Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biodiversity, genomics, ecology and evolution of mushroom-forming fungi

Abstract

The class Agaricomycetes represents the mushroom-forming fungi; it is a diverse group within the Basidiomycota with an evolutionary history spanning over 350 million years. Interest in Agaricomycetes has grown considerably over the past decades because of their important roles in nature, their developmental biology, and their use in green technologies and medicine. In this Review, we discuss how genomics approaches have contributed to important breakthroughs in understanding their ecology, evolution, development and conservation. We also explore the central challenges constraining further research. We postulate that the surge in omics exploration of Agaricomycetes over the past decade will be followed by a postgenomic era combining experimental, reverse genetics, ecological and functional genomics tools, helping to resolve the recalcitrant questions surrounding the complex biology of these fungi.

Key points

  • The class Agaricomycetes is a taxonomically and functionally diverse group of fungi with >350 million years of evolutionary history.

  • They are among the most important recyclers of dead plant biomass and are mutualistic partners of woody plants.

  • A robust phylogenetic framework allows reconstruction of ancestral morphologies and lifestyles with high confidence.

  • Agaricomycete genomics has advanced tremendously in the past decade. Further progress will require a shift to postgenomic and functional approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolutionary age and morphologies of Agaricomycetes.
Fig. 2: The ecological diversity of Agaricomycetes.
Fig. 3: Species diversity in Agaricomycetes.
Fig. 4: The evolution of Agaricomycetes.
Fig. 5: Key traits and associated genomic trends in the Agaricomycetes.

Similar content being viewed by others

References

  1. Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).

    Article  CAS  Google Scholar 

  2. Hibbett, D. S. After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol. Res. 111, 1001–1018 (2007).

    Article  Google Scholar 

  3. Kiss, E. et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat. Commun. 10, 4080 (2019).

    Article  Google Scholar 

  4. Money, N. P. Goldilocks mushrooms: how ballistospory has shaped basidiomycete evolution. Fungal Biol. 127, 975–984 (2023).

    Article  CAS  Google Scholar 

  5. Money, N. P., Stolze, J. & Fischer, M. W. F. Mechanics of the artillery fungus. Fungal Biol. 128, 2334–2340 (2024).

    Article  Google Scholar 

  6. Hofrichter, M. ed. The MYCOTA X. Industrial Applications (Springer Berlin Heidelberg, 2011).

  7. Baldrian, P. Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol. 1, 4–12 (2008).

    Article  Google Scholar 

  8. Põlme, S. et al. Fungaltraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article  Google Scholar 

  9. Correction for Riley et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl Acad. Sci. USA 111, 14959–14959 (2014).

    Article  Google Scholar 

  10. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  Google Scholar 

  11. Floudas, D. Evolution of lignin decomposition systems in fungi. Adv. Botanical Res. 99, 37–76 (2021).

    Article  CAS  Google Scholar 

  12. Floudas, D. et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).

    Article  CAS  Google Scholar 

  13. Nelsen, M. P., DiMichele, W. A., Peters, S. E. & Boyce, C. K. Delayed fungal evolution did not cause the paleozoic peak in coal production. Proc. Natl Acad. Sci. USA 113, 2442–2447 (2016).

    Article  CAS  Google Scholar 

  14. Eastwood, D. C. et al. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333, 762–765 (2011).

    Article  CAS  Google Scholar 

  15. Floudas, D. et al. Evolution of novel wood decay mechanisms in agaricales revealed by the genome sequences of fistulina hepatica and cylindrobasidium torrendii. Fungal Genet. Biol. 76, 78–92 (2015).

    Article  CAS  Google Scholar 

  16. Nagy, L. G. et al. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 33, 959–970 (2016).

    Article  CAS  Google Scholar 

  17. Arantes, V. & Goodell, B. in ACS Symposium Series Vol. 1158 (eds. Schultz, T. P., Goodell, B. & Nicholas, D. D.) 3–21 (American Chemical Society, 2014).

  18. Jensen, K. A., Ryan, Z. C., Vanden Wymelenberg, A., Cullen, D. & Hammel, K. E. An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl. Env. Microbiol. 68, 2699–2703 (2002).

    Article  CAS  Google Scholar 

  19. Suzuki, M. R., Hunt, C. G., Houtman, C. J., Dalebroux, Z. D. & Hammel, K. E. Fungal hydroquinones contribute to brown rot of wood. Environ. Microbiol. 8, 2214–2223 (2006).

    Article  CAS  Google Scholar 

  20. Korripally, P., Timokhin, V. I., Houtman, C. J., Mozuch, M. D. & Hammel, K. E. Evidence from serpula lacrymans that 2,5-dimethoxyhydroquinone is a lignocellulolytic agent of divergent brown rot basidiomycetes. Appl. Env. Microbiol. 79, 2377–2383 (2013).

    Article  CAS  Google Scholar 

  21. Floudas, D. et al. X-ray scattering reveals two mechanisms of cellulose microfibril degradation by filamentous fungi. Appl. Env. Microbiol. 88, e00995-22 (2022).

