Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrating historical sources for long-term ecological knowledge and biodiversity conservation

Abstract

Historical data sources are instrumental in biodiversity research because they provide historical baselines for species and ecosystems, and they reveal information about human–nature relationships and their sustainability (or lack thereof) over long timescales. Yet historical sources remain under-used in biodiversity and conservation research, in part owing to the perceived difficulty in finding, extracting and interpreting the data they contain. Their use also often relies on collaborations where overcoming disciplinary silos requires time-intensive processes of mutual acculturation. In this Perspective, we identify connections between historical ecology, biodiversity research and conservation by reviewing the main types of historical sources that contain biodiversity-relevant information and discussing how they can be extracted and integrated to draw inference about species, ecosystems and socio-ecological systems. Emerging tools and technologies are improving data mobilization efforts, but further action is needed to make best use of these types of data. We propose a strategy to improve the availability and use of historical data for biodiversity research and conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations of eight types of historical sources.
Fig. 2: From historical sources to biodiversity data.
Fig. 3: Examples of historical data integration into ecology, biodiversity and global change research.

Similar content being viewed by others

References

  1. McClenachan, L., Cooper, A. B., McKenzie, M. G. & Drew, J. A. The importance of surprising results and best practices in historical ecology. BioScience 65, 932–939 (2015).

    Article  Google Scholar 

  2. Clavero, M. The King’s aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish. Fish. 23, 1251–1263 (2022).

    Article  Google Scholar 

  3. Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190215 (2019).

    Article  Google Scholar 

  4. Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. Where wolves were: setting historical baselines for wolf recovery in Spain. Anim. Conserv. 26, 239–249 (2023).

    Article  Google Scholar 

  5. Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).

    Article  Google Scholar 

  6. Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190297 (2019).

    Article  Google Scholar 

  7. Thurstan, R. H. et al. Records reveal the vast historical extent of European oyster reef ecosystems. Nat. Sustain. https://doi.org/10.1038/s41893-024-01441-4 (2024).

  8. Szabó, P. Historical ecology: past, present and future. Biol. Rev. 90, 997–1014 (2015).

    Article  Google Scholar 

  9. Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).

    Article  Google Scholar 

  10. Russell, E. W. B. People and the Land Through Time: Linking Ecology and History (Yale Univ. Press, 1997).

  11. Haidvogl, G. et al. Typology of historical sources and the reconstruction of long-term historical changes of riverine fish: a case study of the Austrian Danube and northern Russian rivers. Ecol. Freshw. Fish. 23, 498–515 (2014).

    Article  Google Scholar 

  12. Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).

    Article  CAS  Google Scholar 

  13. Buldrini, F. et al. Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551–1586). R. Soc. Open. Sci. 10, 230866 (2023).

    Article  Google Scholar 

  14. Tomscha, S. A. et al. A guide to historical data sets for reconstructing ecosystem service change over time. BioScience 66, 747–762 (2016).

    Article  Google Scholar 

  15. Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015).

    Article  Google Scholar 

  16. Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).

    Article  CAS  Google Scholar 

  17. Viana, D. S., Oficialdegui, F. J., Soriano, M. D. C., Hermoso, V. & Clavero, M. Niche dynamics along two centuries of multiple crayfish invasions. J. Anim. Ecol. 92, 2138–2150 (2023).

    Article  Google Scholar 

  18. Vellend, M., Brown, C. D., Kharouba, H. M., McCune, J. L. & Myers-Smith, I. H. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 100, 1294–1305 (2013).

    Article  Google Scholar 

  19. Nogué, S. et al. The human dimension of biodiversity changes on islands. Science 372, 488–491 (2021).

    Article  Google Scholar 

  20. Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl Acad. Sci. USA 120, e2306815120 (2023).

    Article  CAS  Google Scholar 

  21. Davies, A. L., Streeter, R., Lawson, I. T., Roucoux, K. H. & Hiles, W. The application of resilience concepts in palaeoecology. Holocene 28, 1523–1534 (2018).

    Article  Google Scholar 

  22. Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2019).

    Article  Google Scholar 

  23. Benito, B. M., Gil-Romera, G. & Birks, H. J. B. Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. Ecography 43, 1–10 (2020).

    Article  Google Scholar 

  24. Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).

    Article  Google Scholar 

  25. Frisch, D., Becker, D. & Wojewodzic, M. W. Dissecting the transcriptomic basis of phenotypic evolution in an aquatic keystone grazer. Mol. Biol. Evol. 37, 475–487 (2020).

    Article  CAS  Google Scholar 

  26. Anderson, N. J., Bugmann, H., Dearing, J. A. & Gaillard, M.-J. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21, 696–704 (2006).

    Article  Google Scholar 

  27. Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    Article  CAS  Google Scholar 

  28. Monsarrat, S. & Svenning, J.-C. Using recent baselines as benchmarks for megafauna restoration places an unfair burden on the Global South. Ecography 2022, e05795 (2022).

    Article  Google Scholar 

  29. McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl Acad. Sci. USA 111, E807–E816 (2014).

    Article  CAS  Google Scholar 

  30. Grenz, J. & Armstrong, C. G. Pop-up restoration in colonial contexts: applying an indigenous food systems lens to ecological restoration. Front. Sustain. Food Syst. 7, 1244790 (2023).

    Article  Google Scholar 

  31. Pooley, S. Historians are from Venus, ecologists are from Mars. Conserv. Biol. 27, 1481–1483 (2014).

    Article  Google Scholar 

  32. Crabtree, S. A. & Dunne, J. A. Towards a science of archaeoecology. Trends Ecol. Evol. 37, 976–984 (2022).

    Article  Google Scholar 

  33. Woodbridge, J. et al. What drives biodiversity patterns? Using long-term multidisciplinary data to discern centennial-scale change. J. Ecol. 109, 1396–1410 (2021).

    Article  Google Scholar 

  34. Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

    Article  Google Scholar 

  35. Turner, N. J. et al. Cultural management of living trees: an international perspective. J. Ethnobiol. 29, 237–270 (2009).

    Article  Google Scholar 

  36. Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).

    Article  CAS  Google Scholar 

  37. McClanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).

    Article  Google Scholar 

  38. Balée, W. & Erickson, C. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (Columbia Univ. Press, 2006).

  39. Skovrind, M. et al. Elucidating the sustainability of 700  y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc. Natl Acad. Sci. USA 121, e2405993121 (2024).

    Article  CAS  Google Scholar 

  40. Müllerová, J., Szabó, P. & Hédl, R. The rise and fall of traditional forest management in southern Moravia: a history of the past 700  years. For. Ecol. Manag. 331, 104–115 (2014).

    Article  Google Scholar 

  41. Östlund, L. et al. Culturally modified trees and forest structure at a Kawésqar ancient settlement at Río Batchelor, western Patagonia. Hum. Ecol. 48, 585–597 (2020).

    Article  Google Scholar 

  42. Ames, E. P. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10–28 (2004).

    Article  Google Scholar 

  43. Turner, N. J., Geralda Armstrong, C. & Lepofsky, D. Adopting a root: documenting ecological and cultural signatures of plant translocations in Northwestern North America. Am. Anthropol. 123, 879–897 (2021).

    Article  Google Scholar 

  44. Biró, M. et al. Oral history methods can reveal drivers of landscape transformation: understanding land-use legacies with local and traditional knowledge in Central Europe. People Nat. 6, 2463–2479 (2024).

    Article  Google Scholar 

  45. Fogerty, J. E. in The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems (eds Egan, D. & Howell, E. A.) 101–120 (Oxford Univ. Press, 2001).

  46. Letham, B., Lepofsky, D. & Greening, S. Wil Luunda ‘Waada aks (Where the Waters Meet): deep-time histories of shifting estuarine landscapes and human settlement in Laxgalts’ap watershed, northern British Columbia, Canada. J. Isl. Coast. Archaeol. 20, 174–203 (2023).

    Article  Google Scholar 

  47. Tattoni, C. Nomen omen. Toponyms predict recolonization and extinction patterns for large carnivores. Nat. Conserv. 37, 1 (2019).

    Article  Google Scholar 

  48. Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    Article  Google Scholar 

  49. Knopp, J. A., Levenstein, B., Watson, A., Ivanova, I. & Lento, J. Systematic review of documented Indigenous knowledge of freshwater biodiversity in the circumpolar Arctic. Freshw. Biol. 67, 194–209 (2022).

    Article  Google Scholar 

  50. Hughes, A. C. et al. Reconstructing cave past to manage and conserve cave present and future. Ecol. Indic. 155, 111051 (2023).

    Article  Google Scholar 

  51. Schulte, L. A. & Mladenoff, D. J. The original US public land survey records: their use and limitations in reconstructing presettlement vegetation. J. For. 99, 5–10 (2001).

    Google Scholar 

  52. Viana, D. S., Blanco-Garrido, F., Delibes, M. & Clavero, M. A 16th-century biodiversity and crop inventory. Ecology 103, e3783 (2022).

    Article  Google Scholar 

  53. Barlow, G. The landscape of Domesday Suffolk. Landsc. Hist. 32, 19–36 (2011).

    Article  Google Scholar 

  54. d’Andrimont, R. et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 7, 352 (2020).

    Article  Google Scholar 

  55. Forejt, M., Dolejš, M., Zacharová, J. & Raška, P. Quantifying inconsistencies in old cadastral maps and their impact on land-use reconstructions. J. Land. Use Sci. 15, 570–584 (2020).

    Article  Google Scholar 

  56. Thurstan, R. H., Campbell, A. B. & Pandolfi, J. M. Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish. Fish. 17, 210–225 (2016).

    Article  Google Scholar 

  57. Clavero, M. Species substitutions driven by anthropogenic positive feedbacks: Spanish crayfish species as a case study. Biol. Conserv. 193, 80–85 (2016).

    Article  Google Scholar 

  58. Levin, P. S. & Dufault, A. Eating up the food web. Fish Fish. 11, 307–312 (2010).

    Article  Google Scholar 

  59. Walker, R. D. & Jones, G. A. Consumer-driven depletion of the northern diamondback terrapin in Chesapeake Bay. Mar. Coast. Fish. 10, 132–143 (2018).

    Article  Google Scholar 

  60. Turvey, S. T. & McClune, K. Expanding the historical baseline: using pre-modern archives to inform conservation from ecological and human perspectives. BioScience 75, 240–250 (2025).

    Article  Google Scholar 

  61. Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).

    Article  Google Scholar 

  62. Zhang, Y. et al. Range contraction of the Yangtze finless porpoise inferred from classic Chinese poems. Curr. Biol. 35, R329–R330 (2025).

    Article  CAS  Google Scholar 

  63. McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn medical papyrus. Environ. Archaeol. 30, 354–367 (2023).

    Article  Google Scholar 

  64. Van Houtan, K. S., McClenachan, L. & Kittinger, J. N. Seafood menus reflect long-term ocean changes. Front. Ecol. Env. 11, 289–290 (2013).

    Article  Google Scholar 

  65. Miyazaki, Y. & Murase, A. Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904, 89–101 (2020).

    Article  Google Scholar 

  66. Mustonen, T. Communal visual histories to detect environmental change in northern areas: examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015).

    Article  Google Scholar 

  67. Tribot, A.-S., Faget, D., Villesseche, H., Richard, T. & Changeux, T. Multi-secular and regional trends of aquatic biodiversity in European early modern paintings: toward an ecological and historical significance. Ecol. Soc. 26, 26 (2021).

    Article  Google Scholar 

  68. Depauw, L. et al. The use of photos to investigate ecological change. J. Ecol. 110, 1220–1236 (2022).

    Article  Google Scholar 

  69. Burney, D. A. et al. Rock art from Andriamamelo Cave in the Beanka protected area of western Madagascar. J. Isl. Coast. Archaeol. 17, 171–194 (2022).

    Article  Google Scholar 

  70. Veth, P., Myers, C., Heaney, P. & Ouzman, S. Plants before farming: the deep history of plant-use and representation in the rock art of Australia’s Kimberley region. Quat. Int. 489, 26–45 (2018).

    Article  Google Scholar 

  71. Guagnin, M. et al. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 45, 727–740 (2018).

    Article  Google Scholar 

  72. Guidetti, P. & Micheli, F. Ancient art serving marine conservation. Front. Ecol. Environ. 9, 374–375 (2011).

    Article  Google Scholar 

  73. Iriarte, J. et al. Ice Age megafauna rock art in the Colombian Amazon? Philos. Trans. R. Soc. B: Biol. Sci. 377, 20200496 (2022).

    Article  Google Scholar 

  74. Begossi, A. & Caires, R. Art, fisheries and ethnobiology. J. Ethnobiol. Ethnomed. 11, 16 (2015).

    Article  Google Scholar 

  75. Warren, D. R. et al. An interdisciplinary framework for evaluating 19th century landscape paintings for ecological research. Ecosphere 14, e4649 (2023).

    Article  Google Scholar 

  76. Overduin-de Vries, A. M. O. & Smith, P. J. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 298–321 (Brill, 2023).

  77. Hayashi, R. Past biodiversity: historical Japanese illustrations document the distribution of whales and their epibiotic barnacles. Ecol. Indic. 45, 687–691 (2014).

    Article  Google Scholar 

  78. McClenachan, L. Documenting loss of large trophy fish from the Florida keys with historical photographs. Conserv. Biol. 23, 636–643 (2009).

    Article  Google Scholar 

  79. De Frenne, P. et al. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 9, 1874–1882 (2018).

    Article  Google Scholar 

  80. Rohde, R. F. & Hoffman, M. T. The historical ecology of namibian rangelands: vegetation change since 1876 in response to local and global drivers. Sci. Total. Environ. 416, 276–288 (2012).

    Article  CAS  Google Scholar 

  81. Morueta-Holme, N., Iversen, L. L., Corcoran, D., Rahbek, C. & Normand, S. Unlocking ground-based imagery for habitat mapping. Trends Ecol. Evol. 39, 349–358 (2023).

    Article  Google Scholar 

  82. Sanseverino, M. E., Whitney, M. J. & Higgs, E. S. Exploring landscape change in mountain environments with the mountain legacy online image analysis toolkit. Mt. Res. Dev. 36, 407–416 (2016).

    Article  Google Scholar 

  83. Munteanu, C. et al. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land. Use Policy 38, 685–697 (2014).

    Article  Google Scholar 

  84. Loran, C., Haegi, S. & Ginzler, C. Comparing historical and contemporary maps—a methodological framework for a cartographic map comparison applied to Swiss maps. Int. J. Geogr. Inf. Sci. 32, 2123–2139 (2018).

    Article  Google Scholar 

  85. Bergès, L. & Dupouey, J.-L. Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J. Veg. Sci. 32, e12846 (2021).

    Article  Google Scholar 

  86. Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).

    Article  Google Scholar 

  87. Munteanu, C. et al. The potential of historical spy-satellite imagery to support research in ecology and conservation. BioScience 74, 159–168 (2024).

    Article  Google Scholar 

  88. Lišèák, V. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia. Proc. ICA 1, 1–8 (2018).

    Article  Google Scholar 

  89. Goldberg, E., Kirby, K., Hall, J. & Latham, J. The ancient woodland concept as a practical conservation tool in Great Britain. J. Nat. Conserv. 15, 109–119 (2007).

    Article  Google Scholar 

  90. Fuchs, R., Verburg, P. H., Clevers, J. G. P. W. & Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 59, 43–55 (2015).

    Article  Google Scholar 

  91. Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).

    Article  Google Scholar 

  92. Lieskovský, J. et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 14, 644–651 (2018).

    Article  Google Scholar 

  93. Thorne, J. H. & Le, T. N. California’s historic legacy for landscape change, the Wieslander Vegetation Type Maps. Madroño 63, 293–328 (2016).

    Article  Google Scholar 

  94. Walker, S. Cultural barriers to market integration: evidence from 19th century Austria. J. Comp. Econ. 46, 1122–1145 (2018).

    Article  Google Scholar 

  95. Kaim, D., Szwagrzyk, M., Dobosz, M., Troll, M. & Ostafin, K. Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg monarchy. Earth Syst. Sci. Data 13, 1693–1709 (2021).

    Article  Google Scholar 

  96. Fretwell, P. T. et al. Using remote sensing to detect whale strandings in remote areas: the case of sei whales mass mortality in Chilean Patagonia. PLoS ONE 14, e0222498 (2019).

    Article  CAS  Google Scholar 

  97. Padubidri, C., Kamilaris, A., Karatsiolis, S. & Kamminga, J. Counting sea lions and elephants from aerial photography using deep learning with density maps. Anim. Biotelemetry 9, 27 (2021).

    Article  Google Scholar 

  98. Park, D. S. et al. Herbarium records provide reliable phenology estimates in the understudied tropics. J. Ecol. 111, 327–337 (2023).

    Article  Google Scholar 

  99. Sanders, N. J., Cooper, N., Davis Rabosky, A. R. & Gibson, D. J. Leveraging natural history collections to understand the impacts of global change. J. Anim. Ecol. 92, 232–236 (2023).

    Article  Google Scholar 

  100. Fortibuoni, T., Libralato, S., Raicevich, S., Giovanardi, O. & Solidoro, C. Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). PLoS ONE 5, e15502 (2010).

    Article  Google Scholar 

  101. Egmond, F. C. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 147–243 (Brill, 2023).

  102. Mullin, V. E. et al. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).

    Article  Google Scholar 

  103. Forcina, G. et al. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integrative Zool. 19, 887–897 (2024).

    Article  CAS  Google Scholar 

  104. Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170386 (2018).

    Article  Google Scholar 

  105. Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. N. Phytol. 221, 110–122 (2019).

    Article  Google Scholar 

  106. Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).

    Article  CAS  Google Scholar 

  107. Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).

    Article  Google Scholar 

  108. Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170389 (2018).

    Article  Google Scholar 

  109. Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).

    Article  CAS  Google Scholar 

  110. Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past. PLoS ONE 9, e103132 (2014).

    Article  Google Scholar 

  111. Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    Article  CAS  Google Scholar 

  112. Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).

    Article  Google Scholar 

  113. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article  CAS  Google Scholar 

  114. Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. N. Phytol. 242, 1018–1028 (2024).

    Article  CAS  Google Scholar 

  115. Abzhanov, A. Darwin’s Galápagos finches in modern biology. Philos. Trans. R. Soc. B: Biol. Sci. 365, 1001–1007 (2010).

    Article  Google Scholar 

  116. Hortal, J., Diniz-Filho, J. A. F., Low, M. E. Y., Stigall, A. L. & Yeo, D. C. J. Alfred Russel Wallace’s legacy: an interdisciplinary conception of evolution in space and time. NPJ Biodivers. 2, 1–3 (2023).

    Article  Google Scholar 

  117. Smol, J. P. et al. (eds.). Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (Springer Netherlands, 2001).

  118. Brewer, S., Jackson, S. T. & Williams, J. W. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27, 104–112 (2012).

    Article  Google Scholar 

  119. Leunda, M. et al. Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J. Ecol. 107, 814–828 (2019).

    Article  Google Scholar 

  120. González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425 (2020).

    Article  Google Scholar 

  121. Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 1–11 (2020).

    Article  Google Scholar 

  122. Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).

  123. Chase, B. M. et al. Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat. Sci. Rev. 56, 107–125 (2012).

    Article  Google Scholar 

  124. Moore, G., Tessler, M., Cunningham, S. W., Betancourt, J. & Harbert, R. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10, 2530–2544 (2020).

    Article  Google Scholar 

  125. Campbell, J. W., Waters, M. N. & Rich, F. Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46, 462–469 (2017).

    Article  Google Scholar 

  126. Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Article  Google Scholar 

  127. Hoffman, K. M., Lertzman, K. P. & Starzomski, B. M. Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. J. Biogeogr. 44, 2903–2915 (2017).

    Article  Google Scholar 

  128. Greiser, C. & Joosten, H. Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. Int. J. Biodivers. Science, Ecosyst. Serv. Manag. 14, 209–220 (2018).

    Article  Google Scholar 

  129. Prentice, I. C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23, 76–86 (1985).

    Article  Google Scholar 

  130. Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).

    Article  Google Scholar 

  131. Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).

    Article  Google Scholar 

  132. Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

    Article  CAS  Google Scholar 

  133. Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

    Article  CAS  Google Scholar 

  134. Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).

    Article  Google Scholar 

  135. Anderson, N. J. Landscape disturbance and lake response: temporal and spatial perspectives. Frer 7, 77–120 (2014).

    Article  Google Scholar 

  136. Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).

    Article  Google Scholar 

  137. Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).

  138. Nikulina, A. et al. Hunter-gatherer impact on European interglacial vegetation: a modelling approach. Quat. Sci. Rev. 324, 108439 (2024).

    Article  Google Scholar 

  139. Pearce, E. A. et al. Drivers of vegetation structure differ between proposed natural reference conditions for temperate Europe. Glob. Ecol. Biogeogr. 34, e70020 (2025).

    Article  Google Scholar 

  140. Karitter, P. et al. Combining the resurrection approach with transplant experiments to investigate adaptation of plant populations to environmental change. Perspect. Plant. Ecol., Evol. Syst. 62, 125773 (2024).

    Article  Google Scholar 

  141. Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA 120, e2217276120 (2023).

    Article  CAS  Google Scholar 

  142. Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).

    Article  CAS  Google Scholar 

  143. Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).

    Article  Google Scholar 

  144. Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).

    Article  Google Scholar 

  145. Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article  Google Scholar 

  146. Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article  CAS  Google Scholar 

  147. Lotze, H. K. et al. in Shifting Baselines: The Past and the Future of Ocean Fisheries (eds Jackson, J. B. C., Alexander, K. E. & Sala, E.) 137–161 (Island Press/Center for Resource Economics, 2011).

  148. McClenachan, L. et al. Global research priorities for historical ecology to inform conservation. Endanger. Species Res. 54, 285–310 (2024).

    Article  Google Scholar 

  149. Fairhead, J. & Leach, M. in Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic (eds Fairhead, J. & Leach, M.) 55–85 (Cambridge Univ. Press, 1996).

  150. Pluskowski, A., Brown, A. & Seetah, K. The challenges and future of environmental archaeology in Mauritius. Int. J. Histor. Archaeol. https://doi.org/10.1007/s10761-023-00727-1 (2024).

  151. Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    Article  Google Scholar 

  152. Kittinger, J. N. et al. Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE 6, e25460 (2011).

    Article  CAS  Google Scholar 

  153. Gil-Romera, G., Lamb, H. F., Turton, D., Sevilla-Callejo, M. & Umer, M. Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Glob. Environ. Change 20, 612–626 (2010).

    Article  Google Scholar 

  154. Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 28, 1434–1436 (2014).

    Article  Google Scholar 

  155. Clavero, M., Nores, C., Kubersky-Piredda, S. & Centeno-Cuadros, A. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biol. Rev. 91, 1036–1049 (2016).

    Article  Google Scholar 

  156. Szabó, P. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg. Env. Change 17, 501–514 (2017).

    Article  Google Scholar 

  157. Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).

    Article  Google Scholar 

  158. Early-Capistrán, M.-M. et al. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: the East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish. Fish. 19, 57–77 (2018).

    Article  Google Scholar 

  159. Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170391 (2018).

    Article  Google Scholar 

  160. Nowak, M. M., Słupecka, K. & Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 131, 108131 (2021).

    Article  Google Scholar 

  161. Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).

    Article  Google Scholar 

  162. Knollová, I. et al. ReSurveyEurope: a database of resurveyed vegetation plots in Europe. J. Veg. Sci. 35, e13235 (2024).

    Article  Google Scholar 

  163. Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Article  Google Scholar 

  164. Szabó, P. et al. More than trees: the challenges of creating a geodatabase to capture the complexity of forest history. Hist. Methods: A J. Quant. Interdiscip. Hist. 51, 175–189 (2018).

    Article  Google Scholar 

  165. Wilson, R. J. et al. Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14, 372–384 (2023).

    Article  Google Scholar 

  166. Weeks, B. C. et al. A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347–359 (2023).

    Article  Google Scholar 

  167. von Allmen, R. et al. Method development and application of object detection and classification to Quaternary fossil pollen sequences. Quat. Sci. Rev. 327, 108521 (2024).

    Article  Google Scholar 

  168. Dunker, S. et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. N. Phytol. 229, 593–606 (2021).

    Article  Google Scholar 

  169. Nita, M. D., Munteanu, C., Gutman, G., Abrudan, I. V. & Radeloff, V. C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote. Sens. Environ. 204, 322–332 (2018).

    Article  Google Scholar 

  170. Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision (ICCV), 4015–4026 (2023).

  171. Tricker, J. et al. Assessing the accuracy of georeferenced landcover data derived from oblique imagery using machine learning. Remote. Sens. Ecol. Conserv. 10, 401–415 (2024).

    Article  Google Scholar 

  172. Bugeja, M., Dingli, A. & Seychell, D. in Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage (eds. Seychell, D. & Dingli, A.) 3–23 (Springer International, 2020).

  173. Muehlberger, G. et al. Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. J. Doc. 75, 954–976 (2019).

    Article  Google Scholar 

  174. Suissa, O., Elmalech, A. & Zhitomirsky-Geffet, M. Text analysis using deep neural networks in digital humanities and information science. J. Assoc. Inf. Sci. Technol. 73, 268–287 (2022).

    Article  Google Scholar 

  175. Santana-Cordero, A. M. & Szabó, P. Exploring qualitative methods of historical ecology and their links with qualitative research. Int. J. Qual. Methods 18, 1609406919872112 (2019).

    Article  Google Scholar 

  176. Sun, J. et al. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ. 11, e16200 (2023).

    Article  Google Scholar 

  177. Wei, G., Peng, C., Zhu, Q., Zhou, X. & Yang, B. Application of machine learning methods for paleoclimatic reconstructions from leaf traits. Int. J. Climatol. 41, E3249–E3262 (2021).

    Article  Google Scholar 

  178. Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B: Biol. Sci. 289, 20220938 (2022).

    Article  Google Scholar 

  179. Knockaert, C. et al. Biodiversity data rescue in the framework of a long-term Kenya–Belgium cooperation in marine sciences. Sci. Data 6, 85 (2019).

    Article  Google Scholar 

  180. Rosi, E. J. et al. Give long-term datasets world heritage status. Science 378, 1180–1181 (2022).

    Article  CAS  Google Scholar 

  181. Purgar, M., Glasziou, P., Klanjscek, T., Nakagawa, S. & Culina, A. Supporting study registration to reduce research waste. Nat. Ecol. Evol. 8, 1391–1399 (2024).

    Article  Google Scholar 

  182. Scott, S. L. et al. Documenting changing landscapes with rePhotoSA: a repeat photography and citizen science project in Southern Africa. Ecol. Inform. 64, 101390 (2021).

    Article  Google Scholar 

  183. Flowers, V., Frutos, C., MacKenzie, A. S., Fanning, R. & Fraser, E. E. Snap decisions: assessing participation and data quality in a citizen science program using repeat photography. Citizen Sci. Theory Practice 8, 62 (2023).

    Article  Google Scholar 

  184. Soul, L. C., Barclay, R. S., Bolton, A. & Wing, S. L. Fossil atmospheres: a case study of citizen science in question-driven palaeontological research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170388 (2018).

    Article  Google Scholar 

  185. Froese, G. Z. L. et al. Coupling paraecology and hunter GPS self-follows to quantify village bushmeat hunting dynamics across the landscape scale. Afr. J. Ecol. 60, 229–249 (2022).

    Article  Google Scholar 

  186. Tribot, A.-S., Faget, D., Richard, T. & Changeux, T. The role of pre-19th century art in conservation biology: an untapped potential for connecting with nature. Biol. Conserv. 276, 109791 (2022).

    Article  Google Scholar 

  187. Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).

    Article  CAS  Google Scholar 

  188. Guralnick, R., Walls, R. & Jetz, W. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 40, 001–012 (2017).

    Google Scholar 

  189. Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).

    Article  Google Scholar 

  190. Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).

    Article  Google Scholar 

  191. Davis, A. & Wagner, J. R. Who knows? On the importance of identifying “experts” when researching local ecological knowledge. Hum. Ecol. 31, 463–489 (2003).

    Article  Google Scholar 

  192. Liboiron, M. Decolonizing geoscience requires more than equity and inclusion. Nat. Geosci. 14, 876–877 (2021).

    Article  CAS  Google Scholar 

  193. Swanson, H. A. et al. History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 4, 226–237 (2021).

    Article  Google Scholar 

  194. Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).

    Article  Google Scholar 

  195. Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

    Article  Google Scholar 

  196. Perino, A. et al. Biodiversity post-2020: closing the gap between global targets and national-level implementation. Conserv. Lett. 15, e12848 (2022).

    Article  Google Scholar 

  197. Gwinn, N. E. & Rinaldo, C. The Biodiversity Heritage Library: sharing biodiversity literature with the world. IFLA J. 35, 25–34 (2009).

    Article  Google Scholar 

  198. Domínguez-Castro, F. et al. Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Sci. Data 8, 186 (2021).

    Article  Google Scholar 

  199. Buckland, P. I. SEAD - the Strategic Environmental Archaeology Database inter-linking multiproxy environmental data with archaeological investigations and ecology. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012 (eds Chrysanthi, A. et al.) 320–331 (Amsterdam Univ. Press, 2014).

  200. Guiterman, C. H. et al. The International Tree-Ring Data Bank at fifty: status of stewardship for future scientific discovery. Tree-Ring Res. 80, 13–18 (2024).

    Article  Google Scholar 

  201. Lawenda, M., Wiland-Szymańska, J., Nowak, M. M., Jędrasiak, D. & Jackowiak, B. The Adam Mickiewicz University Nature Collections IT system (AMUNATCOLL): metadata structure, database and operational procedures. Biodivers. Res. Conserv. 65, 35–48 (2022).

    Article  Google Scholar 

  202. Anderson, N. J. et al. Limnological and palaeolimnological studies of lakes in south-western Greenland. Geol. Greenl. Surv. Bull. 183, 68–74 (1999).

    Article  Google Scholar 

  203. Forman, R. T. T. & Russell, E. W. B. Evaluation of historical data in ecology. Bull. Ecol. Soc. Am. 64, 5–7 (1983).

    Article  Google Scholar 

  204. Reithmaier, T. in The Historical Ecology Handbook (eds Egan, D. & Howell, E. A.) 121–146 (Island Press, 2001).

  205. Kaim, D. Land cover changes in the Polish Carpathians based on repeat photography. Carpath. J. Earth Environ. Sci. 12, 485–498 (2017).

    Google Scholar 

  206. Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. On the misuse of historical data to set conservation baselines: wolves in Spain as an example. Biol. Conserv. 276, 109810 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The work presented here builds on the workshop SOURCES, organized by M.C. and L.M.N. as part of the SUMHAL project funded by the Spanish Ministry of Science and Innovation through the European Regional Development Fund (LIFEWATCH-2019-09-CSIC-4, POPE2014- 2020). L.M.N. also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 101106872 (project BaseShift). D.F. received funding from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (Project number 461099895). C.M. acknowledges support from the DFG Research Training Group ConFoBi (GRK 2123/1 TPX). L.M. was supported by the Canada Research Chair programme (2020-00204). P.S. was supported by the long-term research development project no. RVO67985939. V.B.’s work is sponsored by the Spanish State Agency for Innovation’s Ramon y Cajal fellowship (RyC2021-032144-I), project title ‘Climate change in the past and present & Insect decline’. M.B.G. was supported by the BIOTREND project (TED2021-131513B-I00). N.M.-H. acknowledges support from the Independent Research Fund Denmark to her project ‘Anthropogenic impacts on Temporal Biodiversity Change’ (grant 10.46540/2064-00091B) and from her Villum Young Investigator project ‘Drivers of biOdiversity change through Resurveys in the Anthropocene’ funded by the VILLUM FOUNDATION (grant VIL53086). J.-C.S. considers this work a contribution to the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant DNRF173), and his VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’, funded by VILLUM FONDEN (grant 16549). D.S.V. received funding from the European Union, MSCA project RELOAD (Project 101059418 of call HORIZON-MSCA-2021-PF-01). T.C. and A.-S.T. received support from the French government under the France 2030 investment plan, as part of the Initiative d’Excellence d’Aix-Marseille Université - A*MIDEX (AMX-19-IET-012). The authors also thank N. Fernández and J. Chase for their participation in the SOURCES workshop and for their valuable input.

Author information

Authors and Affiliations

Authors

Contributions

L.M.N. and M.C. conceptualized the article. All authors contributed substantially to discussions of the content. L.M.N. researched data for the article and wrote the first draft, with substantial text contributions from M.C., C.G.A., T.C., D.F., G.G.-R., D.K., L.M., C.M. and P.S. All authors reviewed and/or edited the manuscript before submission and during the revision process.

Corresponding author

Correspondence to Laetitia M. Navarro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Gretchen Walters, who co-reviewed with Ariane Cosiaux, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Neotoma Paleoecology Database: www.neotomadb.org

Old Weather project: https://www.oldweather.org/

Paisajes Centenarios project: https://paisajescentenarios.csic.es/

Zooniverse platform: https://www.zooniverse.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, L.M., Armstrong, C.G., Changeux, T. et al. Integrating historical sources for long-term ecological knowledge and biodiversity conservation. Nat. Rev. Biodivers. 1, 657–670 (2025). https://doi.org/10.1038/s44358-025-00084-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00084-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing