Abstract
The organization of the extant mammalian brain is influenced by development, evolutionary history and the environment. Ecological adaptations specifically have had a major role in shaping the structures and associated functions of the mammalian brain. Although general organization of the brain is relatively conserved in modern mammals, throughout millions of years of evolution mammals have acquired diverse sensory and nervous system adaptations as they invaded new ecological niches. Here, we synthesize palaeontological and neurobiological evidence on mammalian brain structure evolution, the mechanisms behind the observed variation in the size and organization of brain structures, and the effect of behavioural ecology on the evolution of brain functions and associated structures. Neuroecology has advanced greatly over the past 40 years and is now unravelling the complex relationship between specific behaviours and brain organization and function. Relying on different types of data, comparative neurobiologists and palaeontologists strive to answer similar questions about brain evolution, benefiting from a synergistic approach. We conclude this Review by outlining outstanding questions regarding the relationships between structure, function, behaviour and evolution that deserve future research attention, and propose methodologies and approaches to help to resolve these problems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Finlay, B. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 337–345 (Academic, 2009).
Halley, A. C. & Krubitzer, L. Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals. Curr. Opin. Neurobiol. 56, 78–86 (2019).
Bertrand, O. C. et al. Brawn before brains in placental mammals after the end-Cretaceous extinction. Science 376, 80–85 (2022).
Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).
Pineda, C. R., Bresee, C., Baldwin, M. K. L., Seelke, A. M. H. & Krubitzer, L. Organization of the perioral representation of the primary somatosensory cortex in prairie voles (Microtus ochrogaster). Brain Behav. Evol. https://doi.org/10.1159/000543248 (2025).
Bertrand, O. C., Püschel, H. P., Schwab, J. A., Silcox, M. T. & Brusatte, S. L. The impact of locomotion on the brain evolution of squirrels and close relatives. Commun. Biol. 4, 1–15 (2021).
Rose, K. D. The Beginning of the Age of Mammals (Johns Hopkins Univ. Press, 2006).
Shelley, S. L., Brusatte, S. L. & Williamson, T. E. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction. Proc. R. Soc. B 288, 20210393 (2021).
Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).
Krubitzer, L., Campi, K. L. & Cooke, D. F. All rodents are not the same: a modern synthesis of cortical organization. Brain Behav. Evol. 78, 51–93 (2011).
Bertrand, O. C., Amador-Mughal, F., Lang, M. M. & Silcox, M. T. Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality. Palaeontology 61, 919–948 (2018).
Healy, S. D., de Kort, S. R. & Clayton, N. S. The hippocampus, spatial memory and food hoarding: a puzzle revisited. Trends Ecol. Evol. 20, 17–22 (2005).
Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).
Žliobaitė, I. et al. in Evolution of Cenozoic Land Mammal Faunas and Ecosystems: 25 Years of the NOW Database of Fossil Mammals (eds Casanovas-Vilar, I. et al.) 33–42 (Springer, 2023).
Rowe, T. B., Macrini, T. E. & Luo, Z. X. Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011).
Krubitzer, L. A. & Prescott, T. J. The combinatorial creature: cortical phenotypes within and across lifetimes. Trends Neurosci. 41, 744–762 (2018).
Bertrand, O. C., Michaud, M. & Kirk, E. C. in Evolution of Nervous Systems in Mammals. Evolution of Nervous Systems, 3rd edn, vol. 2 (ed. Krubitzer, L. A.) https://doi.org/10.1016/B978-0-443-27380-3.00019-1 (Elsevier, 2025).
Heuer, K. et al. Diversity and evolution of cerebellar folding in mammals. eLife https://doi.org/10.7554/eLife.85907 (2023).
Kaas, J. H. in Evolutionary Neuroscience 2nd edn (ed. Kaas, J. H.) 333–348 (Academic, 2020).
Reiner, A. Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes. Brain Res. Bull. 57, 513–528 (2002).
Rowe, T. B. in Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts (eds Dozo, M. T. et al.) 365–422 (Springer, 2023).
Benoit, J., Dollman, K. N., Smith, R. M. H. & Manger, P. R. in Progress in Brain Research, vol. 275 (eds Calvey, T. et al.) 25–72 (Elsevier, 2023).
Northcutt, G. R. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995).
Medina, L. & Reiner, A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci. 23, 1–12 (2000).
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).