    Article  Google Scholar 

  22. Goodell, B. et al. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol. Biofuels 10, 179 (2017).

    Article  Google Scholar 

  23. Marlin, M., Wolf, A., Alomran, M., Carta, L. & Newcombe, G. Nematophagous pleurotus species consume some nematode species but are themselves consumed by others. Forests 10, 404 (2019).

    Article  Google Scholar 

  24. Riley, R. et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl Acad. Sci. USA 111, 9923–9928 (2014).

    Article  CAS  Google Scholar 

  25. Floudas, D. et al. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. 14, 2046–2059 (2020).

    Article  CAS  Google Scholar 

  26. Almási, É et al. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 224, 902–915 (2019).

    Article  Google Scholar 

  27. Larsson, K.-H. Re-thinking the classification of corticioid fungi. Mycol. Res. 111, 1040–1063 (2007).

    Article  Google Scholar 

  28. Harder, C. B. et al. Mycena species can be opportunist-generalist plant root invaders. Environ. Microbiol. 25, 1875–1893 (2023).

    Article  CAS  Google Scholar 

  29. Morin, E. et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl Acad. Sci. USA 109, 17501–17506 (2012).

    Article  CAS  Google Scholar 

  30. Four, B., Cárdenas, R. E. & Dangles, O. Traits or habitat? Disentangling predictors of leaf-litter decomposition in amazonian soils and streams. Ecosphere 10, e02691 (2019).

    Article  Google Scholar 

  31. Ruiz-Dueñas, F. J. et al. Genomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446 (2021).

    Article  Google Scholar 

  32. Koch, R. A. et al. Marasmioid rhizomorphs in bird nests: Species diversity, functional specificity, and new species from the tropics. Mycologia 112, 1086–1103 (2020).

    Article  CAS  Google Scholar 

  33. Schultz, T. R. et al. The coevolution of fungus–ant agriculture. Science 386, 105–110 (2024).

    Article  CAS  Google Scholar 

  34. Mueller, U. G. & Gerardo, N. Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc. Natl Acad. Sci. USA 99, 15247–15249 (2002).

    Article  CAS  Google Scholar 

  35. Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).

    Article  CAS  Google Scholar 

  36. Aanen, D. K. & Eggleton, P. Fungus-growing termites originated in african rain forest. Curr. Biol. 15, 851–855 (2005).

    Article  CAS  Google Scholar 

  37. Nygaard, S. et al. Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nat. Commun. 7, 12233 (2016).

    Article  CAS  Google Scholar 

  38. Aguilar-Colorado, ÁS. & Rivera-Chávez, J. Ants/nest-associated fungi and their specialized metabolites: taxonomy, chemistry, and bioactivity. Rev. Bras. Farmacogn. 33, 901–923 (2023).

    Article  Google Scholar 

  39. van de Peppel, L. J. J. et al. Ancestral predisposition toward a domesticated lifestyle in the termite-cultivated fungus termitomyces. Curr. Biol. 31, 4413–4421 (2021).

    Article  Google Scholar 

  40. Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).

    Article  CAS  Google Scholar 

  41. Strullu-Derrien, C., Selosse, M., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol. 220, 1012–1030 (2018).

    Article  Google Scholar 

  42. Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).

    Article  Google Scholar 

  43. Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).

    Article  CAS  Google Scholar 

  44. Corrales, A. et al. Diversity and distribution of tropical ectomycorrhizal fungi. Mycologia 114, 919–933 (2022).

    Article  CAS  Google Scholar 

  45. Medina-Vega, J. A. et al. Tropical tree ectomycorrhiza are distributed independently of soil nutrients. Nat. Ecol. Evol. 8, 400–410 (2024).

    Article  Google Scholar 

  46. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article  CAS  Google Scholar 

  47. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article  CAS  Google Scholar 

  48. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2010).

  49. Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J. & Reich, P. B. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol. 196, 845–852 (2012).

    Article  Google Scholar 

  50. Bunn, R. A. et al. What determines transfer of carbon from plants to mycorrhizal fungi? New Phytol. 244, 1199–1215 (2024).

    Article  Google Scholar 

  51. Stuart, E. K. et al. Species-level identity of Pisolithus influences soil phosphorus availability for host plants and is moderated by nitrogen status, but not CO2. Soil. Biol. Biochem. 165, 108520 (2022).

    Article  CAS  Google Scholar 

  52. Berrios, L. & Peay, K. G. Field reduction of ectomycorrhizal fungi has cascading effects on soil microbial communities and reduces the abundance of ectomycorrhizal symbiotic bacteria. Mol. Ecol. 34, e17585 (2025).

    Article  CAS  Google Scholar 

  53. Branco, S., Schauster, A., Liao, H. & Ruytinx, J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 235, 2158–2175 (2022).

    Article  CAS  Google Scholar 

  54. Colpaert, J. V., Wevers, J. H. L., Krznaric, E. & Adriaensen, K. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann. For. Sci. 68, 17–24 (2011).

    Article  Google Scholar 

  55. Bazzicalupo, A. L. et al. Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation. Mol. Ecol. 29, 4157–4169 (2020).

    Article  CAS  Google Scholar 

  56. Zhang, K., Tappero, R., Ruytinx, J., Branco, S. & Liao, H.-L. Disentangling the role of ectomycorrhizal fungi in plant nutrient acquisition along a Zn gradient using X-ray imaging. Sci. Total. Environ. 801, 149481 (2021).

    Article  CAS  Google Scholar 

  57. Smith, A. et al. Comparative transcriptomics provides insights into molecular mechanisms of zinc tolerance in the ectomycorrhizal fungus Suillus luteus. G3 14, jkae156 (2024).

    Article  CAS  Google Scholar 

  58. Pellegrin, C., Morin, E., Martin, F. M. & Veneault-Fourrey, C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 6, 1278 (2015).

    Article  Google Scholar 

  59. Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    Article  CAS  Google Scholar 

  60. Zhang, F. et al. The ectomycorrhizal basidiomycete laccaria bicolor releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. New Phytol. 233, 2534–2547 (2022).

    Article  CAS  Google Scholar 

  61. Plett, J. M. et al. Speciation underpinned by unexpected molecular diversity in the mycorrhizal fungal genus pisolithus. Mol. Biol. Evol. 40, msad045 (2023).

    Article  CAS  Google Scholar 

  62. Plett, J. M. et al. Effector MiSSP7 of the mutualistic fungus laccaria bicolor stabilizes the populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl Acad. Sci. USA 111, 8299–8304 (2014).

    Article  CAS  Google Scholar 

  63. Kang, H. et al. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 22, 1435–1446 (2020).

    Article  CAS  Google Scholar 

  64. Wong-Bajracharya, J. et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc. Natl Acad. Sci. USA 119, e2103527119 (2022).

    Article  CAS  Google Scholar 

  65. Wu, G. et al. Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytol. 233, 1383–1400 (2022).

    Article  CAS  Google Scholar 

  66. Looney, B. P. et al. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol. 218, 54–65 (2018).

    Article  CAS  Google Scholar 

  67. Plett, K. L., Wojtalewicz, D., Anderson, I. C. & Plett, J. M. Fungal metabolism and free amino acid content may predict nitrogen transfer to the host plant in the ectomycorrhizal relationship between Pisolithus spp. and Eucalyptus grandis. New Phytol. 242, 1589–1602 (2024).

    Article  CAS  Google Scholar 

  68. Tremble, K., Hoffman, J. I. & Dentinger, B. T. M. Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis. New Phytol. 237, 295–309 (2023).

    Article  Google Scholar 

  69. Branco, S. et al. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes. Mol. Ecol. 26, 2063–2076 (2017).

    Article  Google Scholar 

  70. Stuart, E. K. & Plett, K. L. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 10, 1658 (2019).

    Article  Google Scholar 

  71. Plett, J. M. & Plett, K. L. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME Commun. 2, 49 (2022).

    Article  Google Scholar 

  72. Lofgren, L. A. et al. Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytol. 230, 774–792 (2021).

    Article  CAS  Google Scholar 

  73. Satish, L. et al. Agrobacterium tumefaciens-mediated genetic transformation of the ect-endomycorrhizal fungus Terfezia boudieri. Genes 11, 1293 (2020).

    Article  CAS  Google Scholar 

  74. Plett, K. L. et al. Inorganic nitrogen availability alters eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer. New Phytol. 226, 221–231 (2020).

    Article  CAS  Google Scholar 

  75. Kemppainen, M., Chowdhury, J., Lundberg-Felten, J. & Pardo, A. Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Curr. Genet. 66, 791–811 (2020).

    Article  CAS  Google Scholar 

  76. Randewig, D., Marshall, J. D., Nasholm, T. & Jamtgard, S. Combining microdialysis with metabolomics to characterize the in situ composition of dissolved organic compounds in boreal forest soil. Soil Biol. Biochem. 136, 107530 (2019).

    Article  CAS  Google Scholar 

  77. Plett, K. L. et al. Novel microdialysis technique reveals a dramatic shift in metabolite secretion during the early stages of the interaction between the ectomycorrhizal fungus Pisolithus microcarpus and its host Eucalyptus grandis. Microorganisms 9, 1817 (2021).

    Article  Google Scholar 

  78. Vishwakarma, K. et al. Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling. Fungal Biol. 128, 2157–2166 (2024).

    Article  CAS  Google Scholar 

  79. Lofgren, L. et al. Suillus: an emerging model for the study of ectomycorrhizal ecology and evolution. New Phytol. 242, 1448–1475 (2024).

    Article  Google Scholar 

  80. Olson, Å et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 194, 1001–1013 (2012).

    Article  Google Scholar 

  81. Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    Article  CAS  Google Scholar 

  82. Karst, J., Jones, M. D. & Hoeksema, J. D. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat. Ecol. Evol. 7, 501–511 (2023).

    Article  Google Scholar 

  83. Bogar, L. M., Tavasieff, O. S., Raab, T. K. & Peay, K. G. Does resource exchange in ectomycorrhizal symbiosis vary with competitive context and nitrogen addition? New Phytol. 233, 1331–1344 (2022).

    Article  CAS  Google Scholar 

  84. Baumgartner, K., Coetzee, M. P. A. & Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 12, 515–534 (2011).

    Article  Google Scholar 

  85. Anderson, J. B. et al. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. Biol. Sci. 285, 20182233 (2018).

    CAS  Google Scholar 

  86. Aime, M. C. & Phillips-Mora, W. The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97, 1012–1022 (2005).

    CAS  Google Scholar 

  87. Sipos, G. et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 1, 1931–1941 (2017).

    Article  Google Scholar 

  88. Parfitt, D., Hunt, J., Dockrell, D., Rogers, H. J. & Boddy, L. Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol. 3, 338–346 (2010).

    Article  Google Scholar 

  89. Sahu, N. et al. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat. Microbiol. 8, 1668–1681 (2023).

    Article  CAS  Google Scholar 

  90. Vasconcelos, A. A. et al. Adaptive evolution of Moniliophthora PR-1 proteins towards its pathogenic lifestyle. BMC Ecol. Evol. 21, 84 (2021).

    Article  CAS  Google Scholar 

  91. Anderson, J. P. et al. Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Sci. Rep. 7, 10410 (2017).

    Article  Google Scholar 

  92. Reina, R. et al. Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS ONE 14, e0212769 (2019).

    Article  CAS  Google Scholar 

  93. Matsumoto, R. et al. Genomic and secretomic analyses of the newly isolated fungus Perenniporia fraxinea SS3 identified CAZymes potentially related to a serious pathogenesis of hardwood trees. Appl. Environ. Microbiol. 89, e0027223 (2023).

    Article  Google Scholar 

  94. Redkar, A., Sabale, M., Zuccaro, A. & Di Pietro, A. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Curr. Opin. Plant Biol. 67, 102226 (2022).

    Article  CAS  Google Scholar 

  95. Varga, T. et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678 (2019).

    Article  Google Scholar 

  96. Sánchez-Ramírez, S., Etienne, R. S. & Moncalvo, J.-M. High speciation rate at temperate latitudes explains unusual diversity gradients in a clade of ectomycorrhizal fungi. Evolution 69, 2196–2209 (2015).

    Article  Google Scholar 

  97. Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, D791–D797 (2024).

    Article  CAS  Google Scholar 

  98. van Galen, L. G. et al. The biogeography and conservation of Earth’s ‘dark’ ectomycorrhizal fungi. Curr. Biol. 35, R563–R574 (2025).

    Article  Google Scholar 

  99. Geml, J., Tulloss, R. E., Laursen, G. A., Sazanova, N. A. & Taylor, D. L. Evidence for strong inter- and intracontinental phylogeographic structure in Amanita muscaria, a wind-dispersed ectomycorrhizal basidiomycete. Mol. Phylogenet. Evol. 48, 694–701 (2008).

    Article  CAS  Google Scholar 

  100. Pringle, A. & Vellinga, E. C. Last chance to know? Using literature to explore the biogeography and invasion biology of the death cap mushroom Amanita phalloides (Vaill. ex Fr.:Fr.) Link. Biol. Invasions 8, 1131–1144 (2006).

    Article  Google Scholar 

  101. Blackwell, M. The fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 98, 426–438 (2011).

    Article  Google Scholar 

  102. Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).

    Article  Google Scholar 

  103. Mueller, G. M. et al. What do the first 597 global fungal red list assessments tell us about the threat status of fungi? Diversity 14, 736 (2022).

    Article  Google Scholar 

  104. Gange, A. C., Gange, E. G., Sparks, T. H. & Boddy, L. Rapid and recent changes in fungal fruiting patterns. Science 316, 71 (2007).

    Article  CAS  Google Scholar 

  105. Kauserud, H. et al. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl Acad. Sci. USA 109, 14488–14493 (2012).

    Article  CAS  Google Scholar 

  106. Pietras, M., Kolanowska, M. & Selosse, M.-A. Quo vadis? Historical distribution and impact of climate change on the worldwide distribution of the australasian fungus Clathrus archeri (Phallales, Basidiomycota). Mycol. Progress 20, 299–311 (2021).

    Article  Google Scholar 

  107. A, V., Mt, B., Dl, L., A, P. & Ma, J. Invasive golden oyster mushrooms are disrupting native fungal communities as they spread throughout North America. Curr. Biol. 35, 3994–4002 (2025).

    Article  Google Scholar 

  108. Dickie, I. A. et al. Towards management of invasive ectomycorrhizal fungi. Biol. Invasions 18, 3383–3395 (2016).

    Article  Google Scholar 

  109. Wang, Y.-W. et al. Invasive californian death caps develop mushrooms unisexually and bisexually. Nat. Commun. 14, 6560 (2023).

    Article  CAS  Google Scholar 

  110. Egli, S., Peter, M., Buser, C., Stahel, W. & Ayer, F. Mushroom picking does not impair future harvests — results of a long-term study in Switzerland. Biol. Conserv. 129, 271–276 (2006).

    Article  Google Scholar 

  111. Unit, B. Kunming-montreal global biodiversity framework. Convention on Biological Diversity https://www.cbd.int/gbf (2024).

  112. Taylor, J. W., Turner, E., Townsend, J. P., Dettman, J. R. & Jacobson, D. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos. Trans. R. Soc. Lond. B 361, 1947–1963 (2006).

    Article  Google Scholar 

  113. Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).

    Article  Google Scholar 

  114. Norros, V., Penttilä, R., Suominen, M. & Ovaskainen, O. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos 121, 961–974 (2012).

    Article  Google Scholar 

  115. Li, D.-W. Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence. Mycol. Res. 109, 1235–1242 (2005).

    Article  Google Scholar 

  116. Simões, T. R. & Pierce, S. E. Sustained high rates of morphological evolution during the rise of tetrapods. Nat. Ecol. Evol. 5, 1403–1414 (2021).

    Article  Google Scholar 

  117. Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).

    Article  Google Scholar 

  118. Cai, C., Leschen, R. A. B., Hibbett, D. S., Xia, F. & Huang, D. Mycophagous rove beetles highlight diverse mushrooms in the cretaceous. Nat. Commun. 8, 14894 (2017).

    Article  CAS  Google Scholar 

  119. Poinar, G. & Buckley, R. Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. Mycol. Res. 111, 503–506 (2007).

    Article  Google Scholar 

  120. Smith, S. Y., Currah, R. S. & Stockey, R. A. Cretaceous and eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96, 180–186 (2004).

    Article  Google Scholar 

  121. Prasanna, A. N. et al. Model choice, missing data, and taxon sampling impact phylogenomic inference of deep basidiomycota relationships. Syst. Biol. 69, 17–37 (2020).

    Article  Google Scholar 

  122. Hibbett, D. S. & Donoghue, M. J. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst. Biol. 50, 215–242 (2001).

    Article  CAS  Google Scholar 

  123. Sánchez-García, M. et al. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc. Natl Acad. Sci. USA 117, 32528–32534 (2020).

    Article  Google Scholar 

  124. Iapichino, M., Wang, Y.-W., Gentry, S., Pringle, A. & Seminara, A. A precise relationship among Buller’s drop, ballistospore, and gill morphologies enables maximum packing of spores within gilled mushrooms. Mycologia 113, 300–311 (2021).

    Article  Google Scholar 

  125. Money, N. P. The fastest short jump in nature: progress in understanding the mechanism of ballistospore discharge. Fungal Biol. 127, 835–844 (2023).

    Article  Google Scholar 

  126. Sakes, A. et al. Shooting mechanisms in nature: a systematic review. PLoS ONE 11, e0158277 (2016).

    Article  Google Scholar 

  127. Hou, Z. et al. An evolutionarily ancient transcription factor drives spore morphogenesis in mushroom-forming fungi. Curr. Biol. https://doi.org/10.1016/j.cub.2025.02.025 (2025).

  128. Fritz, J. A., Seminara, A., Roper, M., Pringle, A. & Brenner, M. P. A natural O-ring optimizes the dispersal of fungal spores. J. R. Soc. Interface 10, 20130187 (2013).

    Article  Google Scholar 

  129. Hibbett, D. S. Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches. Syst. Biol. 53, 889–903 (2004).

    Article  Google Scholar 

  130. Virágh, M. et al. Evolutionary morphogenesis of sexual fruiting bodies in basidiomycota: toward a new evo-devo synthesis. Microbiol. Mol. Biol. Rev. 86, e0001921 (2022).

    Article  Google Scholar 

  131. Varga, T., Földi, C., Bense, V. & Nagy, L. G. Radiation of mushroom-forming fungi correlates with novel modes of protecting sexual fruiting bodies. Fungal Biol. 126, 556–565 (2022).

    Article  CAS  Google Scholar 

  132. Stafleu, F. A. Evolution of the higher basidiomycetes. Taxon 20, 616–618 (1971).

    Article  Google Scholar 

  133. Thiers, H. D. The secotioid syndrome. Mycologia 76, 1–8 (1984).

    Article  Google Scholar 

  134. Nagy, L. G. et al. The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi). Syst. Biol. 61, 595–607 (2012).

    Article  Google Scholar 

  135. Tóth, A. et al. Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family bolbitiaceae. PLoS ONE 8, e56143 (2013).

    Article  Google Scholar 

  136. Bodensteiner, P., Binder, M., Moncalvo, J.-M., Agerer, R. & Hibbett, S. D. Phylogenetic relationships of cyphelloid homobasidiomycetes. Mol. Phylogenet. Evol. 33, 501–515 (2004).

    Article  CAS  Google Scholar 

  137. Krah, F.-S. et al. European mushroom assemblages are darker in cold climates. Nat. Commun. 10, 2890 (2019).

    Article  Google Scholar 

  138. Kuhar, F., Terzzoli, L., Nouhra, E., Robledo, G. & Mercker, M. Pattern formation features might explain homoplasy: fertile surfaces in higher fungi as an example. Theory Biosci. 141, 1–11 (2022).

    Article  Google Scholar 

  139. Peña, A. et al. A multiomic approach to understand how pleurotus eryngii transforms non-woody lignocellulosic material. J. Fungi 7, 426 (2021).

    Article  Google Scholar 

  140. Kohler, A. & Martin, F. in Molecular Mycorrhizal Symbiosis (ed. Martin, F.) 87–106 (Wiley, 2016).

  141. Wolfe, B. E., Tulloss, R. E. & Pringle, A. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS ONE 7, e39597 (2012).

    Article  CAS  Google Scholar 

  142. Sheikh, S., Khan, F. K., Bahram, M. & Ryberg, M. Impact of model assumptions on the inference of the evolution of ectomycorrhizal symbiosis in fungi. Sci. Rep. 12, 22043 (2022).

    Article  CAS  Google Scholar 

  143. Sato, H. The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes. New Phytol. 241, 444–460 (2024).

    Article  CAS  Google Scholar 

  144. Nakamori, T. & Suzuki, A. Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycol. Res. 111, 1345–1351 (2007).

    Article  Google Scholar 

  145. Cai, Q. et al. The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota). BMC Biol. 22, 230 (2024).

    Article  Google Scholar 

  146. Vajda, V. & McLoughlin, S. Fungal proliferation at the Cretaceous–Tertiary boundary. Science 303, 1489 (2004).

    Article  CAS  Google Scholar 

  147. Givnish, T. J. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207, 297–303 (2015).

    Article  Google Scholar 

  148. Wilson, A. W., Binder, M. & Hibbett, D. S. Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evolution 65, 1305–1322 (2011).

    Article  Google Scholar 

  149. Ryberg, M. & Matheny, P. B. Dealing with incomplete taxon sampling and diversification of a large clade of mushroom-forming fungi: diversification of a large mushroom-forming clade. Evolution 65, 1862–1878 (2011).

    Article  Google Scholar 

  150. Sánchez-García, M. & Matheny, P. B. Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom-forming fungi? A case study in the Tricholomatineae (Agaricales). Evolution 71, 51–65 (2017).

    Article  Google Scholar 

  151. Ryberg, M. & Matheny, P. B. Asynchronous origins of ectomycorrhizal clades of Agaricales. Proc. R. Soc. B. 279, 2003–2011 (2012).

    Article  Google Scholar 

  152. Wilson, A. W., Hosaka, K. & Mueller, G. M. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytol. 213, 1862–1873 (2017).

    Article  CAS  Google Scholar 

  153. Codjia, J. E. I. et al. Historical biogeography and diversification of ringless Amanita (section Vaginatae) support an African origin and suggest niche conservatism in the Americas. Mol. Phylogenet. Evol. 178, 107644 (2023).

    Article  Google Scholar 

  154. Looney, B. P., Ryberg, M., Hampe, F., Sánchez-García, M. & Matheny, P. B. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Mol. Ecol. 25, 630–647 (2016).

    Article  Google Scholar 

  155. Geml, J., Laursen, G. A., O’Neill, K., Nusbaum, H. C. & Taylor, D. L. Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Mol. Ecol. 15, 225–239 (2006).

    Article  CAS  Google Scholar 

  156. Sánchez-Ramírez, S. et al. In and out of refugia: historical patterns of diversity and demography in the North American Caesar’s mushroom species complex. Mol. Ecol. 24, 5938–5956 (2015).

    Article  Google Scholar 

  157. Hage, H. et al. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol 23, 5716–5732 (2021).

    Article  CAS  Google Scholar 

  158. Zhao, H. et al. Insights into the ecological diversification of the hymenochaetales based on comparative genomics and phylogenomics with an emphasis on Coltricia. Genome Biol. Evol. 15, evad136 (2023).

    Article  Google Scholar 

  159. Looney, B. et al. Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi. New Phytol. 233, 2294–2309 (2022).

    Article  CAS  Google Scholar 

  160. Harder, C. B. et al. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. Cell Genom. 4, 100586 (2024).

    Article  CAS  Google Scholar 

  161. Dentinger, B. T. M. et al. Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biol. J. Linn. Soc. 117, 11–32 (2016).

    Article  Google Scholar 

  162. Andrew, C., Diez, J., James, T. Y. & Kauserud, H. Fungarium specimens: a largely untapped source in global change biology and beyond. Philos. Trans. R. Soc. Lond. B 374, 20170392 (2019).

    Article  Google Scholar 

  163. Kües, U. From two to many: multiple mating types in basidiomycetes. Fungal Biol. Rev. 29, 126–166 (2015).

    Article  Google Scholar 

  164. James, T. Y. Why mushrooms have evolved to be so promiscuous: insights from evolutionary and ecological patterns. Fungal Biol. Rev. 29, 167–178 (2015).

    Article  Google Scholar 

  165. Raper, J. R., Krongelb, G. S. & Baxter, M. G. The number and distribution of incompatibility factors in schizophyllum. Am. Nat. 92, 221–232 (1958).

    Article  Google Scholar 

  166. Peris, D. et al. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet. 18, e1010097 (2022).

    Article  CAS  Google Scholar 

  167. Martin, F. et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452, 88–92 (2008).

    Article  CAS  Google Scholar 

  168. Hiltunen, M., Ament-Velásquez, S. L., Ryberg, M. & Johannesson, H. Stage-specific transposon activity in the life cycle of the fairy-ring mushroom Marasmius oreades. Proc. Natl Acad. Sci. USA 119, e2208575119 (2022).

    Article  CAS  Google Scholar 

  169. Plett, J. M. et al. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21, 1197–1203 (2011).

    Article  CAS  Google Scholar 

  170. Feldman, D., Kowbel, D. J., Glass, N. L., Yarden, O. & Hadar, Y. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: ligninolytic enzyme regulation in Pleurotus ostreatus. Sci. Rep. 7, 14553 (2017).

    Article  Google Scholar 

  171. Nagy, L. G., Kovács, G. M. & Krizsán, K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol. Rev. Camb. Philos. Soc. 93, 1778–1794 (2018).

    Article  Google Scholar 

  172. Krizsán, K. et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc. Natl Acad. Sci. USA 116, 7409–7418 (2019).

    Article  Google Scholar 

  173. Nagy, L. G. et al. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud. Mycol. 104, 1–85 (2023).

    Article  CAS  Google Scholar 

  174. Anderson, J. B. & Catona, S. Genomewide mutation dynamic within a long-lived individual of Armillaria gallica. Mycologia 106, 642–648 (2014).

    Article  CAS  Google Scholar 

  175. Hiltunen, M., Grudzinska-Sterno, M., Wallerman, O., Ryberg, M. & Johannesson, H. Maintenance of high genome integrity over vegetative growth in the fairy-ring mushroom Marasmius oreades. Curr. Biol. 29, 2758–2765.e6 (2019).

    Article  CAS  Google Scholar 

  176. Aanen, D. K. How a long-lived fungus keeps mutations in check. Science 346, 922–923 (2014).

    Article  CAS  Google Scholar 

  177. Thorén, M. H. et al. Early germline sequestration in a basidiomycete fungus. Science 389, 720–723 (2025).

    Article  Google Scholar 

  178. Reynolds, H. T. et al. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol. Lett. 2, 88–101 (2018).

    Article  Google Scholar 

  179. Bradshaw, A. J. et al. Phylogenomics of the psychoactive mushroom genus Psilocybe and evolution of the psilocybin biosynthetic gene cluster. Proc. Natl Acad. Sci. USA 121, e2311245121 (2024).

    Article  CAS  Google Scholar 

  180. Ke, H.-M. et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc. Natl Acad. Sci. USA 117, 31267–31277 (2020).

    Article  CAS  Google Scholar 

  181. Liu, F., Wang, S.-H., Cheewangkoon, R. & Zhao, R.-L. Uneven distribution of prokaryote-derived horizontal gene transfer in fungi: a lifestyle-dependent phenomenon. mBio 16, e02855–24 (2025).

    Google Scholar 

  182. Mudbhari, S. et al. Decoding the chemical language of Suillus fungi: genome mining and untargeted metabolomics uncover terpene chemical diversity. mSystems 9, e0122523 (2024).

    Article  Google Scholar 

  183. Drott, M. T. et al. Pangenomics of the death cap mushroom amanita phalloides, and of agaricales, reveals dynamic evolution of toxin genes in an invasive range. ISME J. 17, 1236–1246 (2023).

    Article  CAS  Google Scholar 

  184. Haikazian, S. et al. Psilocybin-assisted therapy for depression: a systematic review and meta-analysis. Psychiatry Res. 329, 115531 (2023).

    Article  CAS  Google Scholar 

  185. Luo, H. et al. Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc. Natl Acad. Sci. USA 119, e2201113119 (2022).

    Article  CAS  Google Scholar 

  186. Nofiani, R. et al. Strobilurin biosynthesis in basidiomycete fungi. Nat. Commun. 9, 3940 (2018).

    Article  Google Scholar 

  187. Sum, W. C., Ebada, S. S., Clement Matasyoh, J. & Stadler, M. Recent progress in the evaluation of secondary metabolites from Basidiomycota. Curr. Res. Biotechnol. 6, 100155 (2023).

    Article  CAS  Google Scholar 

  188. Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    Article  CAS  Google Scholar 

  189. Kotlobay, A. A. et al. Genetically encodable bioluminescent system from fungi. Proc. Natl Acad. Sci. USA 115, 12728–12732 (2018).

    Article  CAS  Google Scholar 

  190. Thoen, E. et al. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. New Phytol. 227, 601–612 (2020).

    Article  CAS  Google Scholar 

  191. Wu, X. et al. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecol. Indic. 129, 107989 (2021).

    Article  Google Scholar 

  192. Bödeker, I. T. M. et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol. 203, 245–256 (2014).

    Article  Google Scholar 

  193. Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi — potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).

    Article  CAS  Google Scholar 

  194. Botnen, S. et al. Low host specificity of root-associated fungi at an Arctic site. Mol. Ecol. 23, 975–985 (2014).

    Article  Google Scholar 

  195. Rodriguez, R. J., White, J. F., Arnold, A. E. & Redman, R. S. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).

    Article  CAS  Google Scholar 

  196. Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl Acad. Sci. USA 114, E9403–E9412 (2017).

    Article  CAS  Google Scholar 

  197. Almario, J., Fabiańska, I., Saridis, G. & Bucher, M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. New Phytol. 234, 1967–1976 (2022).

    Article  Google Scholar 

  198. Yuan, Z. et al. Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. ISME J. 16, 1294–1305 (2022).

    Article  CAS  Google Scholar 

  199. Merényi, Z. et al. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). eLife 11, e71348 (2022).

    Article  Google Scholar 

  200. Gehrmann, T. et al. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc. Natl Acad. Sci. USA 115, 4429–4434 (2018).

    Article  CAS  Google Scholar 

  201. Hegedüs, B. et al. Morphogenesis, starvation, and light responses in a mushroom-forming fungus revealed by long-read sequencing and extensive expression profiling. Cell Genom. 5, 100853 (2025).

    Article  Google Scholar 

  202. Wu, B. et al. Retraction note: evolution of substrate-specific gene expression and RNA editing in brown rot wood-decaying fungi. ISME J. 16, 322 (2022).

    Article  Google Scholar 

  203. Peng, L. et al. A facultative ectomycorrhizal association is triggered by organic nitrogen. Curr. Biol. 32, 5235–5249.e7 (2022).

    Article  CAS  Google Scholar 

  204. Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early middle devonian period of Poland. Nature 463, 43–48 (2010).

    Article  Google Scholar 

  205. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    Article  CAS  Google Scholar 

  206. COL. Catalogue of Life. catalogueoflife.org https://www.catalogueoflife.org/ (2025).

  207. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article  CAS  Google Scholar 

  208. Robert, V. et al. MycoBank gearing up for new horizons. IMA Fungus 4, 371–379 (2013).

    Article  Google Scholar 

  209. Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article  Google Scholar 

  210. Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).

    Article  Google Scholar 

  211. Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).

    Article  Google Scholar 

  212. GBIF.Org User. Occurrence download. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.AR9XPF (2025).

  213. Hibbett, D. S. A phylogenetic overview of the agaricomycotina. Mycologia 98, 917–925 (2006).

    Article  Google Scholar 

  214. Liu, S.-L., Wei, H.-W. & Zhou, L.-W. Xenasmatellales ord. nov. and Xenasmatellaceae fam. nov. for Xenasmatella (Agaricomycetes, Basidiomycota). Mycology 14, 175–189 (2023).

    Article  Google Scholar 

  215. Berbee, M. L., Wong, E. Y. Y. & Tsui, C. K. M. Phylogenetic evidence places the coralloid jelly fungus Tremellodendropsis tuberosa (Tremellodendropsidales) among early diverging agaricomycetes. Mycol. Prog. 15, 939–946 (2016).

    Article  Google Scholar 

  216. He, M.-Q. et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 99, 105–367 (2019).

    Article  Google Scholar 

  217. Vizzini, A., Alvarado, P., Consiglio, G., Marchetti, M. & Xu, J. Family matters inside the order Agaricales: systematic reorganization and classification of incertae sedis clitocyboid, pleurotoid and tricholomatoid taxa based on an updated 6-gene phylogeny. Stud. Mycol. 107, 67–148 (2024).

    Article  CAS  Google Scholar 

  218. Kirk, P. M. et al. Ainsworth and Bisbys Dictionary of the Fungi 10th edn (CABI Publishing, 2008).

Download references

Acknowledgements

GBIF, UNITE and MycoBank are acknowledged for assistance with occurrence and bibliographic data for species descriptions. L.G.N. was supported by the European Research Council (grant no. 101086900) and the National Research Development and Innovation Office (grant no. OTKA 142188). S.B. is supported by NSF IOS-PBI 2029168. Z.M. was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00269/24/8). F.M.M. is funded by the National Key Laboratory of Ecological Security and Sustainable Development in the Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China (grant no. 23YFFA0013).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. Z.M and L.G.N. researched data for the article. L.G.N. contributed the vision and coordinated the writing of the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to László G. Nagy.

Ethics declarations

Competing interests

A.P. is vice president of Mushroom Observer, a US non-profit dedicated to cataloguing fungal mushroom biodiversity. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Christoffer Bugge Harder, Håvard Kauserud, Dabao Lu and Martin Rybergand for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MycoBank: https://www.mycobank.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, L.G., Branco, S., Floudas, D. et al. The biodiversity, genomics, ecology and evolution of mushroom-forming fungi. Nat. Rev. Biodivers. 2, 24–39 (2026). https://doi.org/10.1038/s44358-025-00107-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00107-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing