Abstract
Nearly a third of seabird species are at risk of extinction, rendering them among the most threatened bird taxa globally. The decline in seabird populations has major ramifications for their associated ecosystems. An expansive literature covers seabird impacts on their breeding islands, and growing research expands understanding of the circular seabird economy — cross-ecosystem connections of seabirds from oceans to islands, and back to nearshore marine ecosystems, mainly driven by nutrient transfer. Amid the twin biodiversity and climate crises, maintaining and restoring the circular seabird economy is one way to achieve large-scale, cross-ecosystem impacts with simple and time-tested conservation methods. This Review summarizes researchers’ understanding of the circular seabird economy and outlines goals for future research. Historically, research has focused on terrestrial impacts, with emerging research explicitly studying the cross-ecosystem impacts of seabirds. We identify substantial knowledge gaps, with research needed to understand how the circular seabird economy changes with space, time, across biomes and with island size. Emerging analytic and monitoring tools will help to propel this research forward. Many coastal communities, especially Indigenous people, rely on seabirds for their livelihoods and cultural connections, and so taking a people-centred approach incorporating Indigenous knowledge and perspectives is critical moving forward.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Change history
16 January 2026
A Correction to this paper has been published: https://doi.org/10.1038/s44358-026-00130-8
References
Brooke, M. The food consumption of the world’s seabirds. Proc. R. Soc. Lond. B Biol. Sci. 271, S246–S248 (2004).
Karpouzi, V. S., Watson, R. & Pauly, D. Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment. Mar. Ecol. Prog. Ser. 343, 87–99 (2007).
Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013.e2 (2018).
OECD. OECD Review of Fisheries 2025 (OECD Publishing, 2025).
Schreiber, E. A. & Burger, J. Biology of Marine Birds (CRC Press, 2001).
Jovani, R. et al. Colony size and foraging range in seabirds. Oikos 125, 968–974 (2016).
Mulder, C. P. H. et al. (eds) Seabird Islands: Ecology, Invasion, and Restoration (Oxford Univ. Press, 2011).
Jones, H. P., Borrelle, S. B. & Rankin, L. L. Land–sea linkages depend on macroalgal species, predator invasion history in a New Zealand archipelago. Restor. Ecol. 31, e13798 (2023).
Dias, M. P. et al. Threats to seabirds: a global assessment. Biol. Conserv. 237, 525–537 (2019).
Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).
Borrelle, S., Jones, H., Richard, Y. & Salguero-Gomez, R. Estimating the impact of marine threats to seabird recovery after predator eradication. Mar. Ornithol. 51, 225–236 (2023).
Sydeman, W. J., Thompson, S. A. & Kitaysky, A. Seabirds and climate change: roadmap for the future. Mar. Ecol. Prog. Ser. 454, 107–117 (2012).
Orgeret, F. et al. Climate change impacts on seabirds and marine mammals: the importance of study duration, thermal tolerance and generation time. Ecol. Lett. 25, 218–239 (2022).
Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).
Jodice, P. G. R. & Suryan, R. M. in Landscape-Scale Conservation Planning (eds Trombulak, S. C. & Baldwin, R. F.) 139–165 (Springer Netherlands, 2010).
Dunn, R. E., White, C. R. & Green, J. A. A model to estimate seabird field metabolic rates. Biol. Lett. 14, 20180190 (2018).
Allen, P., Peters, A., Stiefel, Z. & Clarke, R. H. Seabird moult timing and duration: implications for at-sea threat exposure worldwide. Glob. Ecol. Conserv. 59, e03558 (2025).
Smith, J. L., Mulder, C. P. H. & Ellis, J. C. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 27–55 (Oxford Univ. Press, 2011).
De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O., Huerta-Díaz, M. Á & Otero, X. L. Global deposition of potentially toxic metals via faecal material in seabird colonies. Sci. Rep. 12, 22392 (2022).
Phillips, R. A., Lewis, S., González-Solís, J. & Daunt, F. Causes and consequences of individual variability and specialization in foraging and migration strategies of seabirds. Mar. Ecol. Prog. Ser. 578, 117–150 (2017).
Bird, M. I., Tait, E., Wurster, C. M. & Furness, R. W. Stable carbon and nitrogen isotope analysis of avian uric acid. Rapid Commun. Mass Spectrom. 22, 3393–3400 (2008).
Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).
Riddick, S. N. et al. Global assessment of the effect of climate change on ammonia emissions from seabirds. Atmos. Environ. 184, 212–223 (2018).
Schmidt, S. et al. Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical coral cay with high seabird density. J. Environ. Monit. 12, 460–465 (2010).
Wing, S. R. et al. Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean. Mar. Ecol. Prog. Ser. 510, 1–13 (2014).
Grant, M. L., Bond, A. L. & Lavers, J. L. The influence of seabirds on their breeding, roosting and nesting grounds: a systematic review and meta-analysis. J. Anim. Ecol. 91, 1266–1289 (2022).
Roman, L. et al. Nutrients and seabird biogeography: feather elements differ among oceanic basins in the Southern Hemisphere, reflecting bird size, foraging range and nutrient availability in seawater. Glob. Ecol. Biogeogr. 32, 495–510 (2023).
Grant, M. L., Bond, A. L., Reichman, S. M. & Lavers, J. L. Seabird transported contaminants are dispersed in island ecosystems. Chemosphere 361, 142483 (2024).
Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711 (2021).
Healing, S., Benkwitt, C. E., Dunn, R. E. & Graham, N. A. Seabird-vectored pelagic nutrients integrated into temperate intertidal rocky shores. Front. Mar. Sci. 11, 1343966 (2024).
Rodgers, K. A. The cycle of phosphorus in an atoll ecosystem. Appl. Geochem. 9, 311–322 (1994).
McMahon, A. & Santos, I. R. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano. J. Geophys. Res. Ocean. 122, 7218–7236 (2017).
Riddick, S. N. et al. The global distribution of ammonia emissions from seabird colonies. Atmos. Environ. 55, 319–327 (2012).
Wentworth, G. R. et al. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. Atmos. Chem. Phys. 16, 1937–1953 (2016).
Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36, 363–372 (2013).
De La Peña-Lastra, S. Seabird droppings: effects on a global and local level. Sci. Total Environ. 754, 142148 (2021).
Benkwitt, C. E., Carr, P., Wilson, S. K. & Graham, N. A. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. R. Soc. B 289, 20220195 (2022).
Appoo, J. et al. Seabird presence and seasonality influence nutrient dynamics of atoll habitats. Biotropica 56, e13354 (2024).
Votier, S. C. et al. Geolocation and immersion loggers reveal year-round residency and facilitate nutrient deposition rate estimation of adult red-footed boobies in the Chagos Archipelago, tropical Indian Ocean. J. Avian Biol. 2024, e03185 (2024).
Rankin, L. L. & Jones, H. P. Nearshore ecosystems on seabird islands are potentially influenced by invasive predator eradications and environmental conditions: a case study at the Mercury Islands, New Zealand. Mar. Ecol. Prog. Ser. 661, 83–96 (2021).
Sandin, S. A. et al. Harnessing island–ocean connections to maximize marine benefits of island conservation. Proc. Natl Acad. Sci. USA 119, e2122354119 (2022).
Stapp, P., Polls, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).
Roos, R. E. et al. Marine-derived nutrients shape the functional composition of high arctic plant communities. Funct. Ecol. 9, 1606–1621 (2025).
Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl Acad. Sci. USA 107, 2072–2077 (2010).
Appoo, J., Graham, N. A. J., Jones, C. W., Jaquemet, S. & Bunbury, N. Seabird nutrient subsidy alters size and resource use of functionally important mangrove macroinvertebrates. Ecosphere 15, e70121 (2024).
Wu, L. et al. Nitrogen cycling in the soil–plant system along a series of coral islands affected by seabirds in the South China Sea. Sci. Total Environ. 627, 166–175 (2018).
Wardle, D. A., Bellingham, P. J., Fukami, T. & Mulder, C. P. H. Promotion of ecosystem carbon sequestration by invasive predators. Biol. Lett. 3, 479–482 (2007).
Orwin, K. H. et al. Burrowing seabird effects on invertebrate communities in soil and litter are dominated by ecosystem engineering rather than nutrient addition. Oecologia 180, 217–230 (2016).
Ellis, J. C. Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181, 227–241 (2005).
Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81, 3117–3132 (2000).
Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey. Biogeosciences 11, 6237–6250 (2014).
Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).
Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).
Gillham, M. E. Vegetation of sea and shore-bird colonies on Aldabra atoll. Atoll Res. Bull. 200, 1–19 (1977).
Ellis, J. C., Fariña, J. M. & Witman, J. D. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Animal Ecol. 75, 565–574 (2006).
Maron, J. L. et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76, 3–24 (2006).
Bancroft, W. J., Garkaklis, M. J. & Roberts, J. D. Burrow building in seabird colonies: a soil-forming process in island ecosystems. Pedobiologia 49, 149–165 (2005).
Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).
Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).
Steibl, S., Bunbury, N., Young, H. S. & Russell, J. C. A renaissance of atoll ecology. Annu. Rev. Ecol. Evol. Syst. 55, 301–322 (2024).
Burger, A. E. Dispersal and germination of seeds of Pisonia grandis, an Indo-Pacific tropical tree associated with insular seabird colonies. J. Trop. Ecol. 21, 263–271 (2005).
Calvino-Cancela, M. Gulls (Laridae) as frugivores and seed dispersers. Plant Ecol. 212, 1149–1157 (2011).
Aoyama, Y., Kawakami, K. & Chiba, S. Seabirds as adhesive seed dispersers of alien and native plants in the oceanic Ogasawara Islands, Japan. Biodivers. Conserv. 21, 2787–2801 (2012).
Mulder, C. P. H., Wardle, D. A., Durrett, M. S. & Bellingham, P. J. Leaf damage by herbivores and pathogens on New Zealand islands that differ in seabird densities. N. Z. J. Ecol. 39, 221–230 (2015).
Hawke, D. J. & Vallance, J. R. Microbial carbon concentration in samples of seabird and non-seabird forest soil: implications for leaf litter cycling. Pedobiologia 58, 33–39 (2015).
Fukami, T. et al. Above-and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).
Hayashi, K. et al. Seabird-affected taluses are denitrification hotspots and potential N2O emitters in the high arctic. Sci. Rep. 8, 17261 (2018).
Grant-Hoffman, M. N., Mulder, C. P. & Bellingham, P. J. Invasive rats alter woody seedling composition on seabird-dominated islands in New Zealand. Oecologia 163, 449–460 (2010).
Rodway, M. S., Wilson, L. K., Lemon, M. J. & Millikin, R. L. The ups and downs of ecosystem engineering by burrow-nesting seabirds on Triangle Island, British Columbia. Mar. Ornithol. 45, 47–55 (2017).
Towns, D. R., Daugherty, C. H. & Cree, A. Raising the prospects for a forgotten fauna: a review of 10 years of conservation effort for New Zealand reptiles. Biol. Conserv. 99, 3–16 (2001).
Markwell, T. J. & Daugherty, C. H. Invertebrate and lizard abundance is greater on seabird-inhabited islands than on seabird-free islands in the Marlborough Sounds, New Zealand. Ecoscience 9, 293–299 (2002).
Bellingham, P. J. et al. New Zealand island restoration: seabirds, predators, and the importance of history. N. Z. J. Ecol. 34, 115 (2010).
Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: allocthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
Ellis, J. C. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 177–211 (Oxford Univ. Press, 2011).
Kolb, G. S., Young, H. S. & Anderson, W. B. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 212–241 (Oxford Univ. Press, 2011).
Halpin, L. R. et al. Arthropod predation of vertebrates structures trophic dynamics in Island ecosystems. Am. Nat. 198, 540–550 (2021).
Lane, A. M. & Shine, R. When seasnake meets seabird: ecosystem engineering, facilitation and competition. Austral Ecol. 36, 544–549 (2011).
Corkery, I., Bell, B. & Nelson, N. Is the breeding behaviour of nesting seabirds influenced by the presence of a predatory reptile — the tuatara? J. R. Soc. N. Z. 45, 21–30 (2015).
Fischer, J. H., McCauley, C. F., Armstrong, D. P., Debski, I. & Wittmer, H. U. Contrasting responses of lizard occurrences to burrowing by a critically endangered seabird. Community Ecol. 20, 64–74 (2019).
Towns, D. Ahuahu: An Island Conservation Journey in Aotearoa New Zealand (Canterbury Univ. Press, 2023).
Whitworth, D. L., Carter, H. R. & Gress, F. Recovery of a threatened seabird after eradication of an introduced predator: eight years of progress for Scripps’s murrelet at Anacapa Island, California. Biol. Conserv. 162, 52–59 (2013).
Watson, J., Leitch, A. F. & Broad, R. A. The diet of the sea eagle Haliaeetus albicilla and golden eagle Aquila chrysaetos in western Scotland. Ibis 134, 27–31 (1992).
Brattstrom, B. H. Food webs and feeding habits on the Revillagigedo Islands, Mexico. Pac. Sci. 69, 181–195 (2015).
Mills, K. L. Seabirds as part of migratory owl diet on Southeast Farallon Island, California. Mar. Ornithol. 44, 121–126 (2016).
Whitehead, E. A. Little shearwaters (Puffinus assimilis haurakiensis) as prey for morepork (Ninox novaeseelandiae). Notornis 68, 170–172 (2021).
Bosman, A. L. & Hockey, P. A. R. Seabird guano as a determinant of rocky intertidal community structure. Mar. Ecol. Prog. Ser. 32, 247–257 (1986).
Kurle, C. M., Croll, D. A. & Tershy, B. R. Introduced rats indirectly change marine rocky intertidal communities from algae-to invertebrate-dominated. Proc. Natl Acad. Sci. USA 105, 3800–3804 (2008).
Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).
Moss, B. Marine reptiles, birds and mammals and nutrient transfers among the seas and the land: an appraisal of current knowledge. J. Exp. Mar. Biol. Ecol. 492, 63–80 (2017).
Dunn, R. E. et al. Active and passive pathways of nutrient transfer in coral reef ecosystems. Coral Reefs https://doi.org/10.1007/s00338-025-02676-z (2025).
Cumming, G. S., James, N. L., Chua, C. M. & Huertas, V. A framework and review of evidence of the importance of coral reefs for marine birds in tropical ecosystems. Ecol. Evol. 14, e70165 (2024).
Weber, S. B. et al. Direct evidence of a prey depletion ‘halo’ surrounding a pelagic predator colony. Proc. Natl Acad. Sci. USA 118, e2101325118 (2021).
Unsworth, R. K. & Butterworth, E. G. Seagrass meadows provide a significant resource in support of avifauna. Diversity 13, 363 (2021).
Spatz, D. R. et al. Tracking the global application of conservation translocation and social attraction to reverse seabird declines. Proc. Natl Acad. Sci. USA 120, e2214574120 (2023).
Shatova, O., Wing, S. R., Gault-Ringold, M., Wing, L. & Hoffmann, L. J. Seabird guano enhances phytoplankton production in the Southern Ocean. J. Exp. Mar. Biol. Ecol. 483, 74–87 (2016).
Alba-González, P., Álvarez-Salgado, X. A., Cobelo-García, A., Kaal, J. & Teira, E. Faeces of marine birds and mammals as substrates for microbial plankton communities. Mar. Environ. Res. 174, 105560 (2022).
Browning, T. J. et al. The role of seabird guano in maintaining North Atlantic summertime productivity. Sci. Total Environ. 897, 165309 (2023).
Bosman, A. L., Du Toit, J. T., Hockey, P. A. R. & Branch, G. M. A field experiment demonstrating the influence of seabird guano on intertidal primary production. Estuar. Coast. Shelf Sci. 23, 283–294 (1986).
Powell, G. V., Fourqurean, J. W., Kenworthy, W. J. & Zieman, J. C. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuar. Coast. Shelf Sci. 32, 567–579 (1991).
Young, H. S., Hurrey, L. & Kolb, G. S. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 242–260 (Oxford Univ. Press, 2011).
Kazama, K. Bottom-up effects on coastal marine ecosystems due to nitrogen input from seabird feces. Ornithol. Sci. 18, 117–126 (2019).
Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).
Benkwitt, C. E. et al. Seabirds boost coral reef resilience. Sci. Adv. 9, eadj0390 (2023).
Lange, I. D. & Benkwitt, C. E. Seabird nutrients increase coral calcification rates and boost reef carbonate production. Sci. Rep. 14, 24937 (2024).
Jeannot, L.-L., Lozano-Peña, J., Zora, A., Brandl, S. & Graham, N. A. J. Seabird-derived nutrients influence feeding pathways and body size in cryptobenthic reef fishes. Proc. R. Soc. B 292, 20250539 (2025).
Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).
Methratta, E. T. Top-down and bottom-up factors in tidepool communities. J. Exp. Mar. Biol. Ecol. 299, 77–96 (2004).
Littler, M. M., Littler, D. S. & Titlyanov, E. A. Comparisons of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm. Coral Reefs 10, 199–209 (1991).
Lapointe, B. E., Littler, M. M. & Littler, D. S. Modification of benthic community structure by natural eutrophication: the Belize barrier reef. In Proc. Seventh International Coral Reefs Symposium, Guam, 1992, vol. 1, 323–334 (Univ. Guam Marine Laboratory, 1993).
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).
Benkwitt, C. E. et al. Re-connecting ecosystems: integrating coral reefs into monitoring of island restoration. Ecol. Indic. 170, 113042 (2025).
Fourqurean, J. W., Powell, G. V., Kenworthy, W. J. & Zieman, J. C. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72, 349–358 (1995).
Shatova, O. A., Wing, S. R., Hoffmann, L. J., Wing, L. C. & Gault-Ringold, M. Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean. Estuar. Coast. Shelf Sci. 191, 125–135 (2017).
Hentati-Sundberg, J. et al. Fueling of a marine-terrestrial ecosystem by a major seabird colony. Sci. Rep. 10, 15455 (2020).
Appoo, J., Bunbury, N., Jaquemet, S. & Graham, N. A. Seabird nutrient subsidies enrich mangrove ecosystems and are exported to nearby coastal habitats. iScience 27, 109404 (2024).
Andrades, R. et al. Seabird guano reshapes intertidal reef food web in an isolated oceanic islet. Coral Reefs 43, 347–355 (2024).
Onuf, C. P., Teal, J. M. & Valiela, I. Interactions of nutrients, plant growth and herbivory in a mangrove ecosystem. Ecology 58, 514–526 (1977).
Vizzini, S., Signa, G. & Mazzola, A. Guano-derived nutrient subsidies drive food web structure in coastal ponds. PLoS ONE 11, e0151018 (2016).
Kolb, G. S., Ekholm, J. & Hambäck, P. A. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).
Gagnon, K., Rothäusler, E., Syrjänen, A., Yli-Renko, M. & Jormalainen, V. Seabird guano fertilizes Baltic Sea littoral food webs. PLoS ONE 8, e61284 (2013).
Thibault, M. et al. Seabird-derived nutrients supply modulates the trophic strategies of mixotrophic corals. Front. Mar. Sci. 8, 790408 (2022).
Gunn, R. L. et al. Terrestrial invasive species alter marine vertebrate behaviour. Nat. Ecol. Evol. 7, 82–91 (2023).
Van Der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Justel-Díez, M. et al. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton–bacterial interactions in a coastal system. Environ. Microbiol. 25, 1155–1173 (2023).
Cardinale, B. J., Ives, A. R. & Inchausti, P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104, 437–450 (2004).
Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150267 (2016).
Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B Biol. Sci. 285, 20180038 (2018).
Young, L. & VanderWerf, E. (eds) Conservation of Marine Birds (Academic Press, 2023).
González Ortiz, A. A. et al. Fisheries disrupt marine nutrient cycles through biomass extraction. Commun. Earth Environ. 6, 277 (2025).
Rodríguez, A. et al. Artificial lights and seabirds: is light pollution a threat for the threatened Balearic petrels? J. Ornithol. 156, 893–902 (2015).
Grant, M. L., Lavers, J. L., Hutton, I. & Bond, A. L. Seabird breeding islands as sinks for marine plastic debris. Environ. Pollut. 276, 116734 (2021).
De Jersey, A. M. et al. Seabirds in crisis: plastic ingestion induces proteomic signatures of multiorgan failure and neurodegeneration. Sci. Adv. 11, eads0834 (2025).
Clark, B. L. et al. Global assessment of marine plastic exposure risk for oceanic birds. Nat. Commun. 14, 3665 (2023).
Garthe, S. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci. Rep. 13, 4779 (2023).
Jones, H. P. Seabird islands take mere decades to recover following rat eradication. Ecol. Appl. 20, 2075–2080 (2010).
Jones, H. P. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 317–357 (Oxford Univ. Press, 2011).
West, J. A. & Nilsson, R. J. Habitat use and burrow densities of burrow-nesting seabirds on South East Island, Chatham Islands, New Zealand. Notornis 41, 27–37 (1994).
Jones, H. P. & Kress, S. W. A review of the world’s active seabird restoration projects. J. Wildl. Manag. 76, 2–9 (2012).
VanderWerf, E. A. et al. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 545–577 (Academic Press, 2023).
Major, H. L. & Jones, I. L. An experimental study of the use of social information by prospecting nocturnal burrow-nesting seabirds. Condor 113, 572–580 (2011).
Buxton, R. T. & Jones, I. L. An experimental study of social attraction in two species of storm-petrel by acoustic and olfactory cues. Condor 114, 733–743 (2012).
Friesen, M. R., Beggs, J. R. & Gaskett, A. C. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biol. Rev. 92, 1769–1784 (2017).
Wails, C. N. & Major, H. L. Fitting in with the crowd: the role of prospecting in seabird behavioural trends. Can. J. Zool. 95, 247–253 (2017).
Momberg, M. et al. Factors determining nest-site selection of surface-nesting seabirds: a case study on the world’s largest pelagic bird, the wandering albatross (Diomedea exulans). Ibis 165, 190–203 (2023).
Fischer, J. H., Taylor, G., Debski, I. & Wittmer, H. Acoustic attraction system draws in competing seabird species. Notornis 67, 568–572 (2020).
Buxton, R. T., Jones, C., Moller, H. & Towns, D. R. Drivers of seabird population recovery on New Zealand islands after predator eradication. Conserv. Biol. 28, 333–344 (2014).
Masselink, G., McCall, R., Beetham, E., Kench, P. & Storlazzi, C. Role of future reef growth on morphological response of coral reef Islands to sea-level rise. J. Geophys. Res. Earth Surf. 126, e2020JF005749 (2021).
Winter, K. B., Young, R. C. & Lyver, P. O. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 321–344 (Academic Press, 2023).
Jones, H. P. Prognosis for ecosystem recovery following rodent eradication and seabird restoration in an island archipelago. Ecol. Appl. 20, 1204–1216 (2010).
Pascoe, P. P. et al. Decadal change in seabird-driven isotopes on islands with differing invasion histories. Ecol. Appl. 35, e70030 (2025).
Miller-ter Kuile, A. et al. Impacts of rodent eradication on seed predation and plant community biomass on a tropical atoll. Biotropica 53, 232–242 (2021).
Graham, N. A., Benkwitt, C. E. & Jones, H. P. Species eradication for ecosystem restoration. Curr. Biol. 34, R407–R412 (2024).
Roberts, C. M., Duncan, R. P. & Wilson, K.-J. Burrowing seabirds affect forest regeneration, Rangatira Island, Chatham Islands, New Zealand. N. Z. J. Ecol. 31, 208–222 (2007).
Berr, T. et al. Seabird and reef conservation must include coral islands. Trends Ecol. Evol. 38, 490–494 (2023).
Steibl, S. et al. Atolls are globally important sites for tropical seabirds. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02496-4 (2024).
Beetham, E., Kench, P. S. & Popinet, S. Future reef growth can mitigate physical impacts of sea-level rise on atoll islands. Earths Future 5, 1002–1014 (2017).
Steibl, S. et al. Rethinking atoll futures: local resilience to global challenges. Trends Ecol. Evol. 39, 258–266 (2024).
Kench, P. S., Brander, R. W., Parnell, K. E. & McLean, R. F. Wave energy gradients across a Maldivian atoll: implications for island geomorphology. Geomorphology 81, 1–17 (2006).
Toth, L. T. et al. The potential for coral reef restoration to mitigate coastal flooding as sea levels rise. Nat. Commun. 14, 2313 (2023).
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
Kappes, P. J. et al. Do invasive mammal eradications from islands support climate change adaptation and mitigation? Climate 9, 172 (2021).
Honzák, M. et al. Toward the quantification of the climate co-benefits of invasive mammal eradication on islands: a scalable framework for restoration monitoring. Environ. Res. Lett. 19, 114018 (2024).
Longley-Wood, K., Engels, M., Lafferty, K. D., McLaughlin, J. P. & Wegmann, A. Transforming Palmyra Atoll to native-tree dominance will increase net carbon storage and reduce dissolved organic carbon reef runoff. PLoS ONE 17, e0262621 (2022).
Oppel, S. et al. Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping. Nat. Conserv. 7, 1–13 (2014).
Borker, A. L. et al. Do soundscape indices predict landscape-scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restor. Ecol. 28, 252–260 (2020).
Harris, S. A., Shears, N. T. & Radford, C. A. Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods Ecol. Evol. 7, 713–724 (2016).
Dunn, R. E. Atolls are vital for seabirds and vice versa. Nat. Ecol. Evol. 8, 1784–1785 (2024).
Mizutani, H., Kabaya, Y., Moors, P. J., Speir, T. W. & Lyon, G. L. Nitrogen isotope ratios identify deserted seabird colonies. Auk 108, 960–964 (1991).
Pascoe, P., Shaw, J., Trebilco, R., Kong, S. & Jones, H. Island characteristics and sampling methodologies influence the use of stable isotopes as an ecosystem function assessment tool. Ecol. Solut. Evid. 2, e12082 (2021).
Sato, N. et al. The distinctive material cycle associated with seabirds and land crabs on a pristine oceanic island: a case study of Minamiiwoto, Ogasawara Islands, subtropical Japan. Oecologia 207, 88 (2025).
Pascoe, P. et al. Temporal and spatial variability in stable isotope values on seabird Islands: what, where and when to sample. Ecol. Indic. 143, 109344 (2022).
Stergiou, K. I. & Browman, H. I. Imbalances in the reporting and teaching of ecology from limnetic, oceanic and terrestrial eco-domains. Mar. Ecol. Prog. Ser. 304, 292–297 (2005).
Rotjan, R. D. & Idjadi, J. Surf and turf: toward better synthesis by cross-system understanding. Oikos 122, 285–287 (2013).
Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).
Morten, J. M. et al. Global marine flyways identified for long-distance migrating seabirds from tracking data. Glob. Ecol. Biogeogr. 34, e70004 (2025).
Roman, J. et al. Migrating baleen whales transport high-latitude nutrients to tropical and subtropical ecosystems. Nat. Commun. 16, 2125 (2025).
Jauharee, A. R. & Adam, M. S. Significance of Seabirds to the Maldivian Tuna Fishery (Indian Ocean Tuna Commission, 2012).
Signa, G., Mazzola, A. & Vizzini, S. Seabird influence on ecological processes in coastal marine ecosystems: an overlooked role? A critical review. Estuar. Coast. Shelf Sci. 250, 107164 (2021).
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Carneiro, A. P. et al. The BirdLife Seabird Tracking Database: 20 years of collaboration for marine conservation. Biol. Conserv. 299, 110813 (2024).
Young, H. S., Miller-ter Kuile, A., McCauley, D. J. & Dirzo, R. Cascading community and ecosystem consequences of introduced coconut palms (Cocos nucifera) in tropical islands. Can. J. Zool. 95, 139–148 (2017).
Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).
Towns, D. et al. in Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P. H. et al.) 56–90 (Oxford Univ. Press, 2011).
Spatz, D. R. et al. in Conservation of Marine Birds (eds Young, L. & VanderWerf, E.) 97–130 (Academic Press, 2023).
Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote pacific islets. Sci. Rep. 7, 3721 (2017).
Choisnard, N. et al. Tracing the fate of seabird-derived nitrogen in a coral reef using nitrate and coral skeleton nitrogen isotopes. Limnol. Oceanogr. 69, 309–324 (2024).
Delevaux, J. M. et al. A linked land–sea modeling framework to inform ridge-to-reef management in high oceanic islands. PLoS ONE 13, e0193230 (2018).
Thorne, L. H., Clay, T. A., Phillips, R. A., Silvers, L. G. & Wakefield, E. D. Effects of wind on the movement, behavior, energetics, and life history of seabirds. Mar. Ecol. Prog. Ser. 723, 73–117 (2023).
Shepard, E., Cole, E.-L., Neate, A., Lempidakis, E. & Ross, A. Wind prevents cliff-breeding birds from accessing nests through loss of flight control. eLife 8, e43842 (2019).
Leichter, J. J., Stewart, H. L. & Miller, S. L. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48, 1394–1407 (2003).
Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).
Steven, A. D. L. & Atkinson, M. J. Nutrient uptake by coral-reef microatolls. Coral Reefs 22, 197–204 (2003).
Dunn, R. E. et al. Island restoration to rebuild seabird populations and amplify coral reef functioning. Conserv. Biol. 39, e14313 (2025).
Stuart, C. et al. Seascape configuration determines spatial patterns of seabird-vectored nutrient enrichment to coral reefs. Ecography 2025, e07863 (2025).
Morais, R. A., Patricio-Valerio, L., Narvaez, P., Parravicini, V. & Brandl, S. J. Rethinking Darwin’s coral reef paradox and the ubiquity of ‘marine oases’. Curr. Biol. 35, 3241–3250.e6 (2025).
Polis, G. A., Hurd, S. D., Jackson, C. T. & Piñero, F. S. El Niño effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).
Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the great barrier reef, Australia. Funct. Plant. Biol. 31, 517–528 (2004).
Tomlinson, S. et al. Applications and implications of ecological energetics. Trends Ecol. Evol. 29, 280–290 (2014).
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).
Edney, A. J. & Wood, M. J. Applications of digital imaging and analysis in seabird monitoring and research. Ibis 163, 317–337 (2021).
Gauthreaux, S. A. Jr. & Belser, C. G. Radar ornithology and biological conservation. Auk 120, 266–277 (2003).
Goddijn-Murphy, L., O’Hanlon, N. J., James, N. A., Masden, E. A. & Bond, A. L. Earth observation data for seabirds and their habitats: an introduction. Remote Sens. Appl. Soc. Environ. 24, 100619 (2021).
Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 7, 139–153 (2021).
Brodie, J., De’ath, G., Devlin, M., Furnas, M. & Wright, M. Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar. Freshw. Res. 58, 342–353 (2007).
Suryan, R. M., Santora, J. A. & Sydeman, W. J. New approach for using remotely sensed chlorophyll a to identify seabird hotspots. Mar. Ecol. Prog. Ser. 451, 213–225 (2012).
Rakotoarivony, M. N. A. et al. Using imaging spectroscopy to assess the impacts of invasive plants on aboveground and belowground characteristics. GIScience Remote Sens. 61, 2399388 (2024).
Smith, M.-L. et al. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol. Appl. 12, 1286–1302 (2002).
Thomson, E. R. et al. Multiscale mapping of plant functional groups and plant traits in the high arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 16, 055006 (2021).
Wang, Z. et al. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens. 8, 491 (2016).
Noppen, L. et al. Constraining industrial ammonia emissions using hyperspectral infrared imaging. Remote Sens. Environ. 291, 113559 (2023).
Garcia-Quintas, A. et al. Machine and deep learning approaches to understand and predict habitat suitability for seabird breeding. Ecol. Evol. 13, e10549 (2023).
Chapuis, L., Williams, B., Gordon, T. A. C. & Simpson, S. D. Low-cost action cameras offer potential for widespread acoustic monitoring of marine ecosystems. Ecol. Indic. 129, 107957 (2021).
Williams, B. et al. Enhancing automated analysis of marine soundscapes using ecoacoustic indices and machine learning. Ecol. Indic. 140, 108986 (2022).
Borker, A. L. Applying Ecoacoustics to Bird Conservation and Monitoring (UC Santa Cruz, 2018).
Penar, W., Magiera, A. & Klocek, C. Applications of bioacoustics in animal ecology. Ecol. Complex. 43, 100847 (2020).
Lamont, T. A. C. et al. The sound of recovery: coral reef restoration success is detectable in the soundscape. J. Appl. Ecol. 59, 742–756 (2022).
McInnes, J. C., Bird, J. P., Deagle, B. E., Polanowski, A. M. & Shaw, J. D. Using DNA metabarcoding to detect burrowing seabirds in a remote landscape. Conserv. Sci. Pract. 3, e439 (2021).
de Leeuw, J. J., van den Brink, X., Gabrielsen, G. W. & Nijland, R. DNA metabarcoding reveals high diversity of fish and macrofaunal species in diets of little auks and other Arctic seabird species in Svalbard. Polar Biol. 47, 1013–1023 (2024).
Duda, M. P. et al. Reconstructing long-term changes in avian populations using lake sediments: opening a window onto the past. Front. Ecol. Evol. 9, 698175 (2021).
Davis, R. A., Seddon, P. J., Craig, M. D. & Russell, J. C. A review of methods for detecting rats at low densities, with implications for surveillance. Biol. Invasions 25, 3773–3791 (2023).
Piaggio, A. J. et al. Evaluation of environmental DNA as a surveillance tool for invasive house mice (Mus musculus). Environ. DNA 7, e70069 (2025).
Clay, C. G. et al. Exploring species and functional diversity of fishes in Cambodian coastal habitats using eDNA metabarcoding. Coral Reefs 44, 221–241 (2025).
Gallego, R., Jacobs-Palmer, E., Cribari, K. & Kelly, R. P. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc. R. Soc. B Biol. Sci. 287, 20202424 (2020).
Wright, D. G., van der Wal, R., Wanless, S. & Bardgett, R. D. The influence of seabird nutrient enrichment and grazing on the structure and function of island soil food webs. Soil. Biol. Biochem. 42, 592–600 (2010).
Glasl, B., Webster, N. S. & Bourne, D. G. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar. Biol. 164, 91 (2017).
Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Mol. Ecol. 30, 2937–2958 (2021).
Acknowledgements
The authors thank the David and Lucile Packard Foundation (D.J.W.), the Bertarelli Foundation as part of the Bertarelli Programme in Marine Science (C.E.B., N.A.J.G. and Y.M.), the Alexander von Humboldt Foundation (S.S.), the Leverhulme Trust (Y.M.) and the NERC ENVISION doctoral training programme (L.-L.J.) for funding.
Author information
Authors and Affiliations
Contributions
H.P.J. and N.A.J.G. amassed the co-authors of the article. H.P.J. led initial discussions of the article structure and content. The authors contributed equally to all other aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Leandro Bugoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jones, H.P., Appoo, J., Benkwitt, C.E. et al. The circular seabird economy is critical for oceans, islands and people. Nat. Rev. Biodivers. 1, 689–702 (2025). https://doi.org/10.1038/s44358-025-00099-w
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44358-025-00099-w