Kielan-Jaworowska, Z. Evolution of the therian mammals in the Late Cretaceous of Asia. Part VI. Endocranial casts of eutherian mammals. Acta Palaeontol. Pol. 46, 157–171 (1984).
Norton, L. A., Abdala, F. & Benoit, J. Craniodental anatomy in Permian–Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. Phil. Trans. R. Soc. Lond., B 378, 20220084 (2023).
Halley, A. C. & Krubitzer, L. in The Cerebral Cortex and Thalamus (eds Halley, A. C. et al.) 585–595 (Oxford Univ. Press, 2023).
Kier, E. L., Kalra, V. B., Conlogue, G. J., Filippi, C. G. & Saluja, S. Comparative anatomy of dissected optic lobes, optic ventricles, midbrain tectum, collicular ventricles, and aqueduct: evolutionary modifications as potential explanation for non-tumoral aqueductal anomalies in humans. Childs Nerv. Syst. 38, 287–294 (2022).
Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).
Molnár, Z. et al. Evolution and development of the mammalian cerebral cortex. Brain Behav. Evol. 83, 126–139 (2014).
Molnár, Z. Evolution of cerebral cortical development. Brain Behav. Evol. 78, 94–107 (2011).
Molnár, Z. & Clowry, G. in Progress in Brain Research, vol. 195 (eds Hofman, M. A. & Falk, D.) 45–70 (Elsevier, 2012).
Kaas, J. H. in Evolution of the Brain, Cognition, and Emotion in Vertebrates (eds Watanabe, S. et al.) 59–80 (Springer, 2017).
Pessoa, L., Medina, L., Hof, P. R. & Desfilis, E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neurosci. Biobehav. Rev. 107, 296–312 (2019).
Edinger, T. Midbrain exposure and overlap in mammals. Am. Zool. 4, 5–19 (1964).
Baldwin, M. K. L., Young, N. A., Matrov, D. & Kaas, J. H. Cortical projections to the superior colliculus in grey squirrels (Sciurus carolinensis). Eur. J. Neurosci. 49, 1008–1023 (2019).
Naumann, R. K. et al. The reptilian brain. Curr. Biol. 25, R317–R321 (2015).
Hodos, W. in Encyclopedia of Neuroscience (eds Binder, M. D. et al.) 1240–1243 (Springer, 2009).
Macrini, T. E., Rougier, G. W. & Rowe, T. Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat. Rec. 290, 875–892 (2007).
Csiki-Sava, Z., Vremir, M., Meng, J., Brusatte, S. L. & Norell, M. A. Dome-headed, small-brained island mammal from the Late Cretaceous of Romania. Proc. Natl Acad. Sci. USA 115, 4857–4862 (2018).
Gilissen, E. & Smith, T. in Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (ed. Godefroit, P.) 617–630 (Indiana Univ. Press, 2012).
Namba, T. & Huttner, W. B. What makes us human: insights from the evolution and development of the human neocortex. Annu. Rev. Cell Dev. Biol. 40, 427–452 (2024).
O’Connor, D. H., Krubitzer, L. & Bensmaia, S. Of mice and monkeys: somatosensory processing in two prominent animal models. Prog. Neurobiol. 201, 102008 (2021).
Krubitzer, L. In search of a unifying theory of complex brain evolution. Ann. N. Y. Acad. Sci. 1156, 44–67 (2009).
Karlen, S. J. & Krubitzer, L. The functional and anatomical organization of marsupial neocortex: evidence for parallel evolution across mammals. Prog. Neurobiol. 82, 122–141 (2007).
Krubitzer, L., Manger, P., Pettigrew, J. & Calford, M. Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J. Comp. Neurol. 351, 261–306 (1995).
Baldwin, M. K. L., Cooke, D. F., Goldring, A. B. & Krubitzer, L. Representations of fine digit movements in posterior and anterior parietal cortex revealed using long-train intracortical microstimulation in macaque monkeys. Cereb. Cortex. 28, 4244–4263 (2018).
Mayer, A. et al. The multiple representations of complex digit movements in primary motor cortex form the building blocks for complex grip types in capuchin monkeys. J. Neurosci. 39, 6684–6695 (2019).
Halley, A. C. et al. Coevolution of motor cortex and behavioral specializations associated with flight and echolocation in bats. Curr. Biol. 32, 2935–2941 (2022).
