Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drivers and solutions to Southeast Asia’s biodiversity crisis

Abstract

Southeast Asia’s terrestrial ecosystems harbour extraordinary levels of species diversity and endemism, shaped by a complex biogeographic history. These ecosystems, and the species that inhabit them, face mounting pressures from land-use change, deforestation and ancillary disturbance processes, infrastructure expansion, hunting and consumption, as well as climate change and invasive species. The pervasiveness and extent of these threats differ between nations. In this Review, we summarize current understanding of the drivers of species declines. Learning from past lessons, we identify evidence gaps that should be filled to underpin future policy and practice decision-making, and provide actionable insights for overcoming the biodiversity crisis while accounting for the socio-economic realities of Southeast Asia’s rapidly developing countries. A range of conservation interventions are required to protect biodiversity within human-modified landscapes and intact forest areas. Emerging technologies now offer unprecedented tools for monitoring species populations and evaluating conservation effectiveness. Simultaneously, international sustainability commitments are more aligned than ever, with ambitious targets in place for climate mitigation, ecosystem restoration and biodiversity protection. Effective conservation in Southeast Asia requires the adoption of innovative approaches to landscape conservation, proactive community-led forest management, strategies to reduce hunting and consumption, nature-based climate solutions and payments for ecosystem services.

Key points

  • Southeast Asia’s terrestrial biodiversity crisis is driven by multiple interacting and often synergistic pressures — primarily land-use change, infrastructure development and overexploitation — that vary in intensity across the region and call for coordinated, context-specific responses.

  • Effective protected areas require adequate funding, staffing, enforcement and monitoring, while carefully managing unintended consequences such as displaced deforestation and negative impacts on Indigenous Peoples and Local Communities.

  • Maintaining biodiversity in human-modified ecosystems depends critically on financial incentives, certification schemes and secure land-tenure rights, while the forest patches that remain within the landscape need to be managed collectively to ensure species persistence and movement.

  • Community-led forest management can align conservation and local livelihoods when supported by strong governance, leadership, community capabilities and capacity, and sustained external investment in habitat restoration.

  • Reducing hunting for non-subsistence purposes requires a strong focus on curbing demand for wildmeat, particularly in urban areas, through enforcement to prevent illegal hunting, market closures, and disruption of physical and online trade routes.

  • Solving the biodiversity crisis requires researchers to shift from diagnosing problems to delivering actionable and equitable solutions, with increased focus on forest-risk commodities beyond oil palm, on developing robust metrics to underpin biodiversity credits, and on inclusive collaboration with Southeast Asian scientists, Indigenous Peoples and Local Communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geography of Southeast Asia’s biodiversity crisis.
Fig. 2: Threats to biodiversity in Southeast Asian countries.
Fig. 3: Threat hierarchies, interactions and mitigation.

Similar content being viewed by others

References

  1. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article  CAS  Google Scholar 

  2. Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).

    Article  CAS  Google Scholar 

  3. Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article  Google Scholar 

  4. Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    Article  CAS  Google Scholar 

  5. Ondo, I. et al. Plant diversity darkspots for global collection priorities. N. Phytol. 244, 719–733 (2024).

    Article  Google Scholar 

  6. Ong, X. R., Tan, B., Chang, C. H., Puniamoorthy, N. & Slade, E. M. Identifying the knowledge and capacity gaps in Southeast Asian insect conservation. Ecol. Lett. 28, e70038 (2025).

    Article  Google Scholar 

  7. Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article  Google Scholar 

  8. Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    Article  Google Scholar 

  9. Struebig, M. J. et al. Safeguarding imperiled biodiversity and evolutionary processes in the Wallacea center of endemism. BioScience 72, 1118–1130 (2022).

    Google Scholar 

  10. Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinction 2, e5 (2024).

    Article  Google Scholar 

  11. McConkey, K. R., Aldy, F., Ong, L., Sutisna, D. J. & Campos‐Arceiz, A. Lost mutualisms: seed dispersal by Sumatran rhinos, the world’s most threatened megafauna. Biotropica 54, 346–357 (2022).

    Article  Google Scholar 

  12. Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8, e01624 (2017).

    Article  Google Scholar 

  13. Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).

    Article  Google Scholar 

  14. Yang, C. et al. Human expansion-induced biodiversity crisis over Asia from 2000 to 2020. Research 6, 0226 (2023).

    Article  Google Scholar 

  15. Coleman, J. L. et al. Top 100 research questions for biodiversity conservation in Southeast Asia. Biol. Conserv. 234, 211–220 (2019).

    Article  Google Scholar 

  16. Botterill-James, T., Yates, L. A., Buettel, J. C. & Brook, B. W. The future of Southeast Asia’s biodiversity: a crisis with a hopeful alternative. Biol. Conserv. 296, 110641 (2024).

    Article  Google Scholar 

  17. Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).

    Article  CAS  Google Scholar 

  18. Pringle, S. et al. Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age. Nat. Ecol. Evol. 9, 1031–1042 (2025).

    Article  Google Scholar 

  19. Swinfield, T., Shrikanth, S., Bull, J. W., Madhavapeddy, A. & Zu Ermgassen, S. O. S. E. Nature-based credit markets at a crossroads. Nat. Sustain. 7, 1217–1220 (2024).

    Article  Google Scholar 

  20. Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article  Google Scholar 

  21. Koh, L. P., Zeng, Y., Sarira, T. V. & Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 12, 1271 (2021).

    Article  CAS  Google Scholar 

  22. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  Google Scholar 

  23. Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020).

    Article  Google Scholar 

  24. Brook, B., Sodhi, N. & Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article  Google Scholar 

  25. França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).

    Article  Google Scholar 

  26. Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article  Google Scholar 

  27. Jamaludin, J., De Alban, J. D. T., Carrasco, L. R. & Webb, E. L. Spatiotemporal analysis of deforestation patterns and drivers reveals emergent threats to tropical forest landscapes. Environ. Res. Lett. 17, 054046 (2022).

    Article  Google Scholar 

  28. Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).

    Article  Google Scholar 

  29. Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLoS ONE 17, e0266178 (2022).

    Article  CAS  Google Scholar 

  30. Gevaña, D. T., Camacho, L. D. & Pulhin, J. M. in Threats to Mangrove Forests Vol. 25 (eds Makowski, C. & Finkl, C. W.) 579–588 (Springer International, 2018).

  31. Sasmito, S. D. et al. Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nat. Commun. 16, 740 (2025).

    Article  CAS  Google Scholar 

  32. He, X. et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6, 303–315 (2023).

    Article  Google Scholar 

  33. Chen, Y., Fuller, R. A., Lee, T. M. & Hua, F. Disproportionate low-elevation forest loss in over 65% of the world’s mountains calls for targeted conservation. One Earth 7, 1833–1845 (2024).

    Article  Google Scholar 

  34. Mitchell, S. L. et al. Severity of deforestation mediates biotic homogenisation in an island archipelago. Ecography 2022, e05990 (2022).

    Article  Google Scholar 

  35. Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).

    Article  Google Scholar 

  36. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article  CAS  Google Scholar 

  37. Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article  CAS  Google Scholar 

  38. Mu, H. et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 9, 176 (2022).

    Article  Google Scholar 

  39. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  Google Scholar 

  40. FAOSTAT. Food and agricultural data. Food and Agriculture Organization of the United Nations https://www.fao.org/faostat/en/#home (2024).

  41. Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).

    Article  Google Scholar 

  42. Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    Article  CAS  Google Scholar 

  43. Zemp, D. C. et al. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature 618, 316–321 (2023).

    Article  CAS  Google Scholar 

  44. Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article  CAS  Google Scholar 

  45. Meyfroidt, P., Vu, T. P. & Hoang, V. A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the central highlands of Vietnam. Glob. Environ. Change 23, 1187–1198 (2013).

    Article  Google Scholar 

  46. Khoo, G. C. Durian matters. Continuum 39, 211–217 (2024).

    Article  Google Scholar 

  47. Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).

    Article  CAS  Google Scholar 

  48. Propper, C. R. et al. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop. Environ. 3, 43–50 (2024).

    Article  Google Scholar 

  49. Yuan, S. et al. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 3, 217–226 (2022).

    Article  Google Scholar 

  50. Wyckhuys, K. A. G. et al. Biological control of an agricultural pest protects tropical forests. Commun. Biol. 2, 10 (2019).

    Article  CAS  Google Scholar 

  51. Rege, A. & Lee, J. S. H. The socio-environmental impacts of tropical crop expansion on a global scale: a case study in cashew. Biol. Conserv. 280, 109961 (2023).

    Article  Google Scholar 

  52. Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).

    Article  Google Scholar 

  53. Oakley, J. L. & Bicknell, J. E. The impacts of tropical agriculture on biodiversity: a meta‐analysis. J. Appl. Ecol. 59, 3072–3082 (2022).

    Article  Google Scholar 

  54. Manson, S., Nekaris, K. A. I., Nijman, V. & Campera, M. Effect of shade on biodiversity within coffee farms: a meta-analysis. Sci. Total Environ. 914, 169882 (2024).

    Article  CAS  Google Scholar 

  55. Kelley, L. C., Evans, S. G. & Potts, M. D. Richer histories for more relevant policies: 42 years of tree cover loss and gain in southeast Sulawesi, Indonesia. Glob. Change Biol. 23, 830–839 (2017).

    Article  Google Scholar 

  56. Rigg, J., Salamanca, A. & Thompson, E. C. The puzzle of east and Southeast Asia’s persistent smallholder. J. Rural. Stud. 43, 118–133 (2016).

    Article  Google Scholar 

  57. Higham, C. F. Early Mainland Southeast Asia: From First Humans to Angkor (River Books, 2014).

  58. Santika, T. et al. Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Dev. 120, 105–117 (2019).

    Article  Google Scholar 

  59. Li, P. & Nath, A. J. The history and revival of swidden agriculture research in the tropics. CABI Agric. Biosci. 5, 84 (2024).

    Article  Google Scholar 

  60. Schoneveld, G. C., Ekowati, D., Andrianto, A. & Van Der Haar, S. Modeling peat- and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ. Res. Lett. 14, 014006 (2019).

    Article  Google Scholar 

  61. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  62. Van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).

    Article  Google Scholar 

  63. Voigt, M. et al. Deforestation projections imply range-wide population decline for critically endangered Bornean orangutan. Persp. Ecol. Conserv. 20, 240–248 (2022).

    Google Scholar 

  64. Kiely, L. et al. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nat. Commun. 12, 7044 (2021).

    Article  CAS  Google Scholar 

  65. Santika, T. et al. Deterioration of respiratory health following changes to land cover and climate in Indonesia. One Earth 6, 290–302 (2023).

    Article  Google Scholar 

  66. Santika, T. et al. Interannual climate variation, land type and village livelihood effects on fires in Kalimantan, Indonesia. Glob. Environ. Change 64, 102129 (2020).

    Article  Google Scholar 

  67. He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).

    Article  Google Scholar 

  68. Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).

    Article  Google Scholar 

  69. Harrison, M. E. et al. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc. Natl Acad. Sci. USA 121, e2307216121 (2024).

    Article  CAS  Google Scholar 

  70. Khor, N. et al. World Cities Report 2022: envisaging the future of cities. UN Habitat https://unhabitat.org/world-cities-report-2022-envisaging-the-future-of-cities (2022).

  71. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  72. Ng, L. S. et al. The scale of biodiversity impacts of the belt and road initiative in Southeast Asia. Biol. Conserv. 248, 108691 (2020).

    Article  Google Scholar 

  73. Engert, J. E. et al. Ghost roads and the destruction of Asia-Pacific tropical forests. Nature 629, 370–375 (2024).

    Article  CAS  Google Scholar 

  74. Cho, M. S. & Qi, J. Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Sci. Total Environ. 864, 160941 (2023).

    Article  CAS  Google Scholar 

  75. Orr, S., Pittock, J., Chapagain, A. & Dumaresq, D. Dams on the Mekong River: lost fish protein and the implications for land and water resources. Glob. Environ. Change 22, 925–932 (2012).

    Article  Google Scholar 

  76. He, F. et al. Freshwater megafauna diversity: patterns, status and threats. Divers. Distrib. 24, 1395–1404 (2018).

    Article  Google Scholar 

  77. Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl Acad. Sci. USA 120, e2309034120 (2023).

    Article  CAS  Google Scholar 

  78. Tan, P. Y. & Abdul Hamid, A. R. B. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban. Plan. 125, 271–289 (2014).

    Article  Google Scholar 

  79. Ahmed, M. et al. An overview of Asian cement industry: environmental impacts, research methodologies and mitigation measures. Sustain. Prod. Consum. 28, 1018–1039 (2021).

    Article  Google Scholar 

  80. Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience 56, 733 (2006).

    Article  Google Scholar 

  81. Werner, T. T. et al. Patterns of infringement, risk, and impact driven by coal mining permits in Indonesia. Ambio 53, 242–256 (2024).

    Article  Google Scholar 

  82. Dethier, E. N. et al. A global rise in alluvial mining increases sediment load in tropical rivers. Nature 620, 787–793 (2023).

    Article  CAS  Google Scholar 

  83. Timsina, S. et al. Tropical surface gold mining: a review of ecological impacts and restoration strategies. Land. Degrad. Dev. 33, 3661–3674 (2022).

    Article  Google Scholar 

  84. Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 27–29 (2024).

    Article  Google Scholar 

  85. IEA. Global Critical Minerals Outlook 2024. International Energy Agency https://www.iea.org/reports/global-critical-minerals-outlook-2024 (2024).

  86. Lo, M. et al. Nickel mining reduced forest cover in Indonesia but had mixed outcomes for well-being. One Earth 7, 2019–2033 (2024).

    Article  Google Scholar 

  87. Ingram, D. J. et al. Wild meat is still on the menu: progress in wild meat research, policy, and practice from 2002 to 2020. Annu. Rev. Environ. Resour. 46, 221–254 (2021).

    Article  Google Scholar 

  88. Mazor, T. et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2, 1071–1074 (2018).

    Article  Google Scholar 

  89. Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).

    Article  Google Scholar 

  90. Lees, A. C. & Yuda, P. The Asian songbird crisis. Curr. Biol. 32, R1063–R1064 (2022).

    Article  CAS  Google Scholar 

  91. McEvoy, J. F. et al. Two sides of the same coin — wildmeat consumption and illegal wildlife trade at the crossroads of Asia. Biol. Conserv. 238, 108197 (2019).

    Article  Google Scholar 

  92. Lee, T. M., Sigouin, A., Pinedo-Vasquez, M. & Nasi, R. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. Center for International Forestry Research (CIFOR) https://www.cifor-icraf.org/knowledge/publication/5135/ (2014).

  93. Pangau‐Adam, M., Flassy, M., Trei, J., Waltert, M. & Soofi, M. The role of the introduced rusa deer Cervus timorensis for wildlife hunting in West Papua, Indonesia. Ecol. Sol. Evid. 3, e12118 (2022).

    Article  Google Scholar 

  94. Gray, T. N. E. et al. The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 27, 1031–1037 (2018).

    Article  Google Scholar 

  95. Nuttall, M. N. et al. Long‐term monitoring of wildlife populations for protected area management in Southeast Asia. Conserv. Sci. Pract. 4, e614 (2022).

    Article  Google Scholar 

  96. Wong, J. T. et al. Factors influencing animal-source food consumption in Timor-Leste. Food Secur. 10, 741–762 (2018).

    Article  Google Scholar 

  97. Loke, V. P. W., Lim, T. & Campos-Arceiz, A. Hunting practices of the Jahai indigenous community in northern peninsular Malaysia. Glob. Ecol. Conserv. 21, e00815 (2020).

    Google Scholar 

  98. Reyes-García, V. & Pyhälä, A. (eds) Hunter-Gatherers in a Changing World (Springer, 2017).

  99. Singh, S. Appetites and aspirations: consuming wildlife in Laos. Aust. J. Anthropol. 21, 315–331 (2010).

    Article  Google Scholar 

  100. Wells, G. J. et al. Hundreds of millions of people in the tropics need both wild harvests and other forms of economic development for their well-being. One Earth 7, 311–324 (2024).

    Article  Google Scholar 

  101. Spencer, K. L. et al. Wild meat consumption in changing rural landscapes of Indonesian Borneo. People Nat. (in the press).

  102. Coad, L., Lim, S. & Nuon, L. Wildlife and livelihoods in the Cardamom Mountains, Cambodia. Front. Ecol. Evol. 7, 296 (2019).

    Article  Google Scholar 

  103. Nguyen, M. & Jones, T. E. Predictors of support for biodiversity loss countermeasure and bushmeat consumption among Vietnamese urban residents. Conserv. Sci. Pract. 4, e12822 (2022).

    Article  Google Scholar 

  104. Pattiselanno, F., Lloyd, J. K. F., Sayer, J., Boedhihartono, A. K. & Arobaya, A. Y. S. Wild meat trade chain on the Bird’s Head peninsula of West Papua province, Indonesia. J. Ethnobiol. 40, 202–217 (2020).

    Article  Google Scholar 

  105. Phoyduangsy, S. et al. The determinants of bushmeat consumption in urban areas in Laos. Ann. Environ. Sci. Toxicol. 6, 063–068 (2022).

    Article  Google Scholar 

  106. Sandalj, M., Treydte, A. C. & Ziegler, S. Is wild meat luxury? Quantifying wild meat demand and availability in Hue, Vietnam. Biol. Conserv. 194, 105–112 (2016).

    Article  Google Scholar 

  107. Olmedo, A., Veríssimo, D., Challender, D. W. S., Dao, H. T. T. & Milner‐Gulland, E. J. Who eats wild meat? Profiling consumers in Ho Chi Minh City, Vietnam. People Nat. 3, 700–710 (2021).

    Article  Google Scholar 

  108. Jiao, Y., Yeophantong, P. & Lee, T. M. Strengthening international legal cooperation to combat the illegal wildlife trade between Southeast Asia and China. Front. Ecol. Evol. 9, 645427 (2021).

    Article  Google Scholar 

  109. Nguyen, T. & Roberts, D. L. Exploring the Africa–Asia trade nexus for endangered wildlife used in traditional Asian medicine: interviews with traders in South Africa and Vietnam. Trop. Conserv. Sci. 13, 194008292097925 (2020).

    Article  Google Scholar 

  110. Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).

    Article  Google Scholar 

  111. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  Google Scholar 

  112. Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).

    Article  Google Scholar 

  113. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).

    Article  Google Scholar 

  114. Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    Article  CAS  Google Scholar 

  115. Deere, N. J. et al. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proc. Natl Acad. Sci. 117, 26254–26262 (2020).

    Article  CAS  Google Scholar 

  116. Struebig, M. J. et al. Addressing human–tiger conflict using socio-ecological information on tolerance and risk. Nat. Commun. 9, 3455 (2018).

    Article  Google Scholar 

  117. Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).

    Article  Google Scholar 

  118. Haubrock, P. J. et al. Biological invasions in Singapore and Southeast Asia: data gaps fail to mask potentially massive economic costs. NeoBiota 67, 131–152 (2021).

    Article  Google Scholar 

  119. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article  Google Scholar 

  120. Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).

    Article  CAS  Google Scholar 

  121. Trew, B. T. et al. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nat. Clim. Change 14, 753–759 (2024).

    Article  Google Scholar 

  122. Santos, E. G. et al. Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests. Agric. For. Meteorol. 348, 109912 (2024).

    Article  Google Scholar 

  123. Siyum, Z. G. Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol. Process. 9, 25 (2020).

    Article  Google Scholar 

  124. Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob. Change Biol. 24, 644–654 (2018).

    Article  Google Scholar 

  125. Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    Article  CAS  Google Scholar 

  126. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  127. Mata‐Guel, E. O. et al. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol. Rev. 98, 1200–1224 (2023).

    Article  Google Scholar 

  128. Harris, J. B. C. et al. Rapid deforestation threatens mid‐elevational endemic birds but climate change is most important at higher elevations. Divers. Distrib. 20, 773–785 (2014).

    Article  Google Scholar 

  129. Senior, R. A., Hill, J. K. & Edwards, D. P. Global loss of climate connectivity in tropical forests. Nat. Clim. Change 9, 623–626 (2019).

    Article  Google Scholar 

  130. Crompton, O., Corrêa, D., Duncan, J. & Thompson, S. Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in maritime Southeast Asia. Environ. Res. Lett. 16, 114018 (2021).

    Article  Google Scholar 

  131. Abrahms, B. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Change 13, 224–234 (2023).

    Article  Google Scholar 

  132. Farhadinia, M. S. et al. Current trends suggest most Asian countries are unlikely to meet future biodiversity targets on protected areas. Commun. Biol. 5, 1221 (2022).

    Article  Google Scholar 

  133. Singh, M., Griaud, C. & Collins, C. M. An evaluation of the effectiveness of protected areas in Thailand. Ecol. Indic. 125, 107536 (2021).

    Article  Google Scholar 

  134. Dwiyahreni, A. A. et al. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Sci. Rep. 11, 4510 (2021).

    Article  CAS  Google Scholar 

  135. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA. 116, 23209–23215 (2019).

    Article  CAS  Google Scholar 

  136. Graham, V. et al. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep. 11, 23760 (2021).

    Article  CAS  Google Scholar 

  137. Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    Article  CAS  Google Scholar 

  138. Sreekar, R. et al. Conservation opportunities through improved management of recently established protected areas in Southeast Asia. Curr. Biol. 34, 3830–3835.e3 (2024).

    Article  CAS  Google Scholar 

  139. Ford, S. A. et al. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Glob. Ecol. Biogeogr. 29, 2014–2024 (2020).

    Article  Google Scholar 

  140. Morgans, C. L. et al. Improving well‐being and reducing deforestation in Indonesia’s protected areas. Conserv. Lett. 17, e13010 (2024).

    Article  Google Scholar 

  141. Clements, T., Suon, S., Wilkie, D. S. & Milner-Gulland, E. J. Impacts of protected areas on local livelihoods in Cambodia. World Dev. 64, S125–S134 (2014).

    Article  Google Scholar 

  142. Nuttall, M. et al. Protected area downgrading, downsizing, and degazettement in Cambodia: enabling conditions and opportunities for intervention. Conserv. Sci. Pract. 5, e12912 (2023).

    Article  Google Scholar 

  143. Mallari, N. A. D., Collar, N. J., McGowan, P. J. K. & Marsden, S. J. Philippine protected areas are not meeting the biodiversity coverage and management effectiveness requirements of Aichi Target 11. Ambio 45, 313–322 (2016).

    Article  Google Scholar 

  144. Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article  Google Scholar 

  145. Clements, T. et al. Larger than tigers: inputs for a strategic approach to biodiversity conservation in Asia. Publications Office of the European Union https://op.europa.eu/en/publication-detail/-/publication/ba5fe255-93cf-11e9-9369-01aa75ed71a1 (2019).

  146. Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).

    Article  Google Scholar 

  147. Mckinnon, M. C. et al. What are the effects of nature conservation on human well-being? A systematic map of empirical evidence from developing countries. Environ. Evid. 5, 8 (2016).

    Article  Google Scholar 

  148. Farhadinia, M. S. et al. Economics of conservation law enforcement by rangers across Asia. Conserv. Lett. 16, e12943 (2023).

    Article  Google Scholar 

  149. Gray, T. N. E., Belecky, M., Singh, R., Moreto, W. D. & Chapman, S. Insufficient numbers and poor working conditions for rangers protecting tigers. Conserv. Sci. Pract. 6, e13157 (2024).

    Article  Google Scholar 

  150. Ibbett, H. et al. Improving compliance around protected areas through fair administration of rules. Conserv. Biol. 39, e14332 (2024).

    Article  Google Scholar 

  151. Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article  CAS  Google Scholar 

  152. Porras, I. & Paul, S. Making the Market Work for Nature — How Biocredits Can Protect Biodiversity and Reduce Poverty (International Institute for Environment and Development, London, 2020).

  153. RER 2023 progress report. Restorasi Ekosistem Riau https://www.rekoforest.org/reports-publications/rer-2023-progress-report/ (2023).

  154. Harrison, R. D. et al. Restoration concessions: a second lease on life for beleaguered tropical forests? Front. Ecol. Environ. 18, 567–575 (2020).

    Article  Google Scholar 

  155. Engert, J. E., Ishida, F. Y. & Laurance, W. F. Rerouting a major Indonesian mining road to spare nature and reduce development costs. Conserv. Sci. Pract. 3, e521 (2021).

    Article  Google Scholar 

  156. ten Kate, A., Kuepper, B. & Piotrowski, M. NDPE policies cover 83% of palm oil refineries; implementation at 78%. Chain Reaction Research https://chainreactionresearch.com/report/ndpe-policies-cover-83-of-palm-oil-refineries-implementation-at-75/ (2020).

  157. Understanding commitments to No Deforestation, No Peat and No Exploitation (NDPE). Proforest https://www.proforest.net/fileadmin/uploads/proforest/Documents/Publications/infonote_04_introndpe.pdf (2020).

  158. Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    Article  CAS  Google Scholar 

  159. Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Environ. Res. Lett. 15, 124064 (2020).

    Article  Google Scholar 

  160. Santika, T. et al. Impact of palm oil sustainability certification on village well-being and poverty in Indonesia. Nat. Sustain. 4, 109–119 (2021).

    Article  Google Scholar 

  161. Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett. 13, e12701 (2020).

    Article  Google Scholar 

  162. Lucey, J. M. et al. Reframing the evidence base for policy‐relevance to increase impact: a case study on forest fragmentation in the oil palm sector. J. Appl. Ecol. 54, 731–736 (2017).

    Article  Google Scholar 

  163. Ng, C. K.-C., Payne, J. & Oram, F. Small habitat matrix: how does it work? Ambio 50, 601–614 (2021).

    Article  Google Scholar 

  164. Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2022).

    Article  Google Scholar 

  165. Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article  Google Scholar 

  166. Scriven, S. A. et al. Testing the benefits of conservation set‐asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).

    Article  Google Scholar 

  167. Bicknell, J. E. et al. Enhancing the ecological value of oil palm agriculture through set-asides. Nat. Sustain. 6, 513–525 (2023).

    Article  Google Scholar 

  168. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Article  Google Scholar 

  169. Lyons-White, J., Pollard, E. H. B., Catalano, A. S. & Knight, A. T. Rethinking zero deforestation beyond 2020 to more equitably and effectively conserve tropical forests. One Earth 3, 714–726 (2020).

    Article  Google Scholar 

  170. Sarkar, S. et al. Developing an objectives hierarchy for multicriteria decisions on land use options, with a case study of biodiversity conservation and forestry production from Papua, Indonesia. Environ. Plan. B 44, 464–485 (2017).

    Google Scholar 

  171. Sze, J. S. et al. Indigenous peoples’ lands are critical for safeguarding vertebrate diversity across the tropics. Glob. Change Biol. 30, e16981 (2024).

    Article  Google Scholar 

  172. Sze, J. S., Childs, D. Z., Carrasco, L. R. & Edwards, D. P. Indigenous lands in protected areas have high forest integrity across the tropics. Curr. Biol. 32, 4949–4956.e3 (2022).

    Article  CAS  Google Scholar 

  173. Communities are improving lives and landscapes in Southeast Asia through social forestry. RECOFTC https://www.recoftc.org/special-report/communities-improve-landscapes-southeast-asia (2020).

  174. Wong, G. et al. Social forestry in Southeast Asia: evolving interests, discourses and the many notions of equity. Geoforum 117, 246–258 (2020).

    Article  Google Scholar 

  175. Rakatama, A. & Pandit, R. Reviewing social forestry schemes in Indonesia: opportunities and challenges. For. Policy Econ. 111, 102052 (2020).

    Article  Google Scholar 

  176. Meijaard, E. et al. Toward improved impact evaluation of community forest management in Indonesia. Conserv. Sci. Pract. 3, e189 (2021).

    Article  Google Scholar 

  177. Pulhin, J. M. et al. Contextualizing sustainable forest management and social justice in community-based forest management (CBFM) program in the Philippines. Trees For. People 16, 100589 (2024).

    Article  Google Scholar 

  178. Recognising territories and areas conserved by Indigenous Peoples and Local Communities (ICCAs) overlapped by protected areas. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/RSLY2962 (2024).

  179. Ota, M. et al. Forest conservation effectiveness of community forests may decline in the future: evidence from Cambodia. PNAS Nexus 2, pgad320 (2023).

    Article  Google Scholar 

  180. Agarwal, S., Sairorkham, B., Sakitram, P. & Lambin, E. F. Effectiveness of community forests for forest conservation in Nan province, Thailand. J. Land Use Sci. 17, 307–323 (2022).

    Article  Google Scholar 

  181. Santika, T. et al. Heterogeneous impacts of community forestry on forest conservation and poverty alleviation: evidence from Indonesia. People Nat. 1, 204–219 (2019).

    Article  Google Scholar 

  182. Kraus, S., Liu, J., Koch, N. & Fuss, S. No aggregate deforestation reductions from rollout of community land titles in Indonesia yet. Proc. Natl Acad. Sci. USA 118, e2100741118 (2021).

    Article  CAS  Google Scholar 

  183. Burivalova, Z., Hua, F., Koh, L. P., Garcia, C. & Putz, F. A critical comparison of conventional, certified, and community management of tropical forests for timber in terms of environmental, economic, and social variables. Conserv. Lett. 10, 4–14 (2017).

    Article  Google Scholar 

  184. Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).

    Article  Google Scholar 

  185. Andersson, K. P. et al. Wealth and the distribution of benefits from tropical forests: implications for REDD+. Land Use Policy 72, 510–522 (2018).

    Article  Google Scholar 

  186. Novick, B. et al. Understanding the interactions between human well-being and environmental outcomes through a community-led integrated landscape initiative in Indonesia. Environ. Dev. 45, 100791 (2023).

    Article  Google Scholar 

  187. Morcatty, T. Q., Feddema, K., Nekaris, K. A. I. & Nijman, V. Online trade in wildlife and the lack of response to COVID-19. Environ. Res. 193, 110439 (2021).

    Article  CAS  Google Scholar 

  188. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  189. Risdianto, D. et al. Examining the shifting patterns of poaching from a long-term law enforcement intervention in Sumatra. Biol. Conserv. 204, 306–312 (2016).

    Article  Google Scholar 

  190. Jones, I. J. et al. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl Acad. Sci. USA 117, 28515–28524 (2020).

    Article  CAS  Google Scholar 

  191. Wyatt, T. Wildlife Trafficking: Critical Criminological Perspectives (Palgrave Macmillan, 2022).

  192. Sarira, T. V., Zeng, Y., Neugarten, R., Chaplin-Kramer, R. & Koh, L. P. Co-benefits of forest carbon projects in Southeast Asia. Nat. Sustain. 5, 393–396 (2022).

    Article  Google Scholar 

  193. Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021).

    Article  CAS  Google Scholar 

  194. Guizar‐Coutiño, A., Jones, J. P. G., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 36, e13970 (2022).

    Article  Google Scholar 

  195. Pauly, M., Crosse, W. & Tosteson, J. High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas. Sci. Rep. 12, 17102 (2022).

    Article  CAS  Google Scholar 

  196. Ekawati, S., Subarudi, Budiningsih, K., Sari, G. K. & Muttaqin, M. Z. Policies affecting the implementation of REDD+ in Indonesia (cases in Papua, Riau and Central Kalimantan). For. Policy Econ. 108, 101939 (2019).

    Article  Google Scholar 

  197. Gatto, A. & Sadik-Zada, E. R. REDD+ in Indonesia: an assessment of the international environmental program. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05368-w (2024).

    Article  Google Scholar 

  198. Jong, H. N. Indonesia to receive $56m payment from Norway for reducing deforestation. Mongabay https://news.mongabay.com/2020/05/indonesia-norway-redd-payment-deforestation-carbon-emission-climate-change/ (2020).

  199. West, T. A. P. et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 381, 873–877 (2023).

    Article  CAS  Google Scholar 

  200. Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).

    Article  Google Scholar 

  201. Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. The global status and trends of payments for ecosystem services. Nat. Sustain. 1, 136–144 (2018).

    Article  Google Scholar 

  202. Aryal, K. et al. Carbon emission reduction initiatives: lessons from the REDD+ process of the Asia and Pacific region. Land Use Policy 146, 107321 (2024).

    Article  Google Scholar 

  203. Wunder, S., Börner, J., Ezzine-de-Blas, D., Feder, S. & Pagiola, S. Payments for environmental services: past performance and pending potentials. Annu. Rev. Resour. Econ. 12, 209–234 (2020).

    Article  Google Scholar 

  204. Milson, C. E., Lim, J. Y., Ingram, D. J. & Edwards, D. P. The need for carbon finance schemes to tackle overexploitation of tropical forest wildlife. Conserv. Biol. 39, e14406 (2024).

    Article  Google Scholar 

  205. Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Annu. Rev. Resour. Econ. 12, 45–64 (2020).

    Article  Google Scholar 

  206. ASEAN Centre for Biodiversity. ASEAN Biodiversity Outlook 3. ASEAN https://environment.asean.org/fresources/detail/asean-biodiversity-outlook-3 (2023).

  207. Han, X., Gill, M. J., Hamilton, H., Vergara, S. G. & Young, B. E. Progress on national biodiversity indicator reporting and prospects for filling indicator gaps in Southeast Asia. Environ. Sustain. Indic. 5, 100017 (2020).

    Google Scholar 

  208. Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).

    Article  Google Scholar 

  209. Ducros, A. & Steele, P. Biocredits to Finance Nature and People: Emerging Lessons (International Institute for Environment and Development, 2022).

  210. Wunder, S. et al. Biodiversity credits: learning lessons from other approaches to incentivize conservation. Preprint at OSFPreprints https://doi.org/10.31219/osf.io/qgwfc (2024).

  211. Jones, J. P. G. et al. Net gain: seeking better outcomes for local people when mitigating biodiversity loss from development. One Earth 1, 195–201 (2019).

    Article  Google Scholar 

  212. Orr, M. C. C., Ascher, J. S., Bai, M., Chesters, D. & Zhu, C.-D. Three questions: how can taxonomists survive and thrive worldwide? Megataxa https://doi.org/10.11646/megataxa.1.1.4 (2020).

  213. Sandall, E. L. et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. Trends Ecol. Evol. 38, 1143–1153 (2023).

    Article  Google Scholar 

  214. Guenat, S. et al. Meeting sustainable development goals via robotics and autonomous systems. Nat. Commun. 13, 3559 (2022).

    Article  CAS  Google Scholar 

  215. Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).

    Article  CAS  Google Scholar 

  216. Parris-Piper, N., Dressler, W. H., Satizábal, P. & Fletcher, R. Automating violence? The anti-politics of ‘smart technology’ in biodiversity conservation. Biol. Conserv. 278, 109859 (2023).

    Article  Google Scholar 

  217. Brittain, S. et al. Power to the people: analysis of occupancy models informed by local knowledge. Conserv. Sci. Pract. 4, e12753 (2022).

    Article  Google Scholar 

  218. Ardiantiono et al. Improved cost-effectiveness of species monitoring programs through data integration. Curr. Biol. 35, 391–397.e3 (2025).

    Article  CAS  Google Scholar 

  219. Burivalova, Z., Miteva, D., Salafsky, N., Butler, R. A. & Wilcove, D. S. Evidence types and trends in tropical forest conservation literature. Trends Ecol. Evol. 34, 669–679 (2019).

    Article  CAS  Google Scholar 

  220. Devenish, K. et al. No evidence of increased forest loss from a mining rush in Madagascar’s eastern rainforests. Commun. Earth Environ. 5, 489 (2024).

    Article  Google Scholar 

  221. Biodiversity and artificial intelligence, opportunities and recommendations. GPAI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).

  222. Ocampo-Ariza, C. et al. Global South leadership towards inclusive tropical ecology and conservation. Persp. Ecol. Conserv. 21, 17–24 (2023).

    Google Scholar 

  223. Chao, N. et al. Strengthening capacity for species conservation in South-East Asia: a provisional assessment of needs and opportunities for the Asian species action partnership. Oryx 56, 760–763 (2022).

    Article  Google Scholar 

  224. Asase, A., Mzumara‐Gawa, T. I., Owino, J. O., Peterson, A. T. & Saupe, E. Replacing “parachute science” with “global science” in ecology and conservation biology. Conserv. Sci. Pract. 4, e517 (2022).

    Article  Google Scholar 

  225. Stefanoudis, P. V. et al. Turning the tide of parachute science. Curr. Biol. 31, R184–R185 (2021).

    Article  CAS  Google Scholar 

  226. Valdez, J. et al. Strategies for advancing inclusive biodiversity research through equitable practices and collective responsibility. Conserv. Biol. 38, e14325 (2024).

    Article  Google Scholar 

  227. James, R. et al. Conservation and natural resource management: where are all the women? Oryx 55, 860–867 (2021).

    Article  Google Scholar 

  228. Lima, H. S. D. M. & Cunha, H. F. A. The role of women and the obstacles to biodiversity conservation in developed and developing countries. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05407-6 (2024).

    Article  Google Scholar 

  229. Kreiken, B. E. & Arts, B. J. M. Disruptive data: How access and benefit-sharing discourses structured ideas and decisions during the Convention on Biological Diversity negotiations over digital sequence information from 2016 to 2022. Glob. Environ. Change 87, 102892 (2024).

    Article  Google Scholar 

  230. Von Wettberg, E. & Khoury, C. K. Biodiversity data: the importance of access and the challenges regarding benefit sharing. Plants People Planet 4, 2–4 (2022).

    Article  Google Scholar 

  231. Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).

    Article  CAS  Google Scholar 

  232. Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).

    Article  Google Scholar 

  233. Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

    Article  Google Scholar 

  234. Marsh, C, J. et al. Tropical forest clearance impacts biodiversity and function, whereas logging changes structure. Science 387, 171–175 (2025).

    Article  CAS  Google Scholar 

  235. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  Google Scholar 

  236. Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    Article  CAS  Google Scholar 

  237. Edwards, D. P. et al. Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).

    Article  Google Scholar 

  238. Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, R1119–R1120 (2014).

    Article  CAS  Google Scholar 

  239. Runting, R. K. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2, 53–61 (2019).

    Article  Google Scholar 

  240. Miteva, D. A., Loucks, C. J. & Pattanayak, S. K. Social and environmental impacts of forest management certification in Indonesia. PLoS ONE 10, e0129675 (2015).

    Article  Google Scholar 

  241. Burivalova, Z. et al. What works in tropical forest conservation, and what does not: effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conserv. Sci. Pract. 1, e28 (2019).

    Article  Google Scholar 

  242. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  Google Scholar 

  243. Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    Article  Google Scholar 

  244. Harrison, R. D. Emptying the forest: hunting and the extirpation of wildlife from tropical nature reserves. BioScience 61, 919–924 (2011).

    Article  Google Scholar 

  245. Bogoni, J. A., Percequillo, A. R., Ferraz, K. M. P. M. B. & Peres, C. A. The empty forest three decades later: lessons and prospects. Biotropica 55, 13–18 (2023).

    Article  Google Scholar 

  246. Gardner, C. J., Bicknell, J. E., Balwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).

    Article  Google Scholar 

  247. Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

    Article  Google Scholar 

  248. Brodie, J. F. et al. Defaunation impacts on the carbon balance of tropical forests. Conserv. Biol. 39, e14414 (2024).

    Article  Google Scholar 

  249. Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 10015 (2019).

    Article  Google Scholar 

  250. Ferreiro‐Arias, I. et al. Drivers and spatial patterns of avian defaunation in tropical forests. Divers. Distrib. 31, e13855 (2024).

    Article  Google Scholar 

  251. Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    Article  CAS  Google Scholar 

  252. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article  CAS  Google Scholar 

  253. Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).

    Article  CAS  Google Scholar 

  254. Roe, D. et al. Which components or attributes of biodiversity influence which dimensions of poverty? Environ. Evid. 3, 3 (2014).

    Article  Google Scholar 

  255. Tilker, A. et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2, 396 (2019).

    Article  Google Scholar 

  256. Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article  Google Scholar 

  257. Cook, C. N. Progress developing the concept of other effective area‐based conservation measures. Conserv. Biol. 38, e14106 (2024).

    Article  Google Scholar 

  258. IUCN WCPA Task Force on OECMs. Recognising and reporting other effective area-based conservation measures. International Union for Conservation of Nature (IUCN) https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.en (2019).

  259. COP15: Kunming–Montreal Global Biodiversity Framework. CBD/COP/15/L25. Convention on Biological Diversity (CBD) https://www.cbd.int/gbf (2022).

  260. Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    Article  CAS  Google Scholar 

  261. Parks, L. & Tsioumani, E. Transforming biodiversity governance? Indigenous Peoples’ contributions to the Convention on Biological Diversity. Biol. Conserv. 280, 109933 (2023).

    Article  Google Scholar 

  262. Cook, C. N. Diverse approaches to protecting biodiversity: the different conservation measures discussed as possible other effective area‐based conservation measures. Conserv. Lett. 17, e13027 (2024).

    Article  Google Scholar 

  263. Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).

    Article  CAS  Google Scholar 

  264. Arneth, A. et al. Making protected areas effective for biodiversity, climate and food. Glob. Change Biol. 29, 3883–3894 (2023).

    Article  CAS  Google Scholar 

  265. Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    Article  Google Scholar 

  266. Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).

    Article  Google Scholar 

  267. Dunne, D., Greenfield, P., Viglione, G. & Quiroz, Y. Revealed: more than half of nations fail to protect 30% of land and sea in UN Nature Plans. CarbonBrief https://www.carbonbrief.org/revealed-more-than-half-of-nations-fail-to-protect-30-of-land-and-sea-in-un-nature-plans/ (2025).

  268. Banin, L. F. et al. The road to recovery: a synthesis of outcomes from ecosystem restoration in tropical and sub-tropical Asian forests. Phil. Trans. R. Soc. B 378, 20210090 (2023).

    Article  Google Scholar 

  269. Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article  CAS  Google Scholar 

  270. Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).

    Article  Google Scholar 

  271. Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing the economics of ecosystem restoration. Restor. Ecol. 30, e13515 (2022).

    Article  Google Scholar 

  272. Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Glob. Environ. Change 52, 152–161 (2018).

    Article  Google Scholar 

  273. Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).

    Article  Google Scholar 

  274. Zu Ermgassen, S. O. S. E. & Löfqvist, S. Financing ecosystem restoration. Curr. Biol. 34, R412–R417 (2024).

    Article  CAS  Google Scholar 

  275. Edwards, D. P. et al. Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Curr. Biol. 31, R1326–R1341 (2021).

    Article  CAS  Google Scholar 

  276. Scheidel, A. & Work, C. Forest plantations and climate change discourses: new powers of ‘green’ grabbing in Cambodia. Land Use Policy 77, 9–18 (2018).

    Article  Google Scholar 

  277. Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).

    Article  Google Scholar 

  278. Newing, H. An independent review of the RSPO Remediation and Compensation Procedure (RaCP) 2015. RSPO https://rspo.org/wp-content/uploads/rspo_racp_review_2020.pdf (2020).

  279. Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.S. and N.J.D. are supported by a Leverhulme Trust Research Leader Award (to M.J.S.). J.S.H.L. is funded by the Climate Transformation Program, a Tier 3 Academic Research Fund from the Singapore Ministry of Education (MOE-MOET32022-0006). D.J.I. is the recipient of a UK Research and Innovation Future Leaders Fellowship (MR/W006316/1). T.S., M.J.S. and Z.G.D. are supported by Research England’s ‘Expanding Excellence in England’ fund. We thank N. Dharmaratne for providing relevant data, and L. Banin for helpful feedback on forest restoration.

Author information

Authors and Affiliations

Authors

Contributions

Researching data for article: J.S.H.L., N.J.D., T.S. and D.J.I.S.; substantial contribution to discussion of content: all authors; writing: all authors; review and/or editing of manuscript before submission: all authors.

Corresponding authors

Correspondence to Matthew J. Struebig or Zoe G. Davies.

Ethics declarations

Competing interests

D.J.I. is a trustee of The Pangolin Project CIO (UK), a Field Science Co-Chair of the IUCN SSC Pangolin Specialist Group, and a member of the IUCN Sustainable Use and Livelihoods Specialist Group (SULi).

Peer review

Peer review information

Nature Reviews Biodiversity thanks Ahimsa Campos-Arceiz, Rhett D. Harrison and Bea Maas for their contribution to the peer review of this work.

Additional information

Dedication

We dedicate this paper to the late Navjot Sodhi and Tony Whitten; their contributions to highlighting the biodiversity crisis in Southeast Asia and promoting equitable conservation practice continue to be inspirational worldwide.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ASEAN Centre for Biodiversity: https://www.aseanbiodiversity.org/

Bonn Challenge: https://www.bonnchallenge.org

Global Platform for Sustainable Natural Rubber: https://sustainablenaturalrubber.org/

Kunming–Montreal Global Biodiversity Framework: https://www.cbd.int/gbf

New York Forest Declaration: https://forestdeclaration.org/

Paris Agreement: https://unfccc.int/process-and-meetings/the-paris-agreement

Protected planet: https://www.protectedplanet.net/en

Reducing Emissions from Deforestation and Forest Degradation, REDD+: https://redd.unfccc.int/

Roundtable on Sustainable Palm Oil: https://rspo.org/

Spatial Monitoring and Reporting Tool: https://smartconservationtools.org/

Sustainable Coconut Partnership: https://www.coconutpartnership.org/

UN Decade on Ecosystem Restoration: https://www.decadeonrestoration.org

United Nations Sustainable Development Goals: https://sdgs.un.org/goals

Wildmeat: www.wildmeat.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struebig, M.J., Lee, J.S.H., Deere, N.J. et al. Drivers and solutions to Southeast Asia’s biodiversity crisis. Nat. Rev. Biodivers. 1, 497–514 (2025). https://doi.org/10.1038/s44358-025-00064-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00064-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing