Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking historical plant interactions in herbarium collections

Abstract

Herbaria have a rich history dating back to the sixteenth century and have grown over time to house specimens that represent global plant diversity. Although herbaria have been the foundation for research in plant taxonomy and systematics, their use has expanded to include fundamental ecological disciplines, such as species interactions. Plants engage with other organisms in a complex web of interactions, which can be mutually beneficial (such as pollination) or competitive or consumptive (such as herbivory, pathogen attacks or competition with other plants for limited resources). Understanding the long-term trends of these species interactions requires historical data, which might best be obtained from herbarium specimens. Herbarium specimens are increasingly being used to study long-term trends in plant biotic interactions, and new developments in genomic methodologies are further expanding the use of herbarium specimens for studying plant interactions across time and space. These approaches enable targeted sequencing of highly degraded DNA. Climate change might be disrupting these interactions in a way that can lead to loss of beneficial interactions in favour of antagonistic interactions, which can potentially reduce the functioning of biodiversity at regional scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution and historical proliferation of active herbaria.
Fig. 2: Investigating herbivory and plant defence strategies using herbarium specimens.
Fig. 3: Investigating historical plant–pollinator interactions and temporal mismatches using herbarium specimens.
Fig. 4: Investigating historical plant–microorganism interactions using herbarium specimens.
Fig. 5: Investigating past plant competition using herbarium specimens.
Fig. 6: A framework for analysing plant competition using herbarium specimens, imaging and computer vision.

Similar content being viewed by others

References

  1. Davis, C. C. The herbarium of the future. Trends Ecol. Evol. 38, 412–423 (2023).

    Article  Google Scholar 

  2. Mandrioli, M. From dormant collections to repositories for the study of habitat changes: the importance of herbaria in modern life sciences. Life 13, 2310 (2023).

    Article  CAS  Google Scholar 

  3. Thiers, B. M. Strengthening partnerships to safeguard the future of herbaria. Diversity 16, 36 (2024).

    Article  Google Scholar 

  4. Heberling, J. M., Prather, L. A. & Tonsor, S. J. The changing uses of herbarium data in an era of global change: an overview using automated content analysis. BioScience 69, 812–822 (2019).

    Article  Google Scholar 

  5. Çelekli, A. & Zariç, Ö. E. Utilization of herbaria in ecological studies: biodiversity and landscape monitoring. Herbarium Turcicum https://doi.org/10.26650/HT.2023.1345916 (2023).

  6. Davis, C. C. Collections are truly priceless. Science 383, 1035 (2024).

    Article  Google Scholar 

  7. Willis, C. G. et al. Old plants, new tricks: phenological research using herbarium specimens. Trends Ecol. Evol. 32, 531–546 (2017).

    Article  Google Scholar 

  8. Loiselle, B. A. et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J. Biogeogr. 35, 105–116 (2008).

    Article  Google Scholar 

  9. Beaulieu, C., Lavoie, C. & Proulx, R. Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife (Lythrum salicaria). Philos. Trans. R. Soc. B 374, 20170398 (2018).

    Article  Google Scholar 

  10. Meineke, E. K., Classen, A. T., Sanders, N. J. & Davies, T. J. Herbarium specimens reveal increasing herbivory over the past century. J. Ecol. 107, 105–117 (2019).

    Article  Google Scholar 

  11. Lorieul, T. et al. Toward a large-scale and deep phenological stage annotation of herbarium specimens: case studies from temperate, tropical, and equatorial floras. Appl. Plant Sci. 7, e1233 (2019).

    Article  Google Scholar 

  12. Pauw, A. & Hawkins, J. A. Reconstruction of historical pollination rates reveals linked declines of pollinators and plants. Oikos 120, 344–349 (2011).

    Article  Google Scholar 

  13. Ristaino, J. B., Groves, C. T. & Parra, G. R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411, 695–697 (2001).

    Article  CAS  Google Scholar 

  14. Bianciotto, V., Selosse, M. A., Martos, F. & Marmeisse, R. Herbaria preserve plant microbiota responses to environmental changes. Trends Plant Sci. 27, 120–123 (2022).

    Article  CAS  Google Scholar 

  15. Fatima, T. et al. Microbial endophytes: a hidden plant resident, application and their role in abiotic stress management in plants. J. Ecophysiol. Occup. Health 22, 127–140 (2022).

    Article  CAS  Google Scholar 

  16. Edwards-Calma, K. et al. Conservation applications of niche modeling: native and naturalized ferns may compete for limited Hawaiian dryland habitat. Appl. Plant Sci. 2, e11598 (2014).

    Google Scholar 

  17. Miller, T. K., Heberling, J. M., Kuebbing, S. E. & Primack, R. B. Warmer temperatures are linked to widespread phenological mismatch among native and non-native forest plants. J. Ecol. 111, 356–371 (2023).

    Article  CAS  Google Scholar 

  18. Park, I. W. et al. Herbarium data accurately predict the timing and duration of population-level flowering displays. Ecography 47, e06961 (2024).

    Google Scholar 

  19. Van Dam, N. M. How plants cope with biotic interactions. Plant Biol. 11, 1–5 (2009).

    Article  Google Scholar 

  20. Garrett, K. A. et al. in Climate Change (eds Nita, M. et al.) 499–513 (Elsevier, 2021).

  21. Labandeira, C. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci. 14, 259–275 (2007).

    Article  Google Scholar 

  22. Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Commun. 6, 8370 (2015).

    Article  CAS  Google Scholar 

  23. Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).

    Article  CAS  Google Scholar 

  24. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article  Google Scholar 

  25. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article  Google Scholar 

  26. Castro, C. C. et al. Trophic interactions between plants, pollinators, florivores, and predators: a global systematic review. Biol. J. Linn. Soc. 141, 214–233 (2024).

    Article  Google Scholar 

  27. Bengtsson, J., Fagerström, T. & Rydin, H. Competition and coexistence in plant communities. Trends Ecol. Evol. 9, 246–250 (1994).

    Article  CAS  Google Scholar 

  28. Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    Article  CAS  Google Scholar 

  29. Johnson, C. A., Dutt, P. & Levine, J. M. Competition for pollinators destabilizes plant coexistence. Nature 607, 721–725 (2022).

    Article  CAS  Google Scholar 

  30. Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    Article  Google Scholar 

  31. Ke, P. J., Miki, T. & Ding, T. S. The soil microbial community predicts the importance of plant traits in plant–soil feedback. N. Phytol. 206, 329–341 (2015).

    Article  CAS  Google Scholar 

  32. Yan, X., Levine, J. M. & Kandlikar, G. S. A quantitative synthesis of soil microbial effects on plant species coexistence. Proc. Natl Acad. Sci. USA 119, e2122088119 (2022).

    Article  CAS  Google Scholar 

  33. Michaud, T. J., Cline, L. C., Hobbie, E. A., Gutknecht, J. L. & Kennedy, P. G. Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change. N. Phytol. 242, 1717–1724 (2024).

    Article  CAS  Google Scholar 

  34. Eves-van den Akker, S. Plant–nematode interactions. Curr. Opin. Plant Biol. 62, 102035 (2021).

    Article  CAS  Google Scholar 

  35. HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).

    Article  Google Scholar 

  36. Sultana, F., Motaher Hossain, M., Kubota, M. & Hyakumach, M. Induction of systemic resistance in Arabidopsis thaliana in response to culture filtrates from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol. 11, 97–104 (2008).

    Article  Google Scholar 

  37. Jones, M. D. & Smith, S. E. Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can. J. Bot. 82, 1089–1109 (2004).

    Google Scholar 

  38. Fontúrbel, F. F., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044 (2021).

    Article  Google Scholar 

  39. Currano, E. D., Azevedo-Schmidt, L. E., Maccracken, S. A. & Swain, A. Scars on fossil leaves: an exploration of ecological patterns in plant–insect herbivore associations during the age of angiosperms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 582, 110636 (2021).

    Article  Google Scholar 

  40. Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    Article  CAS  Google Scholar 

  41. Rull, V. Contributions of paleoecology to Easter Island’s prehistory: a thorough review. Quat. Sci. Rev. 252, 106751 (2021).

    Article  Google Scholar 

  42. Ward, N. & Dirzo, R. The potential of herbarium specimens in capturing historical herbivory: a test of the consequences of global insect decline. Stanford Digital Repository https://purl.stanford.edu/bs716vt4856 (2024).

  43. Daru, B. H., Bowman, E. A., Pfister, D. H. & Arnold, A. E. A novel proof-of-concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos. Trans. R. Soc. B 374, 20170395 (2018).

    Article  Google Scholar 

  44. Heberling, J. M. & Burke, D. J. Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl. Plant Sci. 7, e1223 (2019).

    Article  Google Scholar 

  45. Bieker, V. C. et al. Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community. Mol. Ecol. Resour. 20, 1206–1219 (2020).

    Article  CAS  Google Scholar 

  46. Bieker, V. C. et al. Uncovering the genomic basis of an extraordinary plant invasion. Sci. Adv. 8, eabo5115 (2022).

    Article  CAS  Google Scholar 

  47. Park, D. S., Huynh, K. M. & Feng, X. Phenological similarity and distinctiveness facilitate plant invasions. Glob. Ecol. Biogeogr. 33, e13839 (2024).

    Article  Google Scholar 

  48. Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    Article  CAS  Google Scholar 

  49. Bartlett, K. B., Austin, M. W., Beck, J. B., Zanne, A. E. & Smith, A. B. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years. Am. J. Bot. 110, e16188 (2023).

    Article  Google Scholar 

  50. Funk, V. A. 100 uses for an herbarium: well at least 72. Am. Soc. Plant Taxon. Newslett. 17, 17–19 (2003).

    Google Scholar 

  51. Beauvais, M. P., Pellerin, S., Dubé, J. & Lavoie, C. Herbarium specimens as tools to assess the impact of large herbivores on plant species. Botany 95, 153–162 (2017).

    Article  Google Scholar 

  52. Johnson, A. L., Rebolleda-Gómez, M. & Ashman, T. L. Pollen on stigmas of herbarium specimens: a window into the impacts of a century of environmental disturbance on pollen transfer. Am. Nat. 194, 405–413 (2019).

    Article  Google Scholar 

  53. Petipas, R. H., Antoch, A. A., Eaker, A. A., Kehlet-Delgado, H. & Friesen, M. L. Back to the future: using herbarium specimens to isolate nodule-associated bacteria. Ecol. Evol. 14, e11719 (2024).

    Article  Google Scholar 

  54. Bowman, W. D., Hacker, S. D. & Cain, M. L. Ecology 4th edn (Sinauer Associates, 2017).

  55. Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

    Article  CAS  Google Scholar 

  56. Kozlov, M. V. & Zvereva, E. L. in Progress in Botany Vol. 79 (eds Cánovas, F., Lüttge, U. & Matyssek, R.) https://doi.org/10.1007/124_2017_4 (Springer, 2017).

  57. Johnson, W. T. & Lyon, H. H. Insects that Feed on Trees and Shrubs 2nd edn, 560 (Cornell Univ. Press, 1991).

  58. Labandeira, C. C. & Currano, E. D. The fossil record of plant–insect dynamics. Annu. Rev. Earth Planet. Sci. 41, 287–311 (2013).

    Article  CAS  Google Scholar 

  59. Labandeira, C. C., Wilf, P., Johnson, K. R. & Marsh, F. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0, 25 (Smithsonian Institution, 2007).

  60. Jenny, L. A. et al. Herbarium specimens reveal herbivory patterns across the genus Cucurbita. Am. J. Bot. 110, e16126 (2023).

    Article  CAS  Google Scholar 

  61. Kozlov, M. V. et al. Biases in estimation of insect herbivory from herbarium specimens. Sci. Rep. 10, 12298 (2020).

    Article  CAS  Google Scholar 

  62. Lees, D. C. et al. Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Front. Ecol. Environ. 9, 322–328 (2011).

    Article  Google Scholar 

  63. Pellmyr, O., Labandeira, C. C. & Herrera, C. M. (eds) Plant–Animal Interactions: An Evolutionary Approach (Blackwell Science, 2002).

  64. Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).

    Article  Google Scholar 

  65. Johnson, M. T. J. Evolutionary ecology of plant defences against herbivores. Funct. Ecol. 25, 305–311 (2011).

    Article  Google Scholar 

  66. Myers, J. H. & Bazely, D. in Phytochemical Induction by Herbivores (eds Tallamy, D. W. & Raupp, M. J.) 325–344 (Wiley, 1991).

  67. Kohl, K. D., Miller, A. W. & Dearing, M. D. Evolutionary irony: evidence that ‘defensive’ plant spines act as a proximate cue to attract a mammalian herbivore. Oikos 124, 835–841 (2015).

    Article  Google Scholar 

  68. Heberling, J. M. Herbaria as big data sources of plant traits. Int. J. Plant Sci. 183, 87–118 (2022).

    Article  Google Scholar 

  69. Václavík, T., Beckmann, M., Cord, A. F. & Bindewald, A. M. Effects of UV-B radiation on leaf hair traits of invasive plants — combining historical herbarium records with novel remote sensing data. PLoS ONE 12, e0175671 (2017).

    Article  Google Scholar 

  70. Mithen, R., Bennett, R. & Marquez, J. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71, 2074–2086 (2010).

    Article  CAS  Google Scholar 

  71. Colegate, S. M., Welsh, S. L., Gardner, D. R., Betz, J. M. & Panter, K. E. Profiling of dehydropyrrolizidine alkaloids and their N-oxides in herbarium-preserved specimens of Amsinckia species using HPLC-esi(+)MS. J. Agric. Food Chem. 62, 7382–7392 (2014).

    Article  CAS  Google Scholar 

  72. Tasca, J. A. et al. HPLC–MS detection of pyrrolizidine alkaloids and their N-oxides in herbarium specimens dating back to the 1850s. Appl. Plant Sci. 6, e1143 (2018).

    Article  Google Scholar 

  73. Meineke, E. K. & Davies, T. J. Museum specimens provide novel insights into changing plant–herbivore interactions. Philos. Trans. R. Soc. B 374, 20170393 (2019).

    Article  Google Scholar 

  74. Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R. & Frank, S. D. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Change Biol. 21, 97–105 (2015).

    Article  Google Scholar 

  75. Stothut, M. et al. Recovering plant-associated arthropod communities by eDNA metabarcoding historical herbarium specimens. Curr. Biol. 34, 4318–4324 (2024).

    Article  CAS  Google Scholar 

  76. McDonnell, A. J. et al. Exploring Angiosperms353: developing and applying a universal toolkit for flowering plant phylogenomics. Appl. Plant Sci. 9, e11443 (2021).

    Article  Google Scholar 

  77. Gutaker, R. M. & Burbano, H. A. Reinforcing plant evolutionary genomics using ancient DNA. Curr. Opin. Plant Biol. 36, 38–45 (2017).

    Article  CAS  Google Scholar 

  78. McLay, T. G. B. et al. New targets acquired: improving locus recovery from the Angiosperms353 probe set. Appl. Plant Sci. 9, e11420 (2021).

    Article  Google Scholar 

  79. Slimp, M., Williams, L. D., Hale, H. & Johnson, M. G. On the potential of Angiosperms353 for population genomic studies. Appl. Plant Sci. 9, e11419 (2021).

    Article  Google Scholar 

  80. Levesque-Beaudin, V. et al. A workflow for expanding DNA barcode reference libraries through ‘museum harvesting’ of natural history collections. Biodivers. Data J. 11, e100677 (2023).

    Article  Google Scholar 

  81. Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).

    Article  Google Scholar 

  82. Meineke, E. K., Tomasi, C., Yuan, S. & Pryer, K. M. Applying machine learning to investigate long-term insect–plant interactions preserved on digitized herbarium specimens. Appl. Plant Sci. 8, e11369 (2020).

    Article  Google Scholar 

  83. Ćalić, D., Milojević, J., Belić, M., Miletić, R. & Zdravković-Korać, S. Impact of storage temperature on pollen viability and germinability of four Serbian autochthon apple cultivars. Front. Plant Sci. 12, 709231 (2021).

    Article  Google Scholar 

  84. Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr. Biol. 24, 2845–2849 (2014).

    Article  CAS  Google Scholar 

  85. Bell, K. L. et al. Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Appl. Plant Sci. 5, 6 (2017).

    Article  Google Scholar 

  86. Lowe, A., Harrison, N. & Ashton, P. Using DNA metabarcoding to identify floral visitation by pollinators. Diversity 14, 236 (2022).

    Article  CAS  Google Scholar 

  87. Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).

    Article  Google Scholar 

  88. Pornon, A. et al. DNA metabarcoding data unveils invisible pollination networks. Sci. Rep. 7, 16828 (2017).

    Article  Google Scholar 

  89. Park, I. W. & Schwartz, M. D. Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int. J. Biometeorol. 59, 347–355 (2015).

    Article  Google Scholar 

  90. Witt, T., Jürgens, A. & Gottsberger, G. Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J. Evol. Biol. 26, 2244–2259 (2013).

    Article  CAS  Google Scholar 

  91. Baker, H. G., Baker, I. & Hodges, S. A. Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30, 559–586 (1998).

    Article  Google Scholar 

  92. Tucker, A. O. & Calabrese, L. The Use and Methods of Making a Herbarium/Plant Specimens: an Herb Society of America Guide (The Herb Society of America, 2005).

  93. Cascales, E. V. et al. Fructooligosaccharides stability during the processing and the shelf life of an aseptically packed commercial pineapple nectar. J. Food Nutr. Res. 9, 193–198 (2021).

    Article  CAS  Google Scholar 

  94. Łuczak, P., Klewicki, R. & Klewicka, E. Stability of fructooligosaccharides in convectively dried fruits after initial osmoconcentration. Food Bioprocess. Technol. 16, 2511–2520 (2023).

    Article  Google Scholar 

  95. Davis, C. C., Willis, C. G., Connolly, B., Kelly, C. & Ellison, A. M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 102, 1599–1609 (2015).

    Article  Google Scholar 

  96. Jones, C. A. & Daehler, C. C. Herbarium specimens can reveal impacts of climate change on plant phenology: a review of methods and applications. PeerJ 6, e4576 (2018).

    Article  Google Scholar 

  97. Ahlstrand, N. I., Elvery, H. M. & Primack, R. B. Grass flowering times determined using herbarium specimens for modeling grass pollen under a warming climate. Sci. Total Environ. 885, 163824 (2023).

    Article  Google Scholar 

  98. Williams, T. M., Schlichting, C. D. & Holsinger, K. E. Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Clim. Change Ecol. 1, 100006 (2021).

    Article  Google Scholar 

  99. Kudo, G. & Cooper, E. J. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B 286, 20190573 (2019).

    Article  Google Scholar 

  100. Freimuth, J., Bossdorf, O., Scheepens, J. F. & Willems, F. M. Climate warming changes synchrony of plants and pollinators. Proc. R. Soc. B 289, 20212142 (2022).

    Article  Google Scholar 

  101. Biederman, L. et al. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the US Central Plains. PLoS ONE 12, e0178440 (2017).

    Article  Google Scholar 

  102. Forsman, A. M., Savage, A. E., Hoenig, B. D. & Gaither, M. R. DNA metabarcoding across disciplines: sequencing our way to greater understanding across scales of biological organization. Integr. Comp. Biol. 62, 191–198 (2022).

    Article  CAS  Google Scholar 

  103. Bell, K. et al. Pollen DNA metabarcoding and related methods in global change ecology: prospects, challenges, and progress. Authorea https://doi.org/10.22541/au.164346764.44098850/v1 (2022).

  104. Bell, K. L. et al. Plants, pollinators and their interactions under global ecological change: the role of pollen DNA metabarcoding. Mol. Ecol. 32, 6345–6362 (2023).

    Article  CAS  Google Scholar 

  105. Balmaki, B. et al. Modern approaches for leveraging biodiversity collections to understand change in plant–insect interactions. Front. Ecol. Evol. 10, 924941 (2022).

    Article  Google Scholar 

  106. Rakosy, D., Ashman, T. L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).

    Article  CAS  Google Scholar 

  107. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  Google Scholar 

  108. Harrison, J. G. & Griffin, E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 22, 2107–2123 (2020).

    Article  Google Scholar 

  109. Trivellone, V., Wei, W., Filippin, L. & Dietrich, C. H. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol. Evol. 11, 6493–6503 (2021).

    Article  Google Scholar 

  110. Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).

    Article  Google Scholar 

  111. Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. 10, e1004028 (2014).

    Article  Google Scholar 

  112. Martin, M. D., Ho, S. Y., Wales, N., Ristaino, J. B. & Gilbert, M. T. P. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant new world Phytophthora infestans. Mol. Biol. Evol. 31, 1414–1420 (2014).

    Article  CAS  Google Scholar 

  113. Martin, M. D. et al. Genomic characterization of a South American phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Mol. Biol. Evol. 33, 478–491 (2016).

    Article  CAS  Google Scholar 

  114. Campos, P. E. et al. First historical genome of a crop bacterial pathogen from herbarium specimen: insights into citrus canker emergence. PLoS Pathog. 17, e1009714 (2021).

    Article  CAS  Google Scholar 

  115. Campos, P. E. et al. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat. Commun. 14, 4306 (2023).

    Article  CAS  Google Scholar 

  116. Ristaino, J. B., Hu, C. H. & Fitt, B. D. Evidence for presence of the founder Ia mtDNA haplotype of Phytophthora infestans in 19th century potato tubers from the Rothamsted archives. Plant Pathol. 62, 492–500 (2013).

    Article  CAS  Google Scholar 

  117. May, K. J. & Ristaino, J. B. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish potato famine. Mycol. Res. 108, 471–479 (2004).

    Article  CAS  Google Scholar 

  118. Agan, A., Tedersoo, L., Hanso, M. & Drenkhan, R. Traces of Hymenoscyphus fraxineus in Northeastern Europe extend further back in history than expected. Plant Dis. 107, 344–349 (2023).

    Article  CAS  Google Scholar 

  119. Gross, A. et al. Hidden invasion and niche contraction revealed by herbaria specimens in the fungal complex causing oak powdery mildew in Europe. Biol. Invasions 23, 885–901 (2021).

    Article  Google Scholar 

  120. Hubbes, M. The American elm and Dutch elm disease. For. Chron. 75, 265–273 (1999).

    Article  Google Scholar 

  121. Stone, A. Organic management of late blight of potato and tomato (Phytophthora infestans). extension.org http://www.extension.org/article/18361 (accessed 10 July 2012).

  122. Shweta, S. et al. Herbaria: a valuable resource of the time treasured historic plant specimens with boundless research potential for environmental sustainability. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05301-1 (2024).

  123. Miller, S., Masuya, H., Zhang, J., Walsh, E. & Zhang, N. Real-time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia. PLoS ONE 11, e0154030 (2016).

    Article  Google Scholar 

  124. Pastirčáková, K. et al. Global distribution of Erysiphe platani: new records, teleomorph formation and re-examination of herbarium collections. Cryptogam. Mycol. 35, 163–176 (2014).

    Google Scholar 

  125. Dvořák, P., Hašler, P. & Poulíčková, A. New insights into the genomic evolution of cyanobacteria using herbarium exsiccatae. Eur. J. Phycol. 55, 30–38 (2020).

    Article  Google Scholar 

  126. Sundelin, T. et al. A revision of the history of the Colletotrichum acutatum species complex in the Nordic countries based on herbarium specimens. FEMS Microbiol. Lett. 362, fnv130 (2015).

    Article  Google Scholar 

  127. Hobbie, E. A., Chen, J. & Hasselquist, N. J. Fertilization alters nitrogen isotopes and concentrations in ectomycorrhizal fungi and soil in pine forests. Fungal Ecol. 39, 267–275 (2019).

    Article  Google Scholar 

  128. Kranabetter, J. M., Harman-Denhoed, R. & Hawkins, B. J. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C: N: P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. N. Phytol. 221, 482–492 (2019).

    Article  CAS  Google Scholar 

  129. Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Article  Google Scholar 

  130. Singh, A. & Shourie, A. in Climate Change and the Microbiome, Soil Biology Vol. 63 (eds Choudhary, D. K., Mishra, A. & Varma, A.) 155–186 (Springer, 2021).

  131. Shree, B., Jayakrishnan, U. & Bhushan, S. Impact of key parameters involved with plant–microbe interaction in context to global climate change. Front. Microbiol. 13, 1008451 (2022).

    Article  Google Scholar 

  132. Van Nuland, M. E., Qin, C., Pellitier, P. T., Zhu, K. & Peay, K. G. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc. Natl Acad. Sci. USA 121, e2308811121 (2024).

    Article  Google Scholar 

  133. Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants 3rd edn (Oxford Univ. Press, 2020).

  134. Smith, H. in Photomorphogenesis in Plants (eds Kendrick, R. E. & Kronenberg, G. H. M.) https://doi.org/10.1007/978-94-011-1884-2_15 (Springer, 1994).

  135. Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).

    Article  Google Scholar 

  136. Schnell, D. E. Carnivorous Plants of the United States and Canada 2nd edn (Timber Press, 2002).

  137. Janzen, D. H. How to be a fig. Annu. Rev. Ecol. Syst. 10, 13–51 (1979).

    Article  Google Scholar 

  138. Aschehoug, E. T. et al. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Evol. Syst. 47, 263–281 (2016).

    Article  Google Scholar 

  139. Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).

    Article  Google Scholar 

  140. Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).

    Article  Google Scholar 

  141. Greve, M. et al. Realising the potential of herbarium records for conservation biology. S. Afr. J. Bot. 105, 317–323 (2016).

    Article  Google Scholar 

  142. Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. B 374, 20170394 (2018).

    Article  Google Scholar 

  143. Délye, C., Deulvot, C. & Chauvel, B. DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides. PLoS ONE 8, e75117 (2013).

    Article  Google Scholar 

  144. Kreiner, J. M. et al. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 378, 1079–1085 (2022).

    Article  CAS  Google Scholar 

  145. Kühn, P., Umazekabiri, R., Römermann, C., Bruelheide, H. & Wesche, K. Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century. J. Ecol. 113, 555–569 (2025).

    Article  Google Scholar 

  146. Büttner, M., Weibel, U., Jutzi, M., Bergamini, A. & Holderegger, R. A 150-year-old herbarium and floristic data testify regional species decline. Biol. Conserv. 272, 109609 (2022).

    Article  Google Scholar 

  147. Brewer, J. S. & Schlauer, J. in Carnivorous Plants: Physiology, Ecology, and Evolution (eds Ellison, A. M. & Adamec, L.) 7–21 (Oxford Univ. Press, 2018).

  148. Skates, L. M. et al. An ecological perspective on ‘plant carnivory beyond bogs’: nutritional benefits of prey capture for the Mediterranean carnivorous plant Drosophyllum lusitanicum. Ann. Bot. 124, 65–76 (2019).

    Article  CAS  Google Scholar 

  149. Fleischmann, A. & Heubl, G. Overcoming DNA extraction problems from carnivorous plants. An. del Jardín Botánico de Madr. 66, 209–215 (2009).

    Article  Google Scholar 

  150. Neyland, R., Bushnell, J. & Tangkham, W. An updated taxonomic treatment of the natural hybrids of Sarracenia L. (Sarraceniaceae). Carnivorous Plant. Newsl. 44, 1 (2015).

    Article  Google Scholar 

  151. Robbirt, K. M., Davy, A. J., Hutchings, M. J. & Roberts, D. L. Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. 99, 235–241 (2011).

    Article  Google Scholar 

  152. Everingham, S. E., Blick, R. A. J., Sabot, M. E. B., Slavich, E. & Moles, A. T. Southern hemisphere plants show more delays than advances in flowering phenology. J. Ecol. 111, 380–390 (2023).

    Article  Google Scholar 

  153. Ghazoul, J. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20, 367–373 (2005).

    Article  Google Scholar 

  154. Hailay Gebremariam, G. A systematic review of insect decline and discovery: trends, drivers, and conservation strategies over the past two decades. Psyche J. Entomol. 2024, 5998962 (2024).

    Article  Google Scholar 

  155. CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).

    Article  CAS  Google Scholar 

  156. Tylianakis, J. M. The global plight of pollinators. Science 339, 1532–1533 (2013).

    Article  CAS  Google Scholar 

  157. Hayat, K. et al. in New Frontiers in PlantEnvironment Interactions: Innovative Technologies and Developments (ed. Aftab, T.) 535–550 (Springer Nature, 2023).

  158. Groner, M. L. et al. Warming sea surface temperatures fuel summer epidemics of eelgrass wasting disease. Mar. Ecol. Prog. Ser. 679, 47–58 (2021).

    Article  Google Scholar 

  159. Mutz, J., Heiling, J. M. & Underwood, N. Some neighbours are better than others: variation in associational effects among plants in an old field community. J. Ecol. 10, 2118–2131 (2022).

    Article  Google Scholar 

  160. Wise, M. J. & Mudrak, E. L. Nutrient stress can have opposite effects on the ability of plants to tolerate foliar herbivory and floral herbivory. Oecologia 202, 783–794 (2023).

    Article  Google Scholar 

  161. Blumenthal, D. M. & Kray, J. A. in Invasive Species and Global Climate Change (eds Ziska, L. H. & Dukes, J. S.) 62–78 (CAB International, 2014).

  162. Finch, D. M. et al. in Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector (eds Poland, T. M. et al.) 57–84 (Springer International Publishing, 2021).

  163. Barrett, C. F. et al. Digitized collections elucidate invasion history and patterns of awn polymorphism in Microstegium vimineum. Am. J. Bot. 109, 689–705 (2022).

    Article  CAS  Google Scholar 

  164. Tsai, H. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).

    Article  CAS  Google Scholar 

  165. Mattila, A. L. K. et al. The potential for evolutionary rescue in an Arctic seashore plant threatened by climate change. Proc. R. Soc. B 291, 2032 (2024).

    Article  Google Scholar 

  166. Geml, J. et al. Long-term warming alters richness and composition of taxonomic and functional groups of fungi. FEMS Microbiol. Ecol. 91, fiv095 (2015).

    Article  Google Scholar 

  167. Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).

    Article  Google Scholar 

  168. Hall, A. V. Pest control in herbaria. Taxon 37, 885–907 (1988).

    Article  Google Scholar 

  169. Azevedo-Schmidt, L., Meineke, E. K. & Currano, E. D. Insect herbivory within modern forests is greater than fossil localities. Proc. Natl Acad. Sci. USA 119, e2202852119 (2022).

    Article  CAS  Google Scholar 

  170. Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Insect herbivore and fungal communities on Agathis (Araucariaceae) from the latest cretaceous to recent. PhytoKeys 226, 109 (2023).

    Article  Google Scholar 

  171. Giraldo, L. A., Wilf, P., Donovan, M. P., Kooyman, R. M. & Gandolfo, M. A. Fossil insect-feeding traces indicate unrecognized evolutionary history and biodiversity on Australia’s iconic Eucalyptus. N. Phytol. 245, 1762–1773 (2025).

    Article  CAS  Google Scholar 

  172. Arens, N. C. & Traverse, A. The effect of microwave oven‐drying on the integrity of spore and pollen exines in herbarium specimens. Taxon 38, 394–403 (1989).

    Article  Google Scholar 

  173. Zhigila, D. A., Sawa, F. B. J., Abdul, S. D. & Danailu, G. Diversity of pollen morphology in accessions of Sesamum indicum L. Int. J. Mod. Bot. 4, 22–28 (2014).

    Google Scholar 

  174. Shepherd, L. D. A non-destructive DNA sampling technique for herbarium specimens. PLoS ONE 12, e0183555 (2017).

    Article  Google Scholar 

  175. Davis, C. C., Sessa, E., Paton, A., Antonelli, A. & Teisher, J. K. Guidelines for the effective and ethical sampling of herbaria. Nat. Ecol. Evol. 9, 196–203 (2024).

    Article  Google Scholar 

  176. Kasban, H., El-Bendary, M. A. M. & Salama, D. H. A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 4, 37–58 (2015).

    Google Scholar 

  177. Morrant, D. S., Schumann, R. & Petit, S. Field methods for sampling and storing nectar from flowers with low nectar volumes. Ann. Bot. 103, 533–542 (2009).

    Article  CAS  Google Scholar 

  178. Martin, R. et al. Optimising recovery of DNA from minimally invasive sampling methods: efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies. Ecol. Evol. 14, e70294 (2024).

    Article  CAS  Google Scholar 

  179. Burgdorf, R. J., Laing, M. D., Morris, C. D. & Jamal-Ally, S. F. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies. Braz. J. Microbiol. 45, 977–983 (2014).

    Article  CAS  Google Scholar 

  180. Schmidt-Lebuhn, A. N., Knerr, N. J. & Kessler, M. Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers. Conserv. 22, 905–919 (2013).

    Article  Google Scholar 

  181. Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D. & Jiang, D.-A. Phenolics and plant allelopathy. Molecules 15, 8933–8952 (2010).

    Article  CAS  Google Scholar 

  182. Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Google Scholar 

  183. Drábková, L. Z. DNA extraction from herbarium specimens. Methods Mol. Biol. 1115, 69–84 (2014).

    Article  Google Scholar 

  184. Byers, D. L. Studying plant–pollinator interactions in a changing climate: a review of approaches. Appl. Plant Sci. 5, 1700012 (2017).

    Article  Google Scholar 

  185. Gouker, F. E., Guo, Y., Svoboda, H. T. & Pooler, M. R. Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens. Appl. Plant Sci. 11, e11521 (2023).

    Article  CAS  Google Scholar 

  186. Burbano, H. A. & Gutaker, R. M. Ancient DNA genomics and the renaissance of herbaria. Science 382, 59–63 (2023).

    Article  CAS  Google Scholar 

  187. Rabeler, R. K. et al. Herbarium practices and ethics, III. Syst. Bot. 44, 7–13 (2019).

    Article  Google Scholar 

  188. Papalini, S. et al. Challenges and opportunities behind the use of herbaria in paleogenomics studies. Plants 12, 3452 (2023).

    Article  CAS  Google Scholar 

  189. Keddy, P. A. Competition (Kluwer Academic, 2001).

  190. Lemoine, N. P., Burkepile, D. E. & Parker, J. D. Variable effects of temperature on insect herbivory. PeerJ 2, e376 (2014).

    Article  Google Scholar 

  191. Triki, A., Bouaziz, B., Gaikwad, J. & Mahdi, W. Deep leaf: mask R-CNN based leaf detection and segmentation from digitized herbarium specimen images. Pattern Recognit. Lett. 150, 76–83 (2021).

    Article  Google Scholar 

  192. Gautam, A. K. & Avasthi, S. in Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology (eds Kumar, A. et al.) 241–283 (Elsevier, 2019).

Download references

Acknowledgements

The authors thank Stanford University for logistical support. B.H.D. was supported by grants from the US National Science Foundation (awards 2345994 and 2416314) and Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and designed by B.H.D. The manuscript was written and revised by B.H.D. and D.A.Z. Final approval of the submitted version: B.H.D. and D.A.Z.

Corresponding author

Correspondence to Barnabas H. Daru.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Rafal Gutaker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allelopathy

The chemical inhibition of one plant by another through the release of allelochemicals into the environment.

Climate change

Long-term shifts in temperature, precipitation and other climate variables that affect plant distribution, growth, reproduction and survival.

Competition

A non-trophic interaction between either individuals of different species (interspecific) or those of a single species (intraspecific) for shared resources. Plants compete for water, nutrients and space and for access to light and mates.

Fungal endophytes

Fungi that live within plant tissues without causing harm to the host.

Herbarium

A collection or repository of preserved plant specimens that are typically dried, mounted on sheets and labelled with metadata. Herbaria often include type specimens, which are the reference examples of formally described species.

Herbivory

The ecological interaction in which animals, known as herbivores, feed on plants. This process can involve the consumption of any part of the plant, including leaves, stems, roots, seeds or fruits.

Invasive species

A non-native organism that is introduced into a new environment, in which it establishes, spreads rapidly and causes harm to native ecosystems, biodiversity, human health or the economy.

Metabarcoding

A DNA-based method that uses universal genetic markers to identify multiple species within a mixed environmental sample.

Microorganisms

Microscopic organisms, including bacteria, fungi and protists.

Nematodes

A microscopic, worm-like organism that is found in a wide range of environments. Nematodes can be free-living or parasitic and are important in soil health, nutrient cycling and the regulation of plant and insect populations.

Pathogens

Organisms, typically microorganisms such as fungi, bacteria and viruses, that cause diseases in multicellular organisms, such as plants.

Phenology

The study of the timing of cyclical and seasonal events, particularly in relation to climate and plant and animal life cycles.

Pollination

The process by which pollen is transferred from the male reproductive organs (anthers) to the female reproductive organs (stigma) of a flower of the same species to enable fertilization and the production of seeds.

Pollination syndromes

Flower traits, such as colour, shape, scent and nectar, that have evolved in response to natural selection by specific pollinators.

Secondary metabolites

Organic compounds produced by plants that are not directly involved in growth or reproduction but serve ecological functions, such as defence.

Species interaction

The various relationships between living organisms in an ecosystem. For plants, this can include interactions with herbivores (grazing), pollinators and microbial partners, such as mycorrhizal fungi.

Symbiosis

A close and often long-term interaction between two species.

Systematics

The study of the diversity of organisms and their evolutionary relationships; includes both evolutionary history (phylogenetics) and taxonomy.

Taxonomy

The branch of science concerned with the classification, naming and identification of organisms, including their biology. Taxonomy involves organizing organisms into a hierarchical system of groups (taxa) based on shared characteristics, from domain to species level, to reflect their evolutionary relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daru, B.H., Zhigila, D.A. Unlocking historical plant interactions in herbarium collections. Nat. Rev. Biodivers. 1, 627–643 (2025). https://doi.org/10.1038/s44358-025-00071-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00071-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing