cryosphere 15, 1889–1905 (2021).

    Article  Google Scholar 

  6. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  CAS  Google Scholar 

  7. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).

  8. Cook, S. J. et al. Committed ice loss in the European Alps until 2050 using a deep-learning-aided 3D ice-flow model with data assimilation. Geophys. Res. Lett. 50, e2023GL105029 (2023).

    Article  Google Scholar 

  9. Huss, M. et al. Toward mountains without permanent snow and ice. Earth Future 5, 418–435 (2017).

    Article  Google Scholar 

  10. Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article  CAS  Google Scholar 

  11. Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article  Google Scholar 

  12. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017). This paper presents a synthesis of how glacier loss alters hydrological conditions and biogeochemical fluxes and in turn affects biodiversity and ecosystem services.

    Article  CAS  Google Scholar 

  13. Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).

    Article  Google Scholar 

  14. Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018). Functional trait analyses that reveal the mechanisms underlying invertebrate diversity responses to reduced glacier cover.

    Article  Google Scholar 

  15. Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023). This study presents species distribution models that indicate upstream shifts, extinctions or potential refugia for river invertebrates after glacier retreat.

    Article  CAS  Google Scholar 

  16. Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Article  Google Scholar 

  17. Eichel, J. in Geomorphology of Proglacial Systems (eds Heckmann, T. & Morche, D.) 327–349 (Springer, 2019).

  18. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  Google Scholar 

  19. Erschbamer, B. & Caccianiga, M. S. in Progress in Botany Vol. 78 (eds Cánovas, F. M., Lüttge, U. & Matyssek, R.) 259–284 (Springer, 2016).

  20. Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).

    Article  Google Scholar 

  21. Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336–342 (2024). Environmental DNA metabarcoding reveals patterns of increasing richness for bacteria, fungi, plants and animals for a few hundred years after glacier retreat.

    Article  CAS  Google Scholar 

  22. Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).

    Article  Google Scholar 

  23. Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 520 (2021).

    Article  Google Scholar 

  24. Cantera, I. et al. The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat. Nat. Plants 10, 256–267 (2024).

    Article  Google Scholar 

  25. Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017). This study demonstrates the role of glacier algae in supporting microbial diversity and influencing productivity and surface albedo.

    Article  CAS  Google Scholar 

  26. Khelidj, N., Caccianiga, M., Cerabolini, B. E. L., Tampucci, D. & Losapio, G. Glacier extinction homogenizes functional diversity via ecological succession. J. Veg. Sci. 35, e13312 (2024).

    Article  Google Scholar 

  27. Bosson, J. B. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023). A study that provides projections of glacier loss and associated emergence of aquatic and terrestrial habitats across poorly protected glaciers.

    Article  CAS  Google Scholar 

  28. Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).

    Article  Google Scholar 

  29. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  CAS  Google Scholar 

  30. Thompson, L. G. et al. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob. Planet. Change 203, 103538 (2021).

    Article  Google Scholar 

  31. Huss, M. & Fischer, M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci. 4, 34 (2016).

    Article  Google Scholar 

  32. Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article  CAS  Google Scholar 

  33. Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).

    Article  Google Scholar 

  34. Hop, H. et al. Tidewater glaciers as “climate refugia” for zooplankton-dependent food web in Kongsfjorden, Svalbard. Front. Mar. Sci. 10, 1161912 (2023). This study provides evidence of glacial plumes as ‘climate refugia’ for seabirds foraging on zooplankton.

    Article  Google Scholar 

  35. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  36. Clitherow, L. R., Carrivick, J. L. & Brown, L. E. Food web structure in a harsh glacier-fed river. PLoS ONE 8, e60899 (2013).

    Article  CAS  Google Scholar 

  37. Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).

    Article  Google Scholar 

  38. Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025). This study finds that the microbiome of glacier-fed stream differs from that of the cryosphere by hosting bacterial variants endemic to a mountain range.

    Article  CAS  Google Scholar 

  39. Levy, A., Robinson, Z., Krause, S., Waller, R. & Weatherill, J. Long-term variability of proglacial groundwater-fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland. Earth Surf. Process. Landf. 40, 981–994 (2015).

    Article  Google Scholar 

  40. He, Q. et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 47, 101368 (2023).

    Article  Google Scholar 

  41. Menzies, J. in The SAGE Handbook of Geomorphology (eds Gregory, K. J. & Goudie, A. S.) 378–392 (Sage, 2011).

  42. Eichel, J., Draebing, D., Winkler, S. & Meyer, N. Similar vegetation-geomorphic disturbance feedbacks shape unstable glacier forelands across mountain regions. Ecosphere 14, e4404 (2023).

    Article  Google Scholar 

  43. Benn, D. & Evans, D. Glaciers and Glaciation (Routledge, 2014).

  44. Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3, 10 (2017).

    Article  Google Scholar 

  45. Kohler, T. J. et al. Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers. Front. Microbiol. 11, 523224 (2020).

    Article  Google Scholar 

  46. Erschbamer, B. Winners and losers of climate change in a central Alpine glacier foreland. Arct. Antarct. Alp. Res. 39, 237–244 (2007).

    Article  Google Scholar 

  47. Robison, A. L., Deluigi, N., Rolland, C., Manetti, N. & Battin, T. Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams. Biogeosciences 20, 2301–2316 (2023).

    Article  CAS  Google Scholar 

  48. Wojcik, R., Eichel, J., Bradley, J. A. & Benning, L. G. How allogenic factors affect succession in glacier forefields. Earth Sci. Rev. 218, 103642 (2021).

    Article  Google Scholar 

  49. Burga, C. A. et al. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora Morphol. Distrib. Funct. Ecol. Plants 205, 561–576 (2010).

    Google Scholar 

  50. Bråten, A. T. et al. Primary succession of surface active beetles and spiders in an alpine glacier foreland, central South Norway. Arct. Antarct. Alp. Res. 44, 2–15 (2012).

    Article  Google Scholar 

  51. Roland, T. P. et al. Sustained greening of the Antarctic peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).

    Article  CAS  Google Scholar 

  52. Vinšová, P. et al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Glob. Biogeochem. Cycles 36, e2021GB007126 (2022).

    Article  Google Scholar 

  53. Yde, J. C., Bárcena, T. G. & Finster, K. W. Subglacial and proglacial ecosystem responses to climate change. Clim. Change Geophys. Found. Ecol. Eff. 459–478 (2011).

  54. Ragettli, S., Immerzeel, W. W. & Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes mountains. Proc. Natl Acad. Sci. USA 113, 9222–9227 (2016).

    Article  CAS  Google Scholar 

  55. Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).

    Article  Google Scholar 

  56. Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. Wiley Interdisc. Rev. Water 6, e1390 (2019).

    Article  Google Scholar 

  57. Milner, A. M., Fastie, C. L., Chapin, F. S., Engstrom, D. R. & Sharman, L. C. Interactions and linkages among ecosystems during landscape evolution. BioScience 57, 237–247 (2007).

    Article  Google Scholar 

  58. Brighenti, S. et al. Rock glaciers and related cold rocky landforms: overlooked climate refugia for mountain biodiversity. Glob. Change Biol. 27, 1504–1517 (2021).

    Article  Google Scholar 

  59. Gentili, R. et al. Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for Alpine plants during warm stages. CATENA 193, 104626 (2020).

    Article  Google Scholar 

  60. Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).

    Article  Google Scholar 

  61. Bhatia, M. P. et al. Glaciers and nutrients in the canadian arctic archipelago marine system. Glob. Biogeochem. Cycles 35, e2021GB006976 (2021).

    Article  CAS  Google Scholar 

  62. Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for Alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).

    Article  CAS  Google Scholar 

  63. Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022).

    Article  CAS  Google Scholar 

  64. Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).

    Article  CAS  Google Scholar 

  65. Brighenti, S. et al. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci. Total. Environ. 675, 542–559 (2019).

    Article  CAS  Google Scholar 

  66. Holding, J. M. et al. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62, 1307–1323 (2017).

    Article  Google Scholar 

  67. Hopwood, M. J. et al. Review article: how does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).

    Article  Google Scholar 

  68. Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).

    Article  CAS  Google Scholar 

  69. Braeckman, U. et al. Glacial melt impacts carbon flows in an Antarctic benthic food web. Front. Mar. Sci. 11, 1359597 (2024).

    Article  Google Scholar 

  70. Bringloe, T. T. et al. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Glob. Change Biol. 28, 3711–3727 (2022). This study predicts that northern expansion of Arctic marine forests will not compensate for contraction at the southern range edge, resulting in net habitat loss for endemic Arctic species.

    Article  CAS  Google Scholar 

  71. Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 8062 (2019).

    Article  Google Scholar 

  72. König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).

    Article  Google Scholar 

  73. Hågvar, S. & Pedersen, A. Food choice of invertebrates during early glacier foreland succession. Arct. Antarct. Alp. Res. 47, 561–572 (2015).

    Article  Google Scholar 

  74. Rassner, S. M. E. et al. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ. Microbiol. 26, e16617 (2024).

    Article  CAS  Google Scholar 

  75. Crosta, A. et al. Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biol. Rev. 100, 227–244 (2025).

    Article  Google Scholar 

  76. Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat. Commun. 7, 11968 (2016).

    Article  CAS  Google Scholar 

  77. Losapio, G., Jordán, F., Caccianiga, M. & Gobbi, M. Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland. Ecol. Model. 314, 73–79 (2015).

    Article  Google Scholar 

  78. Gobbi, M. et al. Vanishing permanent glaciers: climate change is threatening a European Union habitat (code 8340) and its poorly known biodiversity. Biodivers. Conserv. 30, 2267–2276 (2021).

    Article  Google Scholar 

  79. Varliero, G. et al. Glacial water: a dynamic microbial medium. Microorganisms 11, 1153 (2023).

    Article  Google Scholar 

  80. Zhong, Z.-P. et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9, 160 (2021).

    Article  CAS  Google Scholar 

  81. Fraser, C. I., Connell, L., Lee, C. K. & Cary, S. C. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol. 41, 417–421 (2018).

    Article  Google Scholar 

  82. Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).

    Article  Google Scholar 

  83. Christiansen, J. R., Röckmann, T., Popa, M. E., Sapart, C. J. & Jørgensen, C. J. Carbon emissions from the edge of the Greenland Ice Sheet reveal subglacial processes of methane and carbon dioxide turnover. J. Geophys. Res. Biogeosci. 126, e2021JG006308 (2021).

    Article  CAS  Google Scholar 

  84. Gutt, J. et al. Antarctic ecosystems in transition — life between stresses and opportunities. Biol. Rev. 96, 798–821 (2021).

    Article  Google Scholar 

  85. Eichel, J., Corenblit, D. & Dikau, R. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surf. Process. Landf. 41, 406–419 (2016).

    Article  Google Scholar 

  86. Palacios-Robles, E. et al. Declining glacier cover drives changes in aquatic macroinvertebrate biodiversity in the Cordillera Blanca, Perú. Glob. Change Biol. 30, e17355 (2024).

    Article  CAS  Google Scholar 

  87. Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article  CAS  Google Scholar 

  88. Matthews, J. The Ecology of Recently-Deglaciated Terrain: A Geoecological Approach to Glacier Forelands and Primary Succession (Cambridge Univ. Press, 1992).

  89. Tu, B. N. et al. Glacier retreat triggers changes in biodiversity and plant–pollinator interaction diversity. Alp. Bot. 134, 171–182 (2024).

    Article  Google Scholar 

  90. Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).

    Article  Google Scholar 

  91. Anthelme, F., Carrasquer, I., Ceballos, J. L. & Peyre, G. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp. Bot. 132, 211–222 (2022).

    Article  Google Scholar 

  92. Erschbamer, B., Niederfriniger Schlag, R., Carnicero, P. & Kaufmann, R. Long-term monitoring confirms limitations of recruitment and facilitation and reveals unexpected changes of the successional pathways in a glacier foreland of the Central Austrian Alps. Plant. Ecol. 224, 373–386 (2023). This study presents a long-term ecological experiment that indicates that facilitation and drought resistance are two key mechanisms driving plant population persistence and biodiversity change in proglacial habitats.

    Article  Google Scholar 

  93. Fraser, C. I., Kay, G. M., Plessis, Mdu & Ryan, P. G. Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).

    Article  Google Scholar 

  94. Moon, K. L., Chown, S. L. & Fraser, C. I. Reconsidering connectivity in the sub-Antarctic. Biol. Rev. 92, 2164–2181 (2017).

    Article  Google Scholar 

  95. Hotaling, S., Finn, D. S., Giersch, J. J., Weisrock, D. W. & Jacobsen, D. Climate change and Alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev. 92, 2024–2045 (2017).

    Article  Google Scholar 

  96. Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).

    Article  Google Scholar 

  97. Lagger, C. et al. Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 41, 579–591 (2018).

    Article  Google Scholar 

  98. Marsh, G., Chernikhova, D., Thiele, S. & Altshuler, I. Microbial dynamics in rapidly transforming Arctic proglacial landscapes. PLoS Clim. 3, e0000337 (2024).

    Article  Google Scholar 

  99. Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M. & Cerabolini, B. The functional basis of a primary succession resolved by CSR classification. Oikos 112, 10–20 (2006).

    Article  Google Scholar 

  100. Greinwald, K., Gebauer, T., Musso, A. & Scherer-Lorenzen, M. Similar successional development of functional community structure in glacier forelands despite contrasting bedrocks. J. Veg. Sci. 32, e12993 (2021).

    Article  Google Scholar 

  101. Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175 (1994).

    Article  Google Scholar 

  102. Gobbi, M. et al. Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol. Entomol. 42, 838–848 (2017).

    Article  Google Scholar 

  103. Erschbamer, B. & Mayer, R. Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the central Alps. Plant Ecol. Divers. 0874, (2015).

  104. Haselberger, S., Junker, R. R., Ohler, L.-M., Otto, J.-C. & Kraushaar, S. Structural shifts in plant functional diversity during biogeomorphic succession: moving beyond taxonomic investigations in an Alpine glacier foreland. Earth Surf. Process. Landf. 49, 2458–2474 (2024).

    Article  Google Scholar 

  105. Fastie, C. L. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76, 1899–1916 (1995).

    Article  Google Scholar 

  106. Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 313, 18–36 (2021).

    Article  Google Scholar 

  107. Hotaling, S., Wimberger, P. H., Kelley, J. L. & Watts, H. E. Macroinvertebrates on glaciers: a key resource for terrestrial food webs? Ecology 101, e02947 (2020).

    Article  Google Scholar 

  108. Saboret, G. et al. Impact of glaciers on trophic dynamics and polyunsaturated fat accumulation in southern Greenland fjord ecosystems. Glob. Change Biol. 31, e70044 (2025).

    Article  CAS  Google Scholar 

  109. Esperschütz, J. et al. Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosciences 8, 3283–3294 (2011).

    Article  Google Scholar 

  110. Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022).

    Article  Google Scholar 

  111. Pasotti, F. et al. Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS ONE 10, e0141742 (2015).

    Article  Google Scholar 

  112. de Vries, F. T. et al. Glacier forelands reveal fundamental plant and microbial controls on short-term ecosystem nitrogen retention. J. Ecol. 109, 3710–3723 (2021).

    Article  Google Scholar 

  113. Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

    Article  CAS  Google Scholar 

  114. Pothula, S. K. & Adams, B. J. Community assembly in the wake of glacial retreat: a meta-analysis. Glob. Change Biol. 28, 6973–6991 (2022).

    Article  CAS  Google Scholar 

  115. Sint, D., Kaufmann, R., Mayer, R. & Traugott, M. Resolving the predator first paradox: arthropod predator food webs in pioneer sites of glacier forelands. Mol. Ecol. 28, 336–347 (2019).

    Article  Google Scholar 

  116. Conti, M. et al. Glacier retreat decreases mutualistic network robustness over spacetime. Ecography 2025, 1–11 (2025).

    Article  Google Scholar 

  117. Albrecht, M., Riesen, M. & Schmid, B. Plant–pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119, 1610–1624 (2010).

    Article  Google Scholar 

  118. Klopsch, C., Yde, J. C., Matthews, J. A., Vater, A. E. & Gillespie, M. A. Repeated survey along the foreland of a receding Norwegian glacier reveals shifts in succession of beetles and spiders. Holocene 33, 14–26 (2022).

    Article  Google Scholar 

  119. Song, M., Yu, L., Jiang, Y., Korpelainen, H. & Li, C. Increasing soil age drives shifts in plant–plant interactions from positive to negative and affects primary succession dynamics in a subalpine glacier forefield. Geoderma 353, 435–448 (2019).

    Article  CAS  Google Scholar 

  120. Zawierucha, K. Did bioaggregates on the glacier surface trigger life seeding and pedogenesis in terrestrial environments after the Neoproterozoic Snowball Earth? Soil. Biol. Biochem. 198, 1–8 (2024).

    Article  Google Scholar 

  121. Janko, K. et al. Islands of ice: glacier-dwelling metazoans form regionally distinct populations despite extensive periods of deglaciation. Divers. Distrib. 30, e13859 (2024).

    Article  Google Scholar 

  122. Hotaling, S. et al. Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms. Proc. Biol. Sci. 286, 20190983 (2019).

    Google Scholar 

  123. Zawierucha, K. et al. Cryophilic Tardigrada have disjunct and bipolar distribution and establish long-term stable, low-density demes. Polar Biol. 46, 1011–1027 (2023).

    Article  Google Scholar 

  124. Hoham, R. W. & Remias, D. Snow and glacial algae: a review. J. Phycol. 56, 264–282 (2020).

    Article  Google Scholar 

  125. Bringloe, T. T. et al. Whole genome population structure of North Atlantic kelp confirms high-latitude glacial refugia. Mol. Ecol. 31, 6473–6488 (2022).

    Article  CAS  Google Scholar 

  126. Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article  Google Scholar 

  127. Shain, D. H. et al. Ice-inhabiting species of Bdelloidea Rotifera reveal a pre-quaternary ancestry in the Arctic cryosphere. Biol. Lett. 20, 20230546 (2024).

    Article  Google Scholar 

  128. Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, R712–R713 (2021).

    Article  CAS  Google Scholar 

  129. Girard, C., Vincent, W. F. & Culley, A. I. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area. ISME Commun. 3, 105 (2023).

    Article  Google Scholar 

  130. Webster-Brown, J. G., Hawes, I., Jungblut, A. D., Wood, S. A. & Christenson, H. K. The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol. Ecol. 91, fiv144 (2015).

    Article  Google Scholar 

  131. Shain, D. H., Mason, T. A., Farrell, A. H. & Michalewicz, L. A. Distribution and behavior of ice worms (Mesenchytraeus solifugus) in south-central Alaska. Can. J. Zool. 79, 1813–1821 (2011).

    Article  Google Scholar 

  132. Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr. 43, 3–12 (2016).

    Article  Google Scholar 

  133. Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. NY Acad. Sci. 1249, 166–190 (2012).

    Article  Google Scholar 

  134. Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).

    Article  Google Scholar 

  135. Mundy, C. J. & Meiners, K. M. Ecology of Arctic Sea Ice (ed. Thomas, D. N.) 261–288 (Wiley, 2020).

  136. Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

    Article  Google Scholar 

  137. Middelbo, A. B., Sejr, M. K., Arendt, K. E. & Møller, E. F. Impact of glacial meltwater on spatiotemporal distribution of copepods and their grazing impact in Young Sound NE, Greenland. Limnol. Oceanogr. 63, 322–336 (2018).

    Article  Google Scholar 

  138. González-Bergonzoni, I. et al. Small birds, big effects: the little auk (Alle alle) transforms High Arctic ecosystems. Proc. Biol. Sci. 284, 20162572 (2017).

    Google Scholar 

  139. Brahney, J. et al. Glacier recession alters stream water quality characteristics facilitating bloom formation in the benthic diatom Didymosphenia geminata. Sci. Total. Environ. 764, 142856 (2021).

    Article  CAS  Google Scholar 

  140. Bluhm, B. A., Swadling, K. M. & Gradinger, R. in Sea Ice 3rd edn (ed. Thomas, D. N.) Ch. 16 (Wiley, 2016).

  141. Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in Alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).

    Article  Google Scholar 

  142. Cadbury, S. L., Milner, A. M. & Hannah, D. M. Hydroecology of a New Zealand glacier-fed river: linking longitudinal zonation of physical habitat and macroinvertebrate communities. Ecohydrology 4, 520–531 (2011).

    Article  Google Scholar 

  143. Giersch, J. J., Hotaling, S., Kovach, R. P., Jones, L. A. & Muhlfeld, C. C. Climate-induced glacier and snow loss imperils alpine stream insects. Glob. Change Biol. 23, 2577–2589 (2017).

    Article  Google Scholar 

  144. Almela, P., Casero, C., Justel, A. & Quesada, A. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiol. Ecol. 98, fiac029 (2022).

    Article  Google Scholar 

  145. Hu, Y. et al. Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau. Microbiol. Res. 273, 127409 (2023).

    Article  CAS  Google Scholar 

  146. Arraiano-Castilho, R. et al. Plant–fungal interactions in hybrid zones: ectomycorrhizal communities of willows (Salix) in an Alpine glacier forefield. Fungal Ecol. 45, 100936 (2020).

    Article  Google Scholar 

  147. Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G. & Groß, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci. Rep. 9, 13918 (2019).

    Article  Google Scholar 

  148. Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).

    Article  CAS  Google Scholar 

  149. Fickert, T. Common patterns and diverging trajectories in primary succession of plants in eastern Alpine glacier forelands. Diversity 12, 191 (2020).

    Article  Google Scholar 

  150. Zimmer, A., Beach, T., Klein, J. A. & Recharte Bullard, J. The need for stewardship of lands exposed by deglaciation from climate change. WIREs Clim. Change 13, e753 (2022).

    Article  Google Scholar 

  151. Vater, A. E. & Matthews, J. A. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25, 108–129 (2015).

    Article  Google Scholar 

  152. Matthews, J. & Vater, A. Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. CATENA 135, 219–230 (2015).

    Article  Google Scholar 

  153. Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).

    Article  CAS  Google Scholar 

  154. Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).

    Article  CAS  Google Scholar 

  155. Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).

    Article  Google Scholar 

  156. Gunnarsson, A., Gardarsson, S. M., Pálsson, F., Jóhannesson, T. & Sveinsson, Ó. G. B. Annual and inter-annual variability and trends of albedo of Icelandic glaciers. Cryosphere 15, 547–570 (2021).

    Article  Google Scholar 

  157. Sakata Bekku, Y., Nakatsubo, T., Kume, A. & Koizumi, H. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard. Arct. Antarct. Alp. Res. 36, 395–399 (2004).

    Article  Google Scholar 

  158. Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    Article  Google Scholar 

  159. Hågvar, S. & Ohlson, M. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci. Rep. 3, 2820 (2013).

    Article  Google Scholar 

  160. Sommaruga, R. When glaciers and ice sheets melt: consequences for planktonic organisms. J. Plankton Res. 37, 509–518 (2015).

    Article  Google Scholar 

  161. Tiberti, R. et al. Food web complexity of high mountain lakes is largely affected by glacial retreat. Ecosystems 23, 1093–1106 (2020).

    Article  Google Scholar 

  162. Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Article  Google Scholar 

  163. Ruben, M. et al. Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nat. Geosci. 16, 625–630 (2023).

    Article  CAS  Google Scholar 

  164. Losapio, G., Genes, L., Knight, C. J., McFadden, T. N. & Pavan, L. Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Funct. Ecol. 38, 8–21 (2024).

    Article  CAS  Google Scholar 

  165. Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 1–13 (2024).

    Article  Google Scholar 

  166. Roncoroni, M. et al. Ecosystem engineering by periphyton in Alpine proglacial streams. Earth Surf. Process. Landf. 49, 417–431 (2024).

    Article  Google Scholar 

  167. Jaroměřská, T. N. et al. Spatial distribution and stable isotopic composition of invertebrates uncover differences between habitats on the glacier surface in the Alps. Limnology 24, 83–93 (2023).

    Article  Google Scholar 

  168. Rozwalak, P. et al. Cryoconite — from minerals and organic matter to bioengineered sediments on glacier’s surfaces. Sci. Total. Environ. 807, 150874 (2022).

    Article  CAS  Google Scholar 

  169. Bellmore, J. R., Fellman, J. B., Hood, E., Dunkle, M. R. & Edwards, R. T. A melting cryosphere constrains fish growth by synchronizing the seasonal phenology of river food webs. Glob. Change Biol. 28, 4807–4818 (2022).

    Article  Google Scholar 

  170. Wietrzyk-Pełka, P., Rola, K., Szymański, W. & Węgrzyn, M. H. Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems. Sci. Total. Environ. 717, 135151 (2020).

    Article  Google Scholar 

  171. Åkesson, A. et al. The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat. Commun. 12, 4759 (2021).

    Article  Google Scholar 

  172. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Article  Google Scholar 

  173. Boetius, A. et al. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.L. received funding from the Swiss National Science Foundation (PZ00P3_202127) and the Italian Ministry of University and Research (P2022N5KYJ). J.R.L. received funding from the Royal Commission for the Exhibition of 1851. C.I.F. received funding from the Royal Society of New Zealand (RDF-UOO1803). K.Z. received funding from the Biodiversa+ European Biodiversity Partnership programme (National Science Centre 2022/04/Y/NZ8/00092). T.L.H. received funding from the National Science Foundation (2113784). O.-S.K. received funding from the Korea Polar Research Institute (KOPRI; PE24130). D.L. received funding from the Lithuanian Research Council (‘Snowlife’ project S-MIP-23-25). S.A.R. received funding from the Special Research Initiative in Excellence in Antarctic Science (SRIEAS) (SR200100005) and from the Australian Research Council SRIEAS (SR200100005) and Discovery Project (DP200100223). L.E.B. received funding from the Royal Geographical Society Ralph Brown Award.

Author information

Authors and Affiliations

Authors

Contributions

G.L. conceived the article and wrote the first manuscript draft. All authors contributed to literature research and provided a substantial contribution to the discussion of content and writing.

Corresponding author

Correspondence to Gianalberto Losapio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks M. Stibal, Jana Eichel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

α-Diversity

Mean species richness in a site (local diversity).

β-Diversity

Ratio between regional and local species diversity, indicating heterogeneity or species dissimilarity between sites.

γ-Diversity

Total species diversity in a landscape (regional diversity or species pool).

Albedo

The fraction of incident sunlight that is reflected by a given surface.

Allochthonous

Introduced from a different (distant) location.

Autochthonous

Originating or formed in its present location.

Benthic

Describes the zone on the bottom of an aquatic body (for example, a river, lake or ocean).

Biofilm

A thin layer that covers surfaces, consisting of bacteria and other microorganisms.

Biogeomorphic feedback

The interplay of geomorphic disturbances and their feedback with vegetation and microbial succession, which results in gradual ground stabilization from plant scale to slope scale.

Biotic homogenization

The process by which (spatially) distinct ecological communities become increasingly similar over time.

Crevasse

Fissure or crack in the surface of a glacier.

Cryoconite

A mixture of mineral and organic material accumulated on the glacier surface. Cryoconite is a darker colour than the surrounding ice and has higher heat absorption, and therefore the ice often melts to form cryoconite holes.

Cryptogamic soil crust

An intimate association between soil particles and variable proportions of photoautotrophic and heterotrophic organisms, living within or immediately on top of the soil surface in a coherent layer.

Ecological niche

Set of environmental conditions required by an organism or the functions it performs, encompassing all environmental factors influencing the establishment, growth and reproduction of a species.

Englacial

Describes the zone within a glacier situated between the supraglacial and subglacial zones that harbours meltwater streams or caverns.

Firn field

Layer of snow that is transforming into glacial ice.

Functional diversity

The value, range, relative abundance or variation of functional traits.

Glacier foreland

The young ice-free terrain around and in front of a glacier that has deglaciated since the end of the Little Ice Age (the cold period that terminated around 1850).

Glacier mice

Supraglacial, unattached balls of moss (taxonomically nonspecific) and sediment that harbour invertebrate fauna and can move along the surface of the glacier.

Interaction diversity

The number and type of biotic interactions that link species together into communities.

Moulin

Vertical shaft that carries meltwater from glacier surface to the bedrock under glacial ice.

Paraglacial adjustment

(Geomorphological) responses in slopes in glacially steepened rockwalls to alteration of stress within the rock owing to deglaciation (often associated with rock-slope failures).

Pelagic

Describes the zone near the water surface or within the water column in an aquatic body.

Periphyton

A microorganism assemblage dominated by microalgae and including heterotrophic bacteria, cyanobacteria and fungi that grow on the surface of submerged sediments, rocks, plants and suspended particles in aquatic ecosystems.

Proglacial

Describes the zone in front of an active glacier, which is subject to frequent changes owing to meltwater dynamics and movement of unconsolidated sediment.

Redox potential

The oxidation (loss of electrons) or reduction (acquisition of electrons) potential is a key physicochemical parameter driving microbial activity.

Subglacial

Describes the zone below a glacier in the liquid interface between glacier, sediment and bedrock.

Subglacial legacy

Subglacial sediments and organic-matter substrates originating from past biogeochemical processes. The subglacial legacy has been reworked by subglacial microbial communities and is exposed at receding glacier fronts.

Supraglacial

Describes the zone on the glacier surface, encompassing fresh snow, firn, pure ice, meltwater streams, ice caves and crevasses.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losapio, G., Lee, J.R., Fraser, C.I. et al. Impacts of deglaciation on biodiversity and ecosystem function. Nat. Rev. Biodivers. 1, 371–385 (2025). https://doi.org/10.1038/s44358-025-00049-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00049-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing