Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The circular seabird economy is critical for oceans, islands and people

A Publisher Correction to this article was published on 16 January 2026

This article has been updated

Abstract

Nearly a third of seabird species are at risk of extinction, rendering them among the most threatened bird taxa globally. The decline in seabird populations has major ramifications for their associated ecosystems. An expansive literature covers seabird impacts on their breeding islands, and growing research expands understanding of the circular seabird economy — cross-ecosystem connections of seabirds from oceans to islands, and back to nearshore marine ecosystems, mainly driven by nutrient transfer. Amid the twin biodiversity and climate crises, maintaining and restoring the circular seabird economy is one way to achieve large-scale, cross-ecosystem impacts with simple and time-tested conservation methods. This Review summarizes researchers’ understanding of the circular seabird economy and outlines goals for future research. Historically, research has focused on terrestrial impacts, with emerging research explicitly studying the cross-ecosystem impacts of seabirds. We identify substantial knowledge gaps, with research needed to understand how the circular seabird economy changes with space, time, across biomes and with island size. Emerging analytic and monitoring tools will help to propel this research forward. Many coastal communities, especially Indigenous people, rely on seabirds for their livelihoods and cultural connections, and so taking a people-centred approach incorporating Indigenous knowledge and perspectives is critical moving forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The seabird circular economy.
Fig. 2: Seabird mass and foraging range.
Fig. 3: Seabird impacts on adjacent marine ecosystems.
Fig. 4: Seabird restoration methods.

Similar content being viewed by others

Change history

References

  1. Brooke, M. The food consumption of the world’s seabirds. Proc. R. Soc. Lond. B Biol. Sci. 271, S246–S248 (2004).

    Google Scholar 

  2. Karpouzi, V. S., Watson, R. & Pauly, D. Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment. Mar. Ecol. Prog. Ser. 343, 87–99 (2007).

    Article  Google Scholar 

  3. Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013.e2 (2018).

    Article  Google Scholar 

  4. OECD. OECD Review of Fisheries 2025 (OECD Publishing, 2025).

  5. Schreiber, E. A. & Burger, J. Biology of Marine Birds (CRC Press, 2001).

  6. Jovani, R. et al. Colony size and foraging range in seabirds. Oikos 125, 968–974 (2016).

    Article  Google Scholar 

  7. Mulder, C. P. H. et al. (eds) Seabird Islands: Ecology, Invasion, and Restoration (Oxford Univ. Press, 2011).

  8. Jones, H. P., Borrelle, S. B. & Rankin, L. L. Land–sea linkages depend on macroalgal species, predator invasion history in a New Zealand archipelago. Restor. Ecol. 31, e13798 (2023).

    Article  Google Scholar 

  9. Dias, M. P. et al. Threats to seabirds: a global assessment. Biol. Conserv. 237, 525–537 (2019).

    Article  Google Scholar 

  10. Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).

    Google Scholar 

  11. Borrelle, S., Jones, H., Richard, Y. & Salguero-Gomez, R. Estimating the impact of marine threats to seabird recovery after predator eradication. Mar. Ornithol. 51, 225–236 (2023).

    Article  Google Scholar 

  12. Sydeman, W. J., Thompson, S. A. & Kitaysky, A. Seabirds and climate change: roadmap for the future. Mar. Ecol. Prog. Ser. 454, 107–117 (2012).

    Article  Google Scholar 

  13. Orgeret, F. et al. Climate change impacts on seabirds and marine mammals: the importance of study duration, thermal tolerance and generation time. Ecol. Lett. 25, 218–239 (2022).

    Article  Google Scholar 

  14. Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).

    Article  Google Scholar 

  15. Jodice, P. G. R. & Suryan, R. M. in Landscape-Scale Conservation Planning (eds Trombulak, S. C. & Baldwin, R. F.) 139–165 (Springer Netherlands, 2010).

  16. Dunn, R. E., White, C. R. & Green, J. A. A model to estimate seabird field metabolic rates. Biol. Lett. 14, 20180190 (2018).

    Article  Google Scholar 

  17. Allen, P., Peters, A., Stiefel, Z. & Clarke, R. H. Seabird moult timing and duration: implications for at-sea threat exposure worldwide. Glob. Ecol. Conserv. 59, e03558 (2025).

    Google Scholar 

  18. Smith, J. L., Mulder, C. P. H. & Ellis, J. C. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 27–55 (Oxford Univ. Press, 2011).

  19. De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O., Huerta-Díaz, M. Á & Otero, X. L. Global deposition of potentially toxic metals via faecal material in seabird colonies. Sci. Rep. 12, 22392 (2022).

    Article  Google Scholar 

  20. Phillips, R. A., Lewis, S., González-Solís, J. & Daunt, F. Causes and consequences of individual variability and specialization in foraging and migration strategies of seabirds. Mar. Ecol. Prog. Ser. 578, 117–150 (2017).

    Article  Google Scholar 

  21. Bird, M. I., Tait, E., Wurster, C. M. & Furness, R. W. Stable carbon and nitrogen isotope analysis of avian uric acid. Rapid Commun. Mass Spectrom. 22, 3393–3400 (2008).

    Article  CAS  Google Scholar 

  22. Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

    Article  Google Scholar 

  23. Riddick, S. N. et al. Global assessment of the effect of climate change on ammonia emissions from seabirds. Atmos. Environ. 184, 212–223 (2018).

    Article  CAS  Google Scholar 

  24. Schmidt, S. et al. Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical coral cay with high seabird density. J. Environ. Monit. 12, 460–465 (2010).