Boch, M. et al. Comparative neuroimaging of the carnivoran brain: neocortical sulcal anatomy. eLife 13, RP100851 (2024).
Welker, W. I. & Campos, G. B. Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family procyonidae. J. Comp. Neurol. 120, 19–36 (1963).
Welker, W. I. & Seidenstein, S. Somatic sensory representation in the cerebral cortex of the racoon (Procyon lotor). J. Comp. Neurol. 111, 469–501 (1959).
Iwaniuk, A. N. & Whishaw, I. Q. How skilled are the skilled limb movements of the raccoon (Procyon lotor)? Behavioural Brain Res. 99, 35–44 (1999).
Lyras, G. A., van der Geer, A. A. E. & Werdelin, L. in Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts (eds Dozo, M. T. et al.) 681–710 (Springer, 2023).
Radinsky, L. An example of parallelism in carnivore brain evolution. Evolution 25, 518–522 (1971).
Fernández Villoldo, J. A., Verzi, D. H., Lopes, R. T., Dos Reis, S. F. & Perez, S. I. Brain size and shape diversification in a highly diverse South American clade of rodents (Echimyidae): a geometric morphometric and comparative phylogenetic approach. Biol. J. Linn. Soc. 140, 277–295 (2023).
Melchionna, M. et al. Cortical areas associated to higher cognition drove primate brain evolution. Commun. Biol. 8, 80 (2025).
Silcox, M. T., Gunnell, G. F. & Bloch, J. I. Cranial anatomy of Microsyops annectens (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of northwestern Wyoming. J. Paleontol. 94, 979–1006 (2020).
Bertrand, O. C., Amador-Mughal, F. & Silcox, M. T. Virtual endocast of the Early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J. Anat. 230, 128–151 (2017).
Buschhüter, D. et al. Correlation between olfactory bulb volume and olfactory function. NeuroImage 42, 498–502 (2008).
Bhatnagar, K. P. & Kallen, F. C. Cribriform plate of ethmoid, olfactory bulb and olfactory acuity in forty species of bats. J. Morphol. 142, 71–89 (1974).
López-Aguirre, C., Alam, B., Mian, M., Ratcliffe, J. M. & Silcox, M. T. Echolocation and dietary adaptations mediate brain-endocast covariation in bats. iScience https://doi.org/10.1016/j.isci.2025.112159 (2025).
Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).
Badgery, G. J., Lawes, J. C. & Leggett, K. E. A. Short-beaked echidna (Tachyglossus aculeatus) home range at Fowlers Gap arid zone research station, NSW. PLoS ONE 16, e0242298 (2021).
Lang, M. M. et al. But how does it smell? An investigation of olfactory bulb size among living and fossil primates and other euarchontoglirans. Anat. Rec. https://doi.org/10.1002/ar.25651 (2025).
Christensen, G. C. & Evans, H. E. Miller’s Anatomy of the Dog (Saunders, 1979).
Brauer, K. & Schober, W. Katalog der Säugetiergehirne: Catalogue of Mammalian Brains (Gustav Fischer, 1970).
Covey, E. Neurobiological specializations in echolocating bats. Anat. Rec. A 287A, 1103–1116 (2005).
Alvarez van Tussenbroek, I., Knörnschild, M., Nagy, M., Ten Cate, C. J. & Vernes, S. C. Morphological diversity in the brains of 12 neotropical bat species. Acta Chiropterologica 25, 323–338 (2023).
Thiagavel, J. et al. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat. Commun. 9, 98 (2018).
Bertrand, O. C. et al. The virtual brain endocast of Incamys bolivianus: insight from the neurosensory system into the adaptive radiation of south American rodents. Pap. Palaeontol. 10, e1562 (2024).
Lang, M. M. et al. Scaling patterns of cerebellar petrosal lobules in Euarchontoglires: impacts of ecology and phylogeny. Anat. Rec. 305, 3472–3503 (2022).
Hiramatsu, T. et al. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci. Res. 60, 250–258 (2008).
Goyens, J., Baeckens, S., Smith, E. S. J., Pozzi, J. & Mason, M. J. Parallel evolution of semicircular canal form and sensitivity in subterranean mammals. J. Comp. Physiol. 208, 627–640 (2022).
Ferreira-Cardoso, S. et al. Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates. Sci. Rep. 7, 2005 (2017).
Macrini, T. E. The Evolution of Endocranial Space in Mammals and Non-mammalian Cynodonts. Doctoral thesis, Univ. Texas (2006).
Genon, S., Reid, A., Langner, R., Amunts, K. & Eickhoff, S. B. How to characterize the function of a brain region. Trends Cogn. Sci. 22, 350–364 (2018).
Beltramo, R. & Scanziani, M. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363, 64–69 (2019).
Montgomery, S. H., Mundy, N. I. & Barton, R. A. Brain evolution and development: adaptation, allometry and constraint. Proc. R. Soc. B 283, 20160433 (2016).
Bertrand, O. C., Amador-Mughal, F., Lang, M. M. & Silcox, M. T. New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia. J. Mamm. Evol. 26, 345–371 (2019).
Silcox, M. T., Benham, A. E. & Bloch, J. I. Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J. Hum. Evol. 58, 505–521 (2010).
Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).
DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evol. 3, 1483–1493 (2019).
Finlay, B. & Darlington, R. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).
Barton, R. A. Evolutionary specialization in mammalian cortical structure. J. Evol. Biol. 20, 1504–1511 (2007).
Jerison, H. J. Quantitative analysis of evolution of the brain in mammals. Science 133, 1012–1014 (1961).
Maugoust, J. & Orliac, M. J. Endocranial cast anatomy of the extinct hipposiderid bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera). J. Mamm. Evol. 28, 679–706 (2021).
Martin, R. D. Primate Origins and Evolution. A Phylogenetic Reconstruction (Princeton Univ. Press, 1990).
Moore, J. M. & DeVoogd, T. J. Concerted and mosaic evolution of functional modules in songbird brains. Proc. R. Soc. B 284, 20170469 (2017).
Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223 (2017).
Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B. & Finlay, B. L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33, 7368–7383 (2013).
Cahalane, D. J., Charvet, C. J. & Finlay, B. L. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proc. Natl Acad. Sci. USA 111, 17642–17647 (2014).
Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
Huber, R., van Staaden, M. J., Kaufman, L. S. & Liem, K. F. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav. Evol. 50, 167–182 (1997).
Kotrschal, K. & Palzenberger, M. in Environmental Biology of European Cyprinids (eds Wieser, W. et al.) 135–152 (Springer, 1992).
Macrì, S., Savriama, Y., Khan, I. & Di-Poï, N. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat. Commun. 10, 5560 (2019).
Barton, R. A., Purvis, A. & Harvey, P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 348, 381–392 (1995).
Kirk, E. C. & Kay, R. F. in Anthropoid Origins: New Visions (eds Ross, C. F. & Kay, R. F.) 539–602 (Springer, 2004).
Barton, R. A. Olfactory evolution and behavioral ecology in primates. Am. J. Primatol. 68, 545–558 (2006).
Rishel, C. A., Huang, G. & Freedman, D. J. Independent category and spatial encoding in parietal cortex. Neuron 77, 969–979 (2013).
Thorpe, S. K. S. & Chappell, J. in Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T. K.) 392–399 (Springer, 2022).
Mars, R. B. & Bryant, K. L. in Encyclopedia of Behavioral Neuroscience Vol. 3 (ed Della Sala, S.) 757–765 (Elsevier, 2022).
Heffner, R. S., Koay, G., Heffner, H. E. & Mason, M. J. Hearing in African pygmy hedgehogs (Atelerix albiventris): audiogram, sound localization, and ear anatomy. J. Comp. Physiol. 208, 653–670 (2022).
Jäckel, D., Ortiz Troncoso, A., Dähne, M. & Bölling, C. The animal audiogram database: a community-based resource for consolidated audiogram data and metadata. J. Acoust. Soc. Am. 151, 1125–1132 (2022).
Campi, K. L., Collins, C. E., Todd, W. D., Kaas, J. & Krubitzer, L. Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. Brain Behav. Evol. 77, 116–130 (2011).
Gomez, F., Englund, M. & Krubitzer, L. PSTR063.04 / B51 - The impact of the environment on the development of the motor and somatosensory cortex: how can a dynamic environment influence cortical structure and function? 2023 Neuroscience Meeting Planner https://www.abstractsonline.com/pp8/#!/10892/presentation/31720 (2023).
Catania, K. C. & Remple, F. E. Tactile foveation in the star-nosed mole. Brain Behav. Evolution 63, 1–12 (2003).
Catania, K. C. The sense of touch in the star-nosed mole: from mechanoreceptors to the brain. Phil. Trans. R. Soc. Lond. B 366, 3016–3025 (2011).
Page, R. A. & ter Hofstede, H. M. Sensory and cognitive ecology of bats. Annu. Rev. Ecol. Syst. 52, 541–562 (2021).
Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B 270, 1433–1440 (2003).
Bearder, S. K., Nekaris, K. A. I. & Curtis, D. J. A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatol. 77, 50–71 (2006).
Hiramatsu, C. et al. Importance of achromatic contrast in short-range fruit foraging of primates. PLoS ONE 3, e3356 (2008).
DePasquale, A. N. et al. Does colour vision type drive dietary and nutritional niche differentiation in wild capuchins (Cebus imitator)? Anim. Behav. 205, 89–106 (2023).
Bhagat, R., Bertrand, O. C. & Silcox, M. T. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: insights from the semicircular canals of fossil rodents. J. Anat. 238, 96–112 (2021).
Hopkins, S. S. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 331–353 (2007).
Emry, R. J. & Thorington, R. W. Descriptive and Comparative Osteology of the Oldest Fossil Squirrel, Protosciurus (Rodentia: Sciuridae) (Smithsonian Institution, 1982).
Krubitzer, L. & Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444–453 (2005).
Brualla, N. L. M. et al. Comparative anatomy of the vocal apparatus in bats and implications for the diversity of laryngeal echolocation. Zool. J. Linnean Soc. https://doi.org/10.1093/zoolinnean/zlad180 (2024).
Rietbergen, T. B. et al. The oldest known bat skeletons and their implications for Eocene chiropteran diversification. PLoS ONE 18, e0283505 (2023).
Simmons, N. B., Seymour, K. L., Habersetzer, J. & Gunnell, G. F. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451, 818–821 (2008).
Hand, S. J., Maugoust, J., Beck, R. M. D. & Orliac, M. J. A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation. Curr. Biol. 33, 4624–4640 (2023).
Arbour, J. H., Curtis, A. A. & Santana, S. E. Sensory adaptations reshaped intrinsic factors underlying morphological diversification in bats. BMC Biol. 19, 88 (2021).
Jones, M. F., Beard, K. C. & Simmons, N. B. Phylogeny and systematics of Early Paleogene bats. J. Mamm. Evol. 31, 18 (2024).
Washington, S. D. et al. Auditory cortical regions show resting-state functional connectivity with the default mode-like network in echolocating bats. Proc. Natl Acad. Sci. USA 121, e2306029121 (2024).
Kössl, M. et al. Neural maps for target range in the auditory cortex of echolocating bats. Curr. Opin. Neurobiol. 24, 68–75 (2014).
Rieger, J. F. & Jakob, E. M. The use of olfaction in food location by frugivorous bats. Biotropica 20, 161–164 (1988).
Hayden, S. et al. A cluster of olfactory receptor genes linked to frugivory in bats. Mol. Biol. Evol. 31, 917–927 (2014).
Rosa, M. G. P., Schmid, L. M., Krubitzer, L. A. & Pettigrew, J. D. Retinotopic orgarnzation of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapulatus). J. Comp. Neurol. 335, 55–72 (1993).
Simmons, N. B., Seiffert, E. R. & Gunnell, G. F. A new family of large omnivorous bats (Mammalia, Chiroptera) from the Late Eocene of the Fayum depression, Egypt, with comments on use of the name “Eochiroptera”. Am. Mus. Novit. 2016, 1–43 (2016).
Batista-García-Ramó, K. & Fernández-Verdecia, C. I. What we know about the brain structure–function relationship. Behav. Sci. 8, 39 (2018).
Mišić, B. et al. Network-level structure–function relationships in human neocortex. Cereb. Cortex. 26, 3285–3296 (2016).
Diez, I. et al. A novel brain partition highlights the modular skeleton shared by structure and function. Sci. Rep. 5, 10532 (2015).
Fotiadis, P. et al. Structure–function coupling in macroscale human brain networks. Nat. Rev. Neurosci. 25, 688–704 (2024).
Yu, X. et al. A wearable small animal PET scanner. J. Nucl. Med. 65, 241373 (2024).
Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).
Bauer, C. C. C. et al. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: part 2: default mode network — preliminary evidence. Psychiatry Res. 284, 112770 (2020).
Sitaram, R. et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86–100 (2017).
Pravosudov, V. V. & Roth II, T. C. Cognitive ecology of food hoarding: the evolution of spatial memory and the hippocampus. Annu. Rev. Ecol. Syst. 44, 173–193 (2013).
Devarajan, K. et al. When the wild things are: defining mammalian diel activity and plasticity. Sci. Adv. 11, eado3843 (2025).
Rendall, D. & Di Fiore, A. Homoplasy, homology, and the perceived special status of behavior in evolution. J. Hum. Evol. 52, 504–521 (2007).
Boyer, D. M., Gunnell, G. F., Kaufman, S. & McGeary, T. M. Morphosource: archiving and sharing 3-D digital specimen data. Paleontol. Soc. Pap. 22, 157–181 (2016).
Blackburn, D. C. et al. Increasing the impact of vertebrate scientific collections through 3D imaging: the openVertebrate (oVert) Thematic Collections Network. BioScience 74, 169–186 (2024).
Ikeda, T. et al. Cortical adaptation of the night monkey to a nocturnal niche environment: a comparative non-invasive T1w/T2w myelin study. Brain Struct. Funct. 228, 1107–1123 (2023).
Rose, M. C., Styr, B., Schmid, T. A., Elie, J. E. & Yartsev, M. M. Cortical representation of group social communication in bats. Science 374, eaba9584 (2021).
Young, J. W. in Convergent Evolution: Animal Form and Function (eds Bels, V. L. & Russell, A. P.) 289–322 (Springer, 2023).
Lister, A. M. Behavioural leads in evolution: evidence from the fossil record. Biol. J. Linn. Soc. 112, 315–331 (2014).
Bazzana-Adams, K. D., Evans, D. C. & Reisz, R. R. Neurosensory anatomy and function in Dimetrodon, the first terrestrial apex predator. iScience https://doi.org/10.1016/j.isci.2023.106473 (2023).
Wang, J. et al. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan. Nature 590, 279–283 (2021).
Ford, D. P. & Benson, R. B. J. The phylogeny of early amniotes and the affinities of parareptilia and varanopidae. Nat. Ecol. Evol. 4, 57–65 (2020).
Pusch, L. C., Kammerer, C. F. & Fröbisch, J. The origin and evolution of cynodontia (Synapsida, Therapsida): reassessment of the phylogeny and systematics of the earliest members of this clade using 3D-imaging technologies. Anat. Rec. 307, 1634–1730 (2024).
Benoit, J. & Midzuk, A. Estimating the endocranial volume and body mass of Anteosaurus, Jonkeria, and Moschops (Dinocephalia, Therapsida) using 3D sculpting. Palaeontol. Electron. 27, 1–11 (2024).
Macrini, T. E., de Muizon, C., Cifelli, R. L. & Rowe, T. Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. J. Vertebr. Paleontol. 27, 99–107 (2007).
Haynes, E. M., Ulland, T. K. & Eliceiri, K. W. A model of discovery: the role of imaging established and emerging non-mammalian models in neuroscience. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2022.867010 (2022).
Stevens, M. in Sensory Ecology, Behaviour, and Evolution (ed. Stevens, M.) Ch. 1 (Oxford Univ. Press, 2013).
Emerling, C. A., Huynh, H. T., Nguyen, M. A., Meredith, R. W. & Springer, M. S. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution. Proc. R. Soc. B 282, 20151817 (2015).
Le Maître, A., Grunstra, N. D. S., Pfaff, C. & Mitteroecker, P. Evolution of the mammalian ear: an evolvability hypothesis. Evol. Biol. 47, 187–192 (2020).
Catania, K. C. Correlates and possible mechanisms of neocortical enlargement and diversification in mammals. J. Comp. Psychol. 17, 71–91 (2004).
Garstang, M. Long-distance, low-frequency elephant communication. J. Comp. Physiol. 190, 791–805 (2004).
Bohn, K. M., Moss, C. F. & Wilkinson, G. S. Correlated evolution between hearing sensitivity and social calls in bats. Biol. Lett. 2, 561–564 (2006).
Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J. & Geisler, J. H. The origin of high-frequency hearing in whales. Curr. Biol. 26, 2144–2149 (2016).
Lattenkamp, E. Z. et al. Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc. R. Soc. B 288, 20202600 (2021).
Veilleux, C. C. & Kirk, E. C. Visual acuity in mammals: effects of eye size and ecology. Brain Behav. Evol. 83, 43–53 (2014).
Bickelmann, C. et al. The molecular origin and evolution of dim-light vision in mammals. Evolution 69, 2995–3003 (2015).
Korsching, S. in Chemosensory Transduction (eds Zufall, F. & Munger, S. D.) 81–100 (Academic, 2016).
Nummela, S. et al. Exploring the mammalian sensory space: co-operations and trade-offs among senses. J. Comp. Physiol. 199, 1077–1092 (2013).
Spoor, F. et al. The primate semicircular canal system and locomotion. Proc. Natl Acad. Sci. USA 104, 10808–10812 (2007).
Malinzak, M. D., Kay, R. F. & Hullar, T. E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl Acad. Sci. USA 109, 17914–17919 (2012).
Ekdale, E. G. Form and function of the mammalian inner ear. J. Anat. 228, 324–337 (2016).
Silcox, M. T. et al. Semicircular canal system in early primates. J. Hum. Evol. 56, 315–327 (2009).
Kirk, E. C., Hoffmann, S., Kemp, A. D., Krause, D. W. & O’Connor, P. M. Sensory anatomy and sensory ecology of Vintana Sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 34, 203–222 (2014).
Bertrand, O. C. et al. Virtual endocranial and inner ear endocasts of the Paleocene ‘condylarth’ Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J. Anat. 236, 21–49 (2020).
Silcox, M. T., Dalmyn, C. K. & Bloch, J. I. Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc. Natl Acad. Sci. USA 106, 10987–10992 (2009).
Muchlinski, M. N. & Kirk, E. C. A comparative analysis of infraorbital foramen size in Paleogene euarchontans. J. Hum. Evol. 105, 57–68 (2017).
Benoit, J., Manger, P. R. & Rubidge, B. S. Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Sci. Rep. 6, 25604 (2016).
Acknowledgements
O.C.B. is supported by the Beatriu de Pinós Programme, funded by the Direcció General de Recerca de la Generalitat de Catalunya and managed by AGAUR, expedient number 2021 BP 00042 to O.C.B. O.C.B. is also supported by the Generalitat de Catalunya/CERCA Programme, the Agència de Gestió d’Ajust Universitaris i de Recerca of the Generalitat de Catalunya (2021 SGR 00620) to David M. Alba (Institute Català De Paleontologia). L.K. is supported by NEI (R01EY034303) and NINDS (R01NS115881).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Aida Gomez-Robles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Amniote
-
Group of tetrapod vertebrates that has evolved an amnion, a closed sac filled with amniotic fluid that surrounds the embryo, allowing its development outside of water.
- Bauplan
-
General structure of the body or region of the body plan that characterizes a group of organisms such as the brain of Mammalia.
- Crown clade
-
Monophyletic group of species that share a common set of morphological features. It includes all the living representatives of a given group, their common ancestor and all its descendants.
- Dichromat
-
Defines organisms that can only distinguish two primary colours. The condition present in most mammals.
- Gyrus
-
Ridge between sulci of the brain. When taken together, they form a system of complex folding pattern. Brains with folding are known as gyrencephalic brains.
- Lissencephalic
-
Characterizes brains that do not present any sulci on their surface.
- Sauropsids
-
Group of amniotes that includes the crown clades birds, crocodiles, turtles and lepidosaurians (tuataras, lizards, snakes and amphisbaenians) and their closest extinct relatives, including non-avian dinosaurs.
- Stem taxa
-
Paraphyletic group of species that lack some characteristics found in the crown clade. For example, stem mammals are considered the closest relatives to the clade Mammalia.
- Sulci
-
Grooves on the surface of the brain. Complex sulci pattern emerges as brain size increases.
- Synapsids
-
Group of amniotes that includes the crown clade Mammalia and their closest extinct relatives, including the pelycosaur Dimetrodon.
- Trichromat
-
Defines organisms that can distinguish all three primary colours. This is the most widespread condition in humans.
- Umwelt
-
Represents the unique way in which organisms perceive the world. This perception will be shaped by the kind of information that can be processed by their sensory organs.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bertrand, O.C., Krubitzer, L. The functional adaptations of mammalian brain structures through a behavioural ecology lens. Nat. Rev. Biodivers. 1, 703–716 (2025). https://doi.org/10.1038/s44358-025-00095-0
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44358-025-00095-0