    Article  CAS  Google Scholar 

  25. Wing, S. R. et al. Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean. Mar. Ecol. Prog. Ser. 510, 1–13 (2014).

    Article  Google Scholar 

  26. Grant, M. L., Bond, A. L. & Lavers, J. L. The influence of seabirds on their breeding, roosting and nesting grounds: a systematic review and meta-analysis. J. Anim. Ecol. 91, 1266–1289 (2022).

    Article  Google Scholar 

  27. Roman, L. et al. Nutrients and seabird biogeography: feather elements differ among oceanic basins in the Southern Hemisphere, reflecting bird size, foraging range and nutrient availability in seawater. Glob. Ecol. Biogeogr. 32, 495–510 (2023).

    Article  Google Scholar 

  28. Grant, M. L., Bond, A. L., Reichman, S. M. & Lavers, J. L. Seabird transported contaminants are dispersed in island ecosystems. Chemosphere 361, 142483 (2024).

    Article  CAS  Google Scholar 

  29. Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711 (2021).

    Article  CAS  Google Scholar 

  30. Healing, S., Benkwitt, C. E., Dunn, R. E. & Graham, N. A. Seabird-vectored pelagic nutrients integrated into temperate intertidal rocky shores. Front. Mar. Sci. 11, 1343966 (2024).

    Article  Google Scholar 

  31. Rodgers, K. A. The cycle of phosphorus in an atoll ecosystem. Appl. Geochem. 9, 311–322 (1994).

    Article  CAS  Google Scholar 

  32. McMahon, A. & Santos, I. R. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano. J. Geophys. Res. Ocean. 122, 7218–7236 (2017).

    Article  Google Scholar 

  33. Riddick, S. N. et al. The global distribution of ammonia emissions from seabird colonies. Atmos. Environ. 55, 319–327 (2012).

    Article  CAS  Google Scholar 

  34. Wentworth, G. R. et al. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. Atmos. Chem. Phys. 16, 1937–1953 (2016).

    Article  CAS  Google Scholar 

  35. Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36, 363–372 (2013).

    Article  Google Scholar 

  36. De La Peña-Lastra, S. Seabird droppings: effects on a global and local level. Sci. Total Environ. 754, 142148 (2021).

    Article  Google Scholar 

  37. Benkwitt, C. E., Carr, P., Wilson, S. K. & Graham, N. A. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. R. Soc. B 289, 20220195 (2022).

    Article  CAS  Google Scholar 

  38. Appoo, J. et al. Seabird presence and seasonality influence nutrient dynamics of atoll habitats. Biotropica 56, e13354 (2024).

    Article  Google Scholar 

  39. Votier, S. C. et al. Geolocation and immersion loggers reveal year-round residency and facilitate nutrient deposition rate estimation of adult red-footed boobies in the Chagos Archipelago, tropical Indian Ocean. J. Avian Biol. 2024, e03185 (2024).

    Article  Google Scholar 

  40. Rankin, L. L. & Jones, H. P. Nearshore ecosystems on seabird islands are potentially influenced by invasive predator eradications and environmental conditions: a case study at the Mercury Islands, New Zealand. Mar. Ecol. Prog. Ser. 661, 83–96 (2021).

    Article  Google Scholar 

  41. Sandin, S. A. et al. Harnessing island–ocean connections to maximize marine benefits of island conservation. Proc. Natl Acad. Sci. USA 119, e2122354119 (2022).

    Article  CAS  Google Scholar 

  42. Stapp, P., Polls, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).

    Article  CAS  Google Scholar 

  43. Roos, R. E. et al. Marine-derived nutrients shape the functional composition of high arctic plant communities. Funct. Ecol. 9, 1606–1621 (2025).

    Article  Google Scholar 

  44. Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl Acad. Sci. USA 107, 2072–2077 (2010).

    Article  CAS  Google Scholar 

  45. Appoo, J., Graham, N. A. J., Jones, C. W., Jaquemet, S. & Bunbury, N. Seabird nutrient subsidy alters size and resource use of functionally important mangrove macroinvertebrates. Ecosphere 15, e70121 (2024).

    Article  Google Scholar 

  46. Wu, L. et al. Nitrogen cycling in the soil–plant system along a series of coral islands affected by seabirds in the South China Sea. Sci. Total Environ. 627, 166–175 (2018).

    Article  CAS  Google Scholar 

  47. Wardle, D. A., Bellingham, P. J., Fukami, T. & Mulder, C. P. H. Promotion of ecosystem carbon sequestration by invasive predators. Biol. Lett. 3, 479–482 (2007).

    Article  Google Scholar 

  48. Orwin, K. H. et al. Burrowing seabird effects on invertebrate communities in soil and litter are dominated by ecosystem engineering rather than nutrient addition. Oecologia 180, 217–230 (2016).

    Article  Google Scholar 

  49. Ellis, J. C. Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181, 227–241 (2005).

    Article  Google Scholar 

  50. Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81, 3117–3132 (2000).

    Article  Google Scholar 

  51. Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey. Biogeosciences 11, 6237–6250 (2014).

    Article  Google Scholar 

  52. Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).

    Article  CAS  Google Scholar 

  53. Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).

    Article  CAS  Google Scholar 

  54. Gillham, M. E. Vegetation of sea and shore-bird colonies on Aldabra atoll. Atoll Res. Bull. 200, 1–19 (1977).

    Article  Google Scholar 

  55. Ellis, J. C., Fariña, J. M. & Witman, J. D. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Animal Ecol. 75, 565–574 (2006).

    Article  Google Scholar 

  56. Maron, J. L. et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76, 3–24 (2006).

    Article  Google Scholar 

  57. Bancroft, W. J., Garkaklis, M. J. & Roberts, J. D. Burrow building in seabird colonies: a soil-forming process in island ecosystems. Pedobiologia 49, 149–165 (2005).

    Article  CAS  Google Scholar 

  58. Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).

    Article  Google Scholar 

  59. Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).

    Article  Google Scholar 

  60. Steibl, S., Bunbury, N., Young, H. S. & Russell, J. C. A renaissance of atoll ecology. Annu. Rev. Ecol. Evol. Syst. 55, 301–322 (2024).

    Article  Google Scholar 

  61. Burger, A. E. Dispersal and germination of seeds of Pisonia grandis, an Indo-Pacific tropical tree associated with insular seabird colonies. J. Trop. Ecol. 21, 263–271 (2005).

    Article  Google Scholar 

  62. Calvino-Cancela, M. Gulls (Laridae) as frugivores and seed dispersers. Plant Ecol. 212, 1149–1157 (2011).

    Article  Google Scholar 

  63. Aoyama, Y., Kawakami, K. & Chiba, S. Seabirds as adhesive seed dispersers of alien and native plants in the oceanic Ogasawara Islands, Japan. Biodivers. Conserv. 21, 2787–2801 (2012).

    Article  Google Scholar 

  64. Mulder, C. P. H., Wardle, D. A., Durrett, M. S. & Bellingham, P. J. Leaf damage by herbivores and pathogens on New Zealand islands that differ in seabird densities. N. Z. J. Ecol. 39, 221–230 (2015).

    Google Scholar 

  65. Hawke, D. J. & Vallance, J. R. Microbial carbon concentration in samples of seabird and non-seabird forest soil: implications for leaf litter cycling. Pedobiologia 58, 33–39 (2015).

    Article  Google Scholar 

  66. Fukami, T. et al. Above-and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).

    Article  Google Scholar 

  67. Hayashi, K. et al. Seabird-affected taluses are denitrification hotspots and potential N2O emitters in the high arctic. Sci. Rep. 8, 17261 (2018).

    Article  Google Scholar 

  68. Grant-Hoffman, M. N., Mulder, C. P. & Bellingham, P. J. Invasive rats alter woody seedling composition on seabird-dominated islands in New Zealand. Oecologia 163, 449–460 (2010).

    Article  Google Scholar 

  69. Rodway, M. S., Wilson, L. K., Lemon, M. J. & Millikin, R. L. The ups and downs of ecosystem engineering by burrow-nesting seabirds on Triangle Island, British Columbia. Mar. Ornithol. 45, 47–55 (2017).

    Article  Google Scholar 

  70. Towns, D. R., Daugherty, C. H. & Cree, A. Raising the prospects for a forgotten fauna: a review of 10 years of conservation effort for New Zealand reptiles. Biol. Conserv. 99, 3–16 (2001).

    Article  Google Scholar 

  71. Markwell, T. J. & Daugherty, C. H. Invertebrate and lizard abundance is greater on seabird-inhabited islands than on seabird-free islands in the Marlborough Sounds, New Zealand. Ecoscience 9, 293–299 (2002).

    Article  Google Scholar 

  72. Bellingham, P. J. et al. New Zealand island restoration: seabirds, predators, and the importance of history. N. Z. J. Ecol. 34, 115 (2010).

    Google Scholar 

  73. Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: allocthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).

    Article  Google Scholar 

  74. Ellis, J. C. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 177–211 (Oxford Univ. Press, 2011).

  75. Kolb, G. S., Young, H. S. & Anderson, W. B. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 212–241 (Oxford Univ. Press, 2011).

  76. Halpin, L. R. et al. Arthropod predation of vertebrates structures trophic dynamics in Island ecosystems. Am. Nat. 198, 540–550 (2021).

    Article  Google Scholar 

  77. Lane, A. M. & Shine, R. When seasnake meets seabird: ecosystem engineering, facilitation and competition. Austral Ecol. 36, 544–549 (2011).

    Article  Google Scholar 

  78. Corkery, I., Bell, B. & Nelson, N. Is the breeding behaviour of nesting seabirds influenced by the presence of a predatory reptile — the tuatara? J. R. Soc. N. Z. 45, 21–30 (2015).

    Article  Google Scholar 

  79. Fischer, J. H., McCauley, C. F., Armstrong, D. P., Debski, I. & Wittmer, H. U. Contrasting responses of lizard occurrences to burrowing by a critically endangered seabird. Community Ecol. 20, 64–74 (2019).

    Article  Google Scholar 

  80. Towns, D. Ahuahu: An Island Conservation Journey in Aotearoa New Zealand (Canterbury Univ. Press, 2023).

  81. Whitworth, D. L., Carter, H. R. & Gress, F. Recovery of a threatened seabird after eradication of an introduced predator: eight years of progress for Scripps’s murrelet at Anacapa Island, California. Biol. Conserv. 162, 52–59 (2013).

    Article  Google Scholar 

  82. Watson, J., Leitch, A. F. & Broad, R. A. The diet of the sea eagle Haliaeetus albicilla and golden eagle Aquila chrysaetos in western Scotland. Ibis 134, 27–31 (1992).

    Article  Google Scholar 

  83. Brattstrom, B. H. Food webs and feeding habits on the Revillagigedo Islands, Mexico. Pac. Sci. 69, 181–195 (2015).

    Article  Google Scholar 

  84. Mills, K. L. Seabirds as part of migratory owl diet on Southeast Farallon Island, California. Mar. Ornithol. 44, 121–126 (2016).

    Article  Google Scholar 

  85. Whitehead, E. A. Little shearwaters (Puffinus assimilis haurakiensis) as prey for morepork (Ninox novaeseelandiae). Notornis 68, 170–172 (2021).

    Article  Google Scholar 

  86. Bosman, A. L. & Hockey, P. A. R. Seabird guano as a determinant of rocky intertidal community structure. Mar. Ecol. Prog. Ser. 32, 247–257 (1986).

    Article  Google Scholar 

  87. Kurle, C. M., Croll, D. A. & Tershy, B. R. Introduced rats indirectly change marine rocky intertidal communities from algae-to invertebrate-dominated. Proc. Natl Acad. Sci. USA 105, 3800–3804 (2008).

    Article  CAS  Google Scholar 

  88. Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    Article  CAS  Google Scholar 

  89. Benkwitt, C. E., Wilson, S. K. & Graham, N. A. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).

    Article  Google Scholar 

  90. Moss, B. Marine reptiles, birds and mammals and nutrient transfers among the seas and the land: an appraisal of current knowledge. J. Exp. Mar. Biol. Ecol. 492, 63–80 (2017).

    Article  Google Scholar 

  91. Dunn, R. E. et al. Active and passive pathways of nutrient transfer in coral reef ecosystems. Coral Reefs https://doi.org/10.1007/s00338-025-02676-z (2025).

    Article  Google Scholar 

  92. Cumming, G. S., James, N. L., Chua, C. M. & Huertas, V. A framework and review of evidence of the importance of coral reefs for marine birds in tropical ecosystems. Ecol. Evol. 14, e70165 (2024).

    Article  Google Scholar 

  93. Weber, S. B. et al. Direct evidence of a prey depletion ‘halo’ surrounding a pelagic predator colony. Proc. Natl Acad. Sci. USA 118, e2101325118 (2021).

    Article  CAS  Google Scholar 

  94. Unsworth, R. K. & Butterworth, E. G. Seagrass meadows provide a significant resource in support of avifauna. Diversity 13, 363 (2021).

    Article  Google Scholar 

  95. Spatz, D. R. et al. Tracking the global application of conservation translocation and social attraction to reverse seabird declines. Proc. Natl Acad. Sci. USA 120, e2214574120 (2023).

    Article  CAS  Google Scholar 

  96. Shatova, O., Wing, S. R., Gault-Ringold, M., Wing, L. & Hoffmann, L. J. Seabird guano enhances phytoplankton production in the Southern Ocean. J. Exp. Mar. Biol. Ecol. 483, 74–87 (2016).

    Article  CAS  Google Scholar 

  97. Alba-González, P., Álvarez-Salgado, X. A., Cobelo-García, A., Kaal, J. & Teira, E. Faeces of marine birds and mammals as substrates for microbial plankton communities. Mar. Environ. Res. 174, 105560 (2022).

    Article  Google Scholar 

  98. Browning, T. J. et al. The role of seabird guano in maintaining North Atlantic summertime productivity. Sci. Total Environ. 897, 165309 (2023).

    Article  CAS  Google Scholar 

  99. Bosman, A. L., Du Toit, J. T., Hockey, P. A. R. & Branch, G. M. A field experiment demonstrating the influence of seabird guano on intertidal primary production. Estuar. Coast. Shelf Sci. 23, 283–294 (1986).

    Article  Google Scholar 

  100. Powell, G. V., Fourqurean, J. W., Kenworthy, W. J. & Zieman, J. C. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuar. Coast. Shelf Sci. 32, 567–579 (1991).

    Article  Google Scholar 

  101. Young, H. S., Hurrey, L. & Kolb, G. S. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 242–260 (Oxford Univ. Press, 2011).

  102. Kazama, K. Bottom-up effects on coastal marine ecosystems due to nitrogen input from seabird feces. Ornithol. Sci. 18, 117–126 (2019).

    Article  Google Scholar 

  103. Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).

    Article  Google Scholar 

  104. Benkwitt, C. E. et al. Seabirds boost coral reef resilience. Sci. Adv. 9, eadj0390 (2023).

    Article  CAS  Google Scholar 

  105. Lange, I. D. & Benkwitt, C. E. Seabird nutrients increase coral calcification rates and boost reef carbonate production. Sci. Rep. 14, 24937 (2024).

    Article  CAS  Google Scholar 

  106. Jeannot, L.-L., Lozano-Peña, J., Zora, A., Brandl, S. & Graham, N. A. J. Seabird-derived nutrients influence feeding pathways and body size in cryptobenthic reef fishes. Proc. R. Soc. B 292, 20250539 (2025).

    Article  CAS  Google Scholar 

  107. Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).

    Article  Google Scholar 

  108. Methratta, E. T. Top-down and bottom-up factors in tidepool communities. J. Exp. Mar. Biol. Ecol. 299, 77–96 (2004).

    Article  Google Scholar 

  109. Littler, M. M., Littler, D. S. & Titlyanov, E. A. Comparisons of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm. Coral Reefs 10, 199–209 (1991).

    Article  Google Scholar 

  110. Lapointe, B. E., Littler, M. M. & Littler, D. S. Modification of benthic community structure by natural eutrophication: the Belize barrier reef. In Proc. Seventh International Coral Reefs Symposium, Guam, 1992, vol. 1, 323–334 (Univ. Guam Marine Laboratory, 1993).

  111. Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).

    Article  Google Scholar 

  112. Benkwitt, C. E. et al. Re-connecting ecosystems: integrating coral reefs into monitoring of island restoration. Ecol. Indic. 170, 113042 (2025).

    Article  Google Scholar 

  113. Fourqurean, J. W., Powell, G. V., Kenworthy, W. J. & Zieman, J. C. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72, 349–358 (1995).

    Article  Google Scholar 

  114. Shatova, O. A., Wing, S. R., Hoffmann, L. J., Wing, L. C. & Gault-Ringold, M. Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean. Estuar. Coast. Shelf Sci. 191, 125–135 (2017).

    Article  CAS  Google Scholar 

  115. Hentati-Sundberg, J. et al. Fueling of a marine-terrestrial ecosystem by a major seabird colony. Sci. Rep. 10, 15455 (2020).

    Article  CAS  Google Scholar 

  116. Appoo, J., Bunbury, N., Jaquemet, S. & Graham, N. A. Seabird nutrient subsidies enrich mangrove ecosystems and are exported to nearby coastal habitats. iScience 27, 109404 (2024).

    Article  Google Scholar 

  117. Andrades, R. et al. Seabird guano reshapes intertidal reef food web in an isolated oceanic islet. Coral Reefs 43, 347–355 (2024).

    Article  CAS  Google Scholar 

  118. Onuf, C. P., Teal, J. M. & Valiela, I. Interactions of nutrients, plant growth and herbivory in a mangrove ecosystem. Ecology 58, 514–526 (1977).

    Article  Google Scholar 

  119. Vizzini, S., Signa, G. & Mazzola, A. Guano-derived nutrient subsidies drive food web structure in coastal ponds. PLoS ONE 11, e0151018 (2016).

    Article  Google Scholar 

  120. Kolb, G. S., Ekholm, J. & Hambäck, P. A. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).

    Article  Google Scholar 

  121. Gagnon, K., Rothäusler, E., Syrjänen, A., Yli-Renko, M. & Jormalainen, V. Seabird guano fertilizes Baltic Sea littoral food webs. PLoS ONE 8, e61284 (2013).

    Article  CAS  Google Scholar 

  122. Thibault, M. et al. Seabird-derived nutrients supply modulates the trophic strategies of mixotrophic corals. Front. Mar. Sci. 8, 790408 (2022).

    Article  Google Scholar 

  123. Gunn, R. L. et al. Terrestrial invasive species alter marine vertebrate behaviour. Nat. Ecol. Evol. 7, 82–91 (2023).

    Article  Google Scholar 

  124. Van Der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article  Google Scholar 

  125. Justel-Díez, M. et al. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton–bacterial interactions in a coastal system. Environ. Microbiol. 25, 1155–1173 (2023).

    Article  Google Scholar 

  126. Cardinale, B. J., Ives, A. R. & Inchausti, P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104, 437–450 (2004).

    Article  Google Scholar 

  127. Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150267 (2016).

    Article  Google Scholar 

  128. Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B Biol. Sci. 285, 20180038 (2018).

    Article  Google Scholar 

  129. Young, L. & VanderWerf, E. (eds) Conservation of Marine Birds (Academic Press, 2023).

  130. González Ortiz, A. A. et al. Fisheries disrupt marine nutrient cycles through biomass extraction. Commun. Earth Environ. 6, 277 (2025).

    Article  Google Scholar 

  131. Rodríguez, A. et al. Artificial lights and seabirds: is light pollution a threat for the threatened Balearic petrels? J. Ornithol. 156, 893–902 (2015).

    Article  Google Scholar 

  132. Grant, M. L., Lavers, J. L., Hutton, I. & Bond, A. L. Seabird breeding islands as sinks for marine plastic debris. Environ. Pollut. 276, 116734 (2021).

    Article  CAS  Google Scholar 

  133. De Jersey, A. M. et al. Seabirds in crisis: plastic ingestion induces proteomic signatures of multiorgan failure and neurodegeneration. Sci. Adv. 11, eads0834 (2025).

    Article  Google Scholar 

  134. Clark, B. L. et al. Global assessment of marine plastic exposure risk for oceanic birds. Nat. Commun. 14, 3665 (2023).

    Article  CAS  Google Scholar 

  135. Garthe, S. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci. Rep. 13, 4779 (2023).

    Article  CAS  Google Scholar 

  136. Jones, H. P. Seabird islands take mere decades to recover following rat eradication. Ecol. Appl. 20, 2075–2080 (2010).

    Article  Google Scholar 

  137. Jones, H. P. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 317–357 (Oxford Univ. Press, 2011).

  138. West, J. A. & Nilsson, R. J. Habitat use and burrow densities of burrow-nesting seabirds on South East Island, Chatham Islands, New Zealand. Notornis 41, 27–37 (1994).

    Article  Google Scholar 

  139. Jones, H. P. & Kress, S. W. A review of the world’s active seabird restoration projects. J. Wildl. Manag. 76, 2–9 (2012).

    Article  Google Scholar 

  140. VanderWerf, E. A. et al. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 545–577 (Academic Press, 2023).

  141. Major, H. L. & Jones, I. L. An experimental study of the use of social information by prospecting nocturnal burrow-nesting seabirds. Condor 113, 572–580 (2011).

    Article  Google Scholar 

  142. Buxton, R. T. & Jones, I. L. An experimental study of social attraction in two species of storm-petrel by acoustic and olfactory cues. Condor 114, 733–743 (2012).

    Article  Google Scholar 

  143. Friesen, M. R., Beggs, J. R. & Gaskett, A. C. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biol. Rev. 92, 1769–1784 (2017).

    Article  Google Scholar 

  144. Wails, C. N. & Major, H. L. Fitting in with the crowd: the role of prospecting in seabird behavioural trends. Can. J. Zool. 95, 247–253 (2017).

    Article  Google Scholar 

  145. Momberg, M. et al. Factors determining nest-site selection of surface-nesting seabirds: a case study on the world’s largest pelagic bird, the wandering albatross (Diomedea exulans). Ibis 165, 190–203 (2023).

    Article  Google Scholar 

  146. Fischer, J. H., Taylor, G., Debski, I. & Wittmer, H. Acoustic attraction system draws in competing seabird species. Notornis 67, 568–572 (2020).

    Article  Google Scholar 

  147. Buxton, R. T., Jones, C., Moller, H. & Towns, D. R. Drivers of seabird population recovery on New Zealand islands after predator eradication. Conserv. Biol. 28, 333–344 (2014).

    Article  Google Scholar 

  148. Masselink, G., McCall, R., Beetham, E., Kench, P. & Storlazzi, C. Role of future reef growth on morphological response of coral reef Islands to sea-level rise. J. Geophys. Res. Earth Surf. 126, e2020JF005749 (2021).

    Article  Google Scholar 

  149. Winter, K. B., Young, R. C. & Lyver, P. O. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 321–344 (Academic Press, 2023).

  150. Jones, H. P. Prognosis for ecosystem recovery following rodent eradication and seabird restoration in an island archipelago. Ecol. Appl. 20, 1204–1216 (2010).

    Article  Google Scholar 

  151. Pascoe, P. P. et al. Decadal change in seabird-driven isotopes on islands with differing invasion histories. Ecol. Appl. 35, e70030 (2025).

    Article  Google Scholar 

  152. Miller-ter Kuile, A. et al. Impacts of rodent eradication on seed predation and plant community biomass on a tropical atoll. Biotropica 53, 232–242 (2021).

    Article  Google Scholar 

  153. Graham, N. A., Benkwitt, C. E. & Jones, H. P. Species eradication for ecosystem restoration. Curr. Biol. 34, R407–R412 (2024).

    Article  CAS  Google Scholar 

  154. Roberts, C. M., Duncan, R. P. & Wilson, K.-J. Burrowing seabirds affect forest regeneration, Rangatira Island, Chatham Islands, New Zealand. N. Z. J. Ecol. 31, 208–222 (2007).

    Google Scholar 

  155. Berr, T. et al. Seabird and reef conservation must include coral islands. Trends Ecol. Evol. 38, 490–494 (2023).

    Article  Google Scholar 

  156. Steibl, S. et al. Atolls are globally important sites for tropical seabirds. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02496-4 (2024).

  157. Beetham, E., Kench, P. S. & Popinet, S. Future reef growth can mitigate physical impacts of sea-level rise on atoll islands. Earths Future 5, 1002–1014 (2017).

    Article  Google Scholar 

  158. Steibl, S. et al. Rethinking atoll futures: local resilience to global challenges. Trends Ecol. Evol. 39, 258–266 (2024).

    Article  Google Scholar 

  159. Kench, P. S., Brander, R. W., Parnell, K. E. & McLean, R. F. Wave energy gradients across a Maldivian atoll: implications for island geomorphology. Geomorphology 81, 1–17 (2006).

    Article  Google Scholar 

  160. Toth, L. T. et al. The potential for coral reef restoration to mitigate coastal flooding as sea levels rise. Nat. Commun. 14, 2313 (2023).

    Article  CAS  Google Scholar 

  161. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  Google Scholar 

  162. Kappes, P. J. et al. Do invasive mammal eradications from islands support climate change adaptation and mitigation? Climate 9, 172 (2021).

    Article  Google Scholar 

  163. Honzák, M. et al. Toward the quantification of the climate co-benefits of invasive mammal eradication on islands: a scalable framework for restoration monitoring. Environ. Res. Lett. 19, 114018 (2024).

    Article  Google Scholar 

  164. Longley-Wood, K., Engels, M., Lafferty, K. D., McLaughlin, J. P. & Wegmann, A. Transforming Palmyra Atoll to native-tree dominance will increase net carbon storage and reduce dissolved organic carbon reef runoff. PLoS ONE 17, e0262621 (2022).

    Article  CAS  Google Scholar 

  165. Oppel, S. et al. Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping. Nat. Conserv. 7, 1–13 (2014).

    Article  Google Scholar 

  166. Borker, A. L. et al. Do soundscape indices predict landscape-scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restor. Ecol. 28, 252–260 (2020).

    Article  Google Scholar 

  167. Harris, S. A., Shears, N. T. & Radford, C. A. Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods Ecol. Evol. 7, 713–724 (2016).

    Article  Google Scholar 

  168. Dunn, R. E. Atolls are vital for seabirds and vice versa. Nat. Ecol. Evol. 8, 1784–1785 (2024).

    Article  Google Scholar 

  169. Mizutani, H., Kabaya, Y., Moors, P. J., Speir, T. W. & Lyon, G. L. Nitrogen isotope ratios identify deserted seabird colonies. Auk 108, 960–964 (1991).

    Google Scholar 

  170. Pascoe, P., Shaw, J., Trebilco, R., Kong, S. & Jones, H. Island characteristics and sampling methodologies influence the use of stable isotopes as an ecosystem function assessment tool. Ecol. Solut. Evid. 2, e12082 (2021).

    Article  Google Scholar 

  171. Sato, N. et al. The distinctive material cycle associated with seabirds and land crabs on a pristine oceanic island: a case study of Minamiiwoto, Ogasawara Islands, subtropical Japan. Oecologia 207, 88 (2025).

    Article  Google Scholar 

  172. Pascoe, P. et al. Temporal and spatial variability in stable isotope values on seabird Islands: what, where and when to sample. Ecol. Indic. 143, 109344 (2022).

    Article  CAS  Google Scholar 

  173. Stergiou, K. I. & Browman, H. I. Imbalances in the reporting and teaching of ecology from limnetic, oceanic and terrestrial eco-domains. Mar. Ecol. Prog. Ser. 304, 292–297 (2005).

    Google Scholar 

  174. Rotjan, R. D. & Idjadi, J. Surf and turf: toward better synthesis by cross-system understanding. Oikos 122, 285–287 (2013).

    Article  Google Scholar 

  175. Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).

    Google Scholar 

  176. Morten, J. M. et al. Global marine flyways identified for long-distance migrating seabirds from tracking data. Glob. Ecol. Biogeogr. 34, e70004 (2025).

    Article  Google Scholar 

  177. Roman, J. et al. Migrating baleen whales transport high-latitude nutrients to tropical and subtropical ecosystems. Nat. Commun. 16, 2125 (2025).

    Article  CAS  Google Scholar 

  178. Jauharee, A. R. & Adam, M. S. Significance of Seabirds to the Maldivian Tuna Fishery (Indian Ocean Tuna Commission, 2012).

  179. Signa, G., Mazzola, A. & Vizzini, S. Seabird influence on ecological processes in coastal marine ecosystems: an overlooked role? A critical review. Estuar. Coast. Shelf Sci. 250, 107164 (2021).

    Article  Google Scholar 

  180. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article  Google Scholar 

  181. Carneiro, A. P. et al. The BirdLife Seabird Tracking Database: 20 years of collaboration for marine conservation. Biol. Conserv. 299, 110813 (2024).

    Article  Google Scholar 

  182. Young, H. S., Miller-ter Kuile, A., McCauley, D. J. & Dirzo, R. Cascading community and ecosystem consequences of introduced coconut palms (Cocos nucifera) in tropical islands. Can. J. Zool. 95, 139–148 (2017).

    Article  Google Scholar 

  183. Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).

    Article  Google Scholar 

  184. Towns, D. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 56–90 (Oxford Univ. Press, 2011).

  185. Spatz, D. R. et al. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 97–130 (Academic Press, 2023).

  186. Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote pacific islets. Sci. Rep. 7, 3721 (2017).

    Article  Google Scholar 

  187. Choisnard, N. et al. Tracing the fate of seabird-derived nitrogen in a coral reef using nitrate and coral skeleton nitrogen isotopes. Limnol. Oceanogr. 69, 309–324 (2024).

    Article  CAS  Google Scholar 

  188. Delevaux, J. M. et al. A linked land–sea modeling framework to inform ridge-to-reef management in high oceanic islands. PLoS ONE 13, e0193230 (2018).

    Article  Google Scholar 

  189. Thorne, L. H., Clay, T. A., Phillips, R. A., Silvers, L. G. & Wakefield, E. D. Effects of wind on the movement, behavior, energetics, and life history of seabirds. Mar. Ecol. Prog. Ser. 723, 73–117 (2023).

    Article  CAS  Google Scholar 

  190. Shepard, E., Cole, E.-L., Neate, A., Lempidakis, E. & Ross, A. Wind prevents cliff-breeding birds from accessing nests through loss of flight control. eLife 8, e43842 (2019).

    Article  Google Scholar 

  191. Leichter, J. J., Stewart, H. L. & Miller, S. L. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48, 1394–1407 (2003).

    Article  Google Scholar 

  192. Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).

    Article  Google Scholar 

  193. Steven, A. D. L. & Atkinson, M. J. Nutrient uptake by coral-reef microatolls. Coral Reefs 22, 197–204 (2003).

    Article  Google Scholar 

  194. Dunn, R. E. et al. Island restoration to rebuild seabird populations and amplify coral reef functioning. Conserv. Biol. 39, e14313 (2025).

    Article  Google Scholar 

  195. Stuart, C. et al. Seascape configuration determines spatial patterns of seabird-vectored nutrient enrichment to coral reefs. Ecography 2025, e07863 (2025).

    Article  Google Scholar 

  196. Morais, R. A., Patricio-Valerio, L., Narvaez, P., Parravicini, V. & Brandl, S. J. Rethinking Darwin’s coral reef paradox and the ubiquity of ‘marine oases’. Curr. Biol. 35, 3241–3250.e6 (2025).

    Article  CAS  Google Scholar 

  197. Polis, G. A., Hurd, S. D., Jackson, C. T. & Piñero, F. S. El Niño effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).

    Google Scholar 

  198. Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the great barrier reef, Australia. Funct. Plant. Biol. 31, 517–528 (2004).

    Article  CAS  Google Scholar 

  199. Tomlinson, S. et al. Applications and implications of ecological energetics. Trends Ecol. Evol. 29, 280–290 (2014).

    Article  Google Scholar 

  200. Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    Article  CAS  Google Scholar 

  201. Edney, A. J. & Wood, M. J. Applications of digital imaging and analysis in seabird monitoring and research. Ibis 163, 317–337 (2021).

    Article  Google Scholar 

  202. Gauthreaux, S. A. Jr. & Belser, C. G. Radar ornithology and biological conservation. Auk 120, 266–277 (2003).

    Article  Google Scholar 

  203. Goddijn-Murphy, L., O’Hanlon, N. J., James, N. A., Masden, E. A. & Bond, A. L. Earth observation data for seabirds and their habitats: an introduction. Remote Sens. Appl. Soc. Environ. 24, 100619 (2021).

    Google Scholar 

  204. Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 7, 139–153 (2021).

    Article  Google Scholar 

  205. Brodie, J., De’ath, G., Devlin, M., Furnas, M. & Wright, M. Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar. Freshw. Res. 58, 342–353 (2007).

    Article  CAS  Google Scholar 

  206. Suryan, R. M., Santora, J. A. & Sydeman, W. J. New approach for using remotely sensed chlorophyll a to identify seabird hotspots. Mar. Ecol. Prog. Ser. 451, 213–225 (2012).

    Article  Google Scholar 

  207. Rakotoarivony, M. N. A. et al. Using imaging spectroscopy to assess the impacts of invasive plants on aboveground and belowground characteristics. GIScience Remote Sens. 61, 2399388 (2024).

    Article  Google Scholar 

  208. Smith, M.-L. et al. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol. Appl. 12, 1286–1302 (2002).

    Article  Google Scholar 

  209. Thomson, E. R. et al. Multiscale mapping of plant functional groups and plant traits in the high arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 16, 055006 (2021).

    Article  CAS  Google Scholar 

  210. Wang, Z. et al. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens. 8, 491 (2016).

    Article  Google Scholar 

  211. Noppen, L. et al. Constraining industrial ammonia emissions using hyperspectral infrared imaging. Remote Sens. Environ. 291, 113559 (2023).

    Article  Google Scholar 

  212. Garcia-Quintas, A. et al. Machine and deep learning approaches to understand and predict habitat suitability for seabird breeding. Ecol. Evol. 13, e10549 (2023).

    Article  Google Scholar 

  213. Chapuis, L., Williams, B., Gordon, T. A. C. & Simpson, S. D. Low-cost action cameras offer potential for widespread acoustic monitoring of marine ecosystems. Ecol. Indic. 129, 107957 (2021).

    Article  Google Scholar 

  214. Williams, B. et al. Enhancing automated analysis of marine soundscapes using ecoacoustic indices and machine learning. Ecol. Indic. 140, 108986 (2022).

    Article  Google Scholar 

  215. Borker, A. L. Applying Ecoacoustics to Bird Conservation and Monitoring (UC Santa Cruz, 2018).

  216. Penar, W., Magiera, A. & Klocek, C. Applications of bioacoustics in animal ecology. Ecol. Complex. 43, 100847 (2020).

    Article  Google Scholar 

  217. Lamont, T. A. C. et al. The sound of recovery: coral reef restoration success is detectable in the soundscape. J. Appl. Ecol. 59, 742–756 (2022).

    Article  Google Scholar 

  218. McInnes, J. C., Bird, J. P., Deagle, B. E., Polanowski, A. M. & Shaw, J. D. Using DNA metabarcoding to detect burrowing seabirds in a remote landscape. Conserv. Sci. Pract. 3, e439 (2021).

    Article  Google Scholar 

  219. de Leeuw, J. J., van den Brink, X., Gabrielsen, G. W. & Nijland, R. DNA metabarcoding reveals high diversity of fish and macrofaunal species in diets of little auks and other Arctic seabird species in Svalbard. Polar Biol. 47, 1013–1023 (2024).

    Article  Google Scholar 

  220. Duda, M. P. et al. Reconstructing long-term changes in avian populations using lake sediments: opening a window onto the past. Front. Ecol. Evol. 9, 698175 (2021).

    Article  Google Scholar 

  221. Davis, R. A., Seddon, P. J., Craig, M. D. & Russell, J. C. A review of methods for detecting rats at low densities, with implications for surveillance. Biol. Invasions 25, 3773–3791 (2023).

    Article  Google Scholar 

  222. Piaggio, A. J. et al. Evaluation of environmental DNA as a surveillance tool for invasive house mice (Mus musculus). Environ. DNA 7, e70069 (2025).

    Article  CAS  Google Scholar 

  223. Clay, C. G. et al. Exploring species and functional diversity of fishes in Cambodian coastal habitats using eDNA metabarcoding. Coral Reefs 44, 221–241 (2025).

    Article  CAS  Google Scholar 

  224. Gallego, R., Jacobs-Palmer, E., Cribari, K. & Kelly, R. P. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc. R. Soc. B Biol. Sci. 287, 20202424 (2020).

    Article  CAS  Google Scholar 

  225. Wright, D. G., van der Wal, R., Wanless, S. & Bardgett, R. D. The influence of seabird nutrient enrichment and grazing on the structure and function of island soil food webs. Soil. Biol. Biochem. 42, 592–600 (2010).

    Article  CAS  Google Scholar 

  226. Glasl, B., Webster, N. S. & Bourne, D. G. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar. Biol. 164, 91 (2017).

    Article  Google Scholar 

  227. Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Mol. Ecol. 30, 2937–2958 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the David and Lucile Packard Foundation (D.J.W.), the Bertarelli Foundation as part of the Bertarelli Programme in Marine Science (C.E.B., N.A.J.G. and Y.M.), the Alexander von Humboldt Foundation (S.S.), the Leverhulme Trust (Y.M.) and the NERC ENVISION doctoral training programme (L.-L.J.) for funding.

Author information

Authors and Affiliations

Authors

Contributions

H.P.J. and N.A.J.G. amassed the co-authors of the article. H.P.J. led initial discussions of the article structure and content. The authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Holly P. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Leandro Bugoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, H.P., Appoo, J., Benkwitt, C.E. et al. The circular seabird economy is critical for oceans, islands and people. Nat. Rev. Biodivers. 1, 689–702 (2025). https://doi.org/10.1038/s44358-025-00099-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00099-w

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene