Abstract
Butterflies and moths, together forming Lepidoptera, are among the most diverse groups of insects, with at least 161,572 described species. Lepidoptera have a pivotal role as pollinators, represent among the most species-rich clades of herbivorous insects and serve as essential components of food webs, providing sustenance for birds, reptiles, bats and arthropods. Although Lepidoptera have become a model system for many disciplines, a synthetic understanding of their remarkable biodiversity, evolution, distribution and importance is lacking. Here, we address this gap and highlight several key findings. Relationships of some Lepidoptera superfamilies, particularly within Ditrysia, remain unclear. Diversification rates are higher in later-diverging clades of butterflies than earlier-diverging clades. Taxonomic and genomic research on butterflies and large moths are improving in the modern era but remain poor in small moths. Although diversity hotspots are concentrated in the tropics, research efforts have disproportionately focused on temperate regions. Conservation measures such as the creation and restoration of natural habitats that are better connected and managed to improve their quality should be considered in the context of climate and habitat change.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




References
Goldstein, P. in Insect Biodiversity: Science and Society 2nd edn, Vol. 1 (eds Foottit, R. G. & Adler, P. H.) Ch. 13 (Wiley, 2017).
Powell, J. A., Mitter, C. & Farrell, B. in Handbook of Zoology Vol. IV, Arthropoda: Insecta, Lepidoptera, Moths and Butterflies, Teilband/Part 35 Vol. 1: Evolution, Systematics, and Biogeography (ed. Kristensen, N. P.) 403–422 (de Gruyter, 1998).
Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact. 10, 21–28 (2016).
Mitter, C., Davis, D. R. & Cummings, M. P. Phylogeny and evolution of Lepidoptera. Annu. Rev. Entomol. 62, 265–283 (2017).
Scoble, M. J. The Lepidoptera: Form, Function and Diversity (Oxford Univ. Press, 1992).
Gilbert, L. E. & Singer, M. C. Butterfly ecology. Annu. Rev. Ecol. Evol. Syst. 6, 365–395 (1975).
Stireman, J. O. & Shaw, S. R. in Caterpillars in the Middle (eds. Marquis, R. J. & Koptur, S.) 225–272 (Springer, 2022).
Evans, L. C., Burgess, M. D., Potts, S. G., Kunin, W. E. & Oliver, T. H. Population links between an insectivorous bird and moths disentangled through national-scale monitoring data. Ecol. Lett. 27, e14362 (2024).
Janzen, D. H. Ecological characterization of a Costa Rican dry forest caterpillar fauna. Biotropica 20, 120–135 (1988).
Southwood, T. R. E. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46, 336–365 (1977).
Solbreck, C. in Evolution of Insect Migration and Diapause 1st edn (ed. Dingle, H.) 195–217 (Springer, 1978).
Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W. & Zalucki, M. P. Migration in butterflies: a global overview. Biol. Rev. 96, 1462–1483 (2021).
Dicke, M. Insects in western art. Am. Entomol. 46, 228–237 (2000).
Salmon, M. A., Marren, P. & Harley, B. The Aurelian Legacy: British Butterflies and Their Collectors. (Univ. of California Press, 2001).
Nazari, V. Chasing butterflies in medieval Europe. J. Lepid. Soc. 68, 223–231 (2014).
Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663 (2019).
Derks, M. F. L. et al. The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol. Evol. 7, 2321–2332 (2015).
Diamond, S. E. et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95, 2613–2621 (2014).
Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).
Fox, R. et al. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51, 949–957 (2014).
Wright, C. J., Stevens, L., Mackintosh, A., Lawniczak, M. & Blaxter, M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat. Ecol. Evol. 8, 777–790 (2024).
Pinkert, S., Farwig, N., Kawahara, A. Y. & Jetz, W. Global hotspots of butterfly diversity are threatened in a warming world. Nat. Ecol. Evol. 9, 789–800 (2025).
Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).
Warren, M. S. et al. The decline of butterflies in Europe: problems, significance, and possible solutions. Proc. Natl Acad. Sci. USA 118, e2002551117 (2021).
Van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: butterflies and moths as a case study. Biol. Rev. 96, 2113–2126 (2021).
Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. & Lin, H.-T. Why flying insects gather at artificial light. Nat. Commun. 15, 689 (2024).
Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Divers. 14, 167–187 (2021).
van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30, R694–R695 (2020).
Belitz, M. W., Sawyer, A., Hendrick, L. K., Kawahara, A. Y. & Guralnick, R. P. Substantial urbanization-driven declines of larval and adult moths in a subtropical environment. Glob. Change Biol. 30, e17241 (2024).
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).
Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Huang, J. Effects of climate change on different geographical populations of the cotton bollworm Helicoverpa armigera (Lepidoptera, Noctuidae). Ecol. Evol. 11, 18357–18368 (2021).
Fekrat, L. & Farashi, A. Impacts of climatic changes on the worldwide potential geographical dispersal range of the leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae). Glob. Ecol. Conserv. 34, e02050 (2022).
Kristensen, N. P. (ed.) Handbook of Zoology Vol. IV, Arthropoda: Insecta, Lepidoptera, Moths and Butterflies, Teilband/Part 35 Vol. 1: Evolution, Systematics, and Biogeography (de Gruyter, 1998).
van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212–221 (2011).
Regier, J. C. et al. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9, 280 (2009).
Mutanen, M., Wahlberg, N. & Kaila, L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B Biol. Sci. 277, 2839–2848 (2010).
Regier, J. C. et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8, e58568 (2013).
Bazinet, A. L., Cummings, M. P., Mitter, K. T. & Mitter, C. W. Can RNA-seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS ONE 8, e82615 (2013).
Kawahara, A. Y. & Breinholt, J. W. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. R. Soc. B Biol. Sci. 281, 20140970 (2014).
Bazinet, A. L. et al. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. 42, 305–316 (2017).
Mayer, C. et al. Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens. Syst. Entomol. 46, 649–671 (2021).
Rota, J. et al. The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): assessing the potential causes and consequences. Syst. Entomol. 47, 531–550 (2022).
Yapar, E. Integrating Sanger and next-generation sequencing data sheds light on phylogenetic relationships among gelechioid moths (Lepidoptera: Gelechioidea). Syst. Entomol. 51, e70009 (2026).
Sohn, J.-C., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).
Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).
Doorenweerd, C., van Nieukerken, E. J., Sohn, C.-J. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334 (2015).
Heikkilä, M. et al. Critical re-examination of known purported fossil Bombycoidea (Lepidoptera). PeerJ 11, e16049 (2023).
Gauweiler, J., Haug, C., Müller, P. & Haug, J. T. Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity 15, 45–59 (2022).
Peris, D. & Condamine, F. L. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat. Commun. 15, 552 (2024).
Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913 (2023).
Bromham, L. et al. Bayesian molecular dating: opening up the black box. Biol. Rev. 93, 1165–1191 (2018).
Tong, K. J., Duchêne, S., Ho, S. Y. W. & Lo, N. Comment on Phylogenomics resolves the timing and pattern of insect evolution. Science 349, 487 (2015).
Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE 9, e109085 (2014).
Montagna, M. et al. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proc. R. Soc. B Biol. Sci. 286, 20191854 (2019).
Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS ONE 8, e80875 (2013).
Thomas, J. A., Frandsen, P. B., Prendini, E., Zhou, X. & Holzenthal, R. W. A multigene phylogeny and timeline for Trichoptera (Insecta). Syst. Entomol. 45, 670–686 (2020).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
Fiorelli, L. E. et al. Back to the poop: the oldest hexapod scales discovered within a Triassic coprolite from Argentina. J. S. Am. Earth Sci. 162, 105584 (2025).
Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).
Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B Biol. Sci. 276, 4295–4302 (2009).
Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B Biol. Sci. 279, 1093–1099 (2012).
Morlon, H. et al. Phylogenetic insights into diversification. Annu. Rev. Ecol. Evol. Syst. 55, 1–21 (2024).
Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).
Espeland, M. et al. Ancient Neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenetics Evol. 93, 296–306 (2015).
Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 12, 5717 (2021).
Carvalho, A. P. S. et al. Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience 27, 109336 (2024).
Toussaint, E. F. A. et al. Global climate cooling spurred skipper butterfly diversification. Syst. Biol. https://doi.org/10.1093/sysbio/syaf029 (2025).
Boyle, J. H. et al. Phylogeny of the Poritiinae (Lepidoptera: Lycaenidae), butterflies with ant associations and unusual lichenivorous diets. Syst. Entomol. 48, 422–433 (2023).
Braby, M. F. et al. Molecular phylogeny of the tribe Candalidini (Lepidoptera: Lycaenidae): systematics, diversification and evolutionary history. Syst. Entomol. 45, 703–722 (2020).
Valencia-Montoya, W. A. et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc. R. Soc. B Biol. Sci. 288, 20202512 (2021).
Espeland, M. et al. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol. Evol. 13, e10046 (2023).
Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).
Ghanavi, H. R. et al. Region-specific diversification dynamics and biogeographic history of one of the most diverse families of insects. Syst. Entomol. 50, 206–220 (2025).
Seifert, C. L., Strutzenberger, P. & Fiedler, K. Are day-flying moths more specialized in larval dietary breadth?—a test of the “Salient Aroma Hypothesis” in a predominantly nocturnal clade. Evolution 78, 1174–1182 (2024).
St Laurent, R. A., Carvalho, A. P. S., Earl, C. & Kawahara, A. Y. Food plant shifts drive the diversification of sack-bearer moths. Am. Nat. 198, E170–E184 (2021).
Bruzzese, D. J. et al. Phylogeny, host use, and diversification in the moth family Momphidae (Lepidoptera: Gelechioidea). PLoS ONE 14, e0207833 (2019).
St Laurent, R. A. et al. Phylogenetic systematics, diversification, and biogeography of Cerurinae (Lepidoptera: Notodontidae) and a description of a new genus. Insect Syst. Divers. 7, 3 (2023).
Kubo, T. & Iwasa, Y. Inferring the rates of branching and extinction from molecular phylogenies. Evolution 49, 694–704 (1995).
Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).
Helmstetter, A. J. et al. Pulled diversification rates, lineages-through-time plots, and modern macroevolutionary modeling. Syst. Biol. 71, 758–773 (2022).
Morlon, H., Robin, S. & Hartig, F. Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends Ecol. Evol. 37, 497–506 (2022).
Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
van der Kooi, C. J. & Ollerton, J. The origins of flowering plants and pollinators. Science 368, 1306–1308 (2020).
Krenn, H. W. Feeding mechanisms of adult lepidoptera: structure, function, and evolution of the mouthparts. Annu. Rev. Entomol. 55, 307–327 (2010).
Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).
Fagua, G. et al. Genus delimitation, biogeography and diversification of Choristoneura Lederer (Lepidoptera: Tortricidae) based on molecular evidence. Syst. Entomol. 44, 19–38 (2019).
Sierra-Botero, L. et al. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecol. Evol. 13, e9978 (2023).
Barber, J. R. et al. Moth tails divert bat attack: evolution of acoustic deflection. Proc. Natl Acad. Sci. USA 112, 2812–2816 (2015).
Rubin, J. J. et al. The evolution of anti-bat sensory illusions in moths. Sci. Adv. 4, eaar7428 (2018).
Wang, S. et al. The evolution and diversification of oakleaf butterflies. Cell 185, 3138–3152.e20 (2022).
Rubin, J. J. et al. Strong bat predation and weak environmental constraints predict longer moth tails. Proc. R. Soc. B Biol. Sci. 292, 20242824 (2025).
Skojec, C., Godfrey, R. K. & Kawahara, A. Y. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 14, jkad292 (2024).
Kunte, K. The diversity and evolution of Batesian mimicry in Papilio swallowtail butterflies. Evolution 63, 2707–2716 (2009).
Basu, D. N., Bhaumik, V. & Kunte, K. The tempo and mode of character evolution in the assembly of mimetic communities. Proc. Natl Acad. Sci. USA 120, e2203724120 (2023).
Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans. R. Soc. B Biol. Sci. 308, 433–610 (1985).
Engler-Chaouat, H. S. & Gilbert, L. E. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33, 25–42 (2007).
Puissant, A., Chotard, A., Condamine, F. L. & Llaurens, V. Convergence in sympatric swallowtail butterflies reveals ecological interactions as a key driver of worldwide trait diversification. Proc. Natl Acad. Sci. USA 120, e2303060120 (2023).
Thayer, R. C. & Patel, N. H. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J. Exp. Biol. 226, jeb245940 (2023).
Tsai, C.-C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).
Eisner, T., Alsop, R. & Ettershank, G. Adhesiveness of spider silk. Science 146, 1058–1061 (1964).
Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).
Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).
Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).
Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).
Condamine, F. L., Nabholz, B., Clamens, A., Dupuis, J. R. & Sperling, F. A. H. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating. Syst. Entomol. 43, 460–480 (2018).
Aduse-Poku, K. et al. Miocene climate and habitat change drove diversification in Bicyclus, Africa’s largest radiation of satyrine butterflies. Syst. Biol. 71, 570–588 (2022).
Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).
Campbell, E. O., MacDonald, Z. G., Gage, E. V., Gage, R. V. & Sperling, F. A. H. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol. Ecol. 31, 2400–2417 (2022).
Janz, N. & Nylin, S. Butterflies and plants: a phylogenetic study. Evolution 52, 486–502 (1998).
Janz, N., Nylin, S. & Wahlberg, N. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6, 4 (2006).
Janz, N., Nyblom, K. & Nylin, S. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55, 783–796 (2001).
Toussaint, E. F. A. et al. Out of the Orient: post-Tethyan transoceanic and trans-Arabian routes fostered the spread of Baorini skippers in the Afrotropics. Syst. Entomol. 44, 926–938 (2019).
Johns, C. A., Toussaint, E. F. A., Breinholt, J. W. & Kawahara, A. Y. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc. R. Soc. B Biol. Sci. 285, 20181047 (2018).
Haines, W. P., Schmitz, P. & Rubinoff, D. Ancient diversification of Hyposmocoma moths in Hawaii. Nat. Commun. 5, 3502 (2014).
Janzen, D. H. Host plants as islands in evolutionary and contemporary time. Am. Nat. 102, 592–595 (1968).
Schär, S. et al. Ecological specialization is associated with genetic structure in the ant-associated butterfly family Lycaenidae. Proc. R. Soc. B Biol. Sci. 285, 20181158 (2018).
The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036–1045 (2008).
The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
Ahola, V. et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5, 4737 (2014).
Li, W. et al. Genomes of skipper butterflies reveal extensive convergence of wing patterns. Proc. Natl Acad. Sci. USA 116, 6232–6237 (2019).
Weng, Y.-M. et al. A near chromosome-level genome assembly of a ghost moth (Lepidoptera, Hepialidae). Sci. Data 11, 1139 (2024).
Boyes, D. et al. The genome sequence of the Mother Shipton moth, Euclidia mi (Clerck, 1759). Wellcome Open Res. 8, 108 (2023).
Gil, J. et al. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. Preprint at bioRxiv https://doi.org/10.1101/2023.09.14.557757 (2023).
Harrison, P. W. et al. Ensembl 2024. Nucleic Acids Res. 52, D891–D899 (2024).
Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).
The Darwin Tree of Life Project Consortium. Sequence locally, think globally: the Darwin Tree of Life Project. Proc. Natl Acad. Sci. USA 119, e2115642118 (2022).
Robinson, G. E. et al. Creating a buzz about insect genomes. Science 331, 1386–1386 (2011).
Wright, C. J. et al. Project Psyche: reference genomes for all Lepidoptera in Europe. Trends Ecol. Evol. 40, 1234–1250 (2025).
Challis, R. J., Kumar, S., Dasmahapatra, K. K., Jiggins, C. D. & Blaxter, M. Lepbase: the Lepidopteran genome database. Preprint at bioRxiv https://doi.org/10.1101/056994 (2016).
Bortoluzzi, C. et al. Lepidoptera genomics based on 88 chromosomal reference sequences informs population genetic parameters for conservation. Preprint at bioRxiv https://doi.org/10.1101/2023.04.14.536868 (2023).
Singh, R. P. et al. Genome assembly of a nocturnal butterfly (Macrosoma leucophasiata) reveals convergent adaptation of visual genes. Commun. Biol. 7, 1664 (2024).
Chakraborty, M. et al. Sex-linked gene traffic underlies the acquisition of sexually dimorphic UV color vision in Heliconius butterflies. Proc. Natl Acad. Sci. USA 120, e2301411120 (2023).
Sondhi, Y., Ellis, E. A., Bybee, S. M., Theobald, J. C. & Kawahara, A. Y. Light environment drives evolution of color vision genes in butterflies and moths. Commun. Biol. 4, 177 (2021).
Rosser, N. et al. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 628, 811–817 (2024).
van’t Hof, A. E. et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105 (2016).
Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
van der Burg, K. R. L. et al. Genomic architecture of a genetically assimilated seasonal color pattern. Science 370, 721–725 (2020).
Mulhair, P. O., Crowley, L., Boyes, D. H., Lewis, O. T. & Holland, P. W. H. Opsin gene duplication in Lepidoptera: retrotransposition, sex linkage, and gene expression. Mol. Biol. Evol. 40, msad241 (2023).
Mulhair, P. O. et al. Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera. Genome Res. 33, 32–44 (2023).
Jin, H., Seki, T., Yamaguchi, J. & Fujiwara, H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. Sci. Adv. 5, eaav7569 (2019).
Iijima, T., Yoda, S. & Fujiwara, H. The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Commun. Biol. 2, 257 (2019).
Breeschoten, T., Van Der Linden, C. F. H., Ros, V. I. D., Schranz, M. E. & Simon, S. Expanding the menu: are polyphagy and gene family expansions linked across Lepidoptera? Genome Biol. Evol. 14, evab283 (2022).
Dort, H., Van Der Bijl, W., Wahlberg, N., Nylin, S. & Wheat, C. W. Genome-wide gene birth–death dynamics are associated with diet breadth variation in Lepidoptera. Genome Biol. Evol. 16, evae095 (2024).
Hoile, A. E., Holland, P. W. H. & Mulhair, P. O. Gene novelty and gene family expansion in the early evolution of Lepidoptera. BMC Genom. 26, 161 (2025).
Weng, Y.-M. et al. Gene family evolution suggests correlated dietary adaptations in butterflies and moths. Genome Biol. Evol. 17, evaf156 (2025).
Lucek, K., Augustijnen, H. & Escudero, M. A holocentric twist to chromosomal speciation? Trends Ecol. Evol. 37, 655–662 (2022).
van der Heijden, E. S. M. et al. Genomics of Neotropical biodiversity indicators: two butterfly radiations with rampant chromosomal rearrangements and hybridisation. Proc. Natl Acad. Sci. USA 122, e2410939122 (2025).
Robinson, R. Lepidoptera Genetics (Pergamon Press, 1971).
Nguyen, P. et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. USA 110, 6931–6936 (2013).
Carabajal Paladino, L. Z. et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol. Evol. 11, 1307–1319 (2019).
Kandul, N. P., Lukhtanov, V. A. & Pierce, N. E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution 61, 546–559 (2007).
Lukhtanov, V. A. et al. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 436, 385–389 (2005).
Wright, C. J. et al. Constraints on chromosome evolution revealed by the 229 chromosome pairs of the Atlas blue butterfly. Curr. Biol. 35, 4727–4742 (2025).
Orteu, A. et al. The Hypolimnas misippus genome supports a common origin of the W chromosome in Lepidoptera. Genome Biol. Evol. 16, evae215 (2024).
Lewis, J. J. et al. The Dryas iulia genome supports multiple gains of a W chromosome from a B chromosome in butterflies. Genome Biol. Evol. 13, evab128 (2021).
Fraïsse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, 1486 (2017).
Dai, W., Mank, J. & Ban, L. Repeated origin of the W chromosome from the Z chromosome in Lepidoptera. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2211549/v1 (2022).
Han, M.-J. et al. Multiple independent origins of the female W chromosome in moths and butterflies. Sci. Adv. 10, eadm9851 (2024).
Mank, J. E., Vicoso, B., Berlin, S. & Charlesworth, B. Effective population size and the Faster-X effect: empirical results and their interpretation. Evolution 64, 663–674 (2010).
Mongue, A. J., Hansen, M. E. & Walters, J. R. Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages. Evolution 76, 332–345 (2022).
Sackton, T. B. et al. Positive selection drives Faster-Z evolution in silkmoths. Evolution 68, 2331–2342 (2014).
Höök, L., Vila, R., Wiklund, C. & Backström, N. Temporal dynamics of faster neo-Z evolution in butterflies. Evolution 78, 1554–1567 (2024).
Rousselle, M., Faivre, N., Ballenghien, M., Galtier, N. & Nabholz, B. Hemizygosity enhances purifying selection: lack of fast-Z evolution in two satyrine butterflies. Genome Biol. Evol. 8, 3108–3119 (2016).
Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in. Heliconius. J. Evol. Biol. 32, 194–204 (2019).
Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).
Turelli, M. & Orr, H. A. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154, 1663–1679 (2000).
Rosser, N. et al. Complex basis of hybrid female sterility and Haldane’s rule in Heliconius butterflies: Z-linkage and epistasis. Mol. Ecol. 31, 959–977 (2022).
Robinson, G. S., Ackery, P. R., Kitching, I., Beccaloni, G. W. & Hernández, L. M. HOSTS – A Database of the World’s Lepidopteran Hostplants. nhm.ac.uk https://doi.org/10.5519/HAVT50XW (accessed 16 December 2025).
Simon, S. et al. Genome and transcriptome analysis of the beet armyworm Spodoptera exigua reveals targets for pest control. G3 11, jkab311 (2021).
Amado, D. et al. The genetic architecture of resistance to flubendiamide insecticides in Helicoverpa armigera (Hübner). PLoS ONE 20, e0318154 (2025).
Yonemura, N. & Sehnal, F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J. Mol. Evol. 63, 42–53 (2006).
Imada, Y. et al. Absence of fibroin H sequences and a significant divergence in the putative fibroin L homolog in Neomicropteryx cornuta (Micropterigidae) silk. Commun. Biol. 8, 434 (2025).
Alqassar, J. D., Biot, M., Eccles, L. E., Stoppel, W. L. & Martin, A. Regionalization of gene expression and cell types in the silk glands of Plodia pantry moths. iScience 28, 113865 (2025).
Kawahara, A. Y. et al. Long-read HiFi sequencing correctly assembles repetitive heavy fibroin silk genes in new moth and caddisfly genomes. Gigabyte https://doi.org/10.46471/gigabyte.64 (2022).
de-Dios, T. et al. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 12, RP87928 (2024).
Marino, A. et al. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. G3 13, jkad239 (2023).
Reboud, E. L. et al. Genomics, population divergence, and historical demography of the world’s largest and endangered butterfly, the Queen Alexandra’s birdwing. Genome Biol. Evol. 15, evad040 (2023).
MacDonald, Z. G. et al. Whole-genome evaluation of genetic rescue: the case of a curiously isolated and endangered butterfly. Mol. Ecol. 34, e17657 (2025).
van Oosterhout, C. et al. Genomic erosion in the assessment of species extinction risk and recovery potential. Preprint at bioRxiv https://doi.org/10.1101/2022.09.13.507768v2 (2025).
Yoshido, A. et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity 125, 138–154 (2020).
Wallace, A. R. I. On the phenomena of variation and geographical distribution as illustrated by the Papilionidae of the Malayan region. Trans. Linn. Soc. London 25, 1–71 (1865).
Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
Scriber, J. M. Latitudinal gradients in larval feeding specialization of the world Papilionidae (Lepidoptera). Psyche J. Entomol. 80, 355–373 (1973).
Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).
GBIF Secretariat. GBIF Backbone Taxonomy. gbif.org https://doi.org/10.15468/39OMEI (accessed 16 December 2025).
Girardello, M. et al. Gaps in butterfly inventory data: a global analysis. Biol. Conserv. 236, 289–295 (2019).
Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Linn. Soc. 105, 479–497 (2012).
Elias, M. et al. Out of the Andes: patterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).
Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C. & Cook, L. G. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061–4072 (2009).
Earl, C. et al. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. iScience 24, 102239 (2021).
Yau, E. Y. H. et al. Spatial occurrence records and distributions of tropical Asian butterflies. Sci. Data 12, 1004 (2025).
Seltmann, K. C. et al. LepNet: the Lepidoptera of North America Network. Zootaxa 4247, 073–077 (2017).
Callaghan, C. T., Poore, A. G. B., Major, R. E., Rowley, J. J. L. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B Biol. Sci. 286, 20191487 (2019).
Mesaglio, T., Soh, A., Kurniawidjaja, S. & Sexton, C. ‘First known photographs of living specimens’: the power of iNaturalist for recording rare tropical butterflies. J. Insect Conserv. 25, 905–911 (2021).
Leuenberger, W. et al. Three decades of declines restructure butterfly communities in the Midwestern United States. Proc. Natl Acad. Sci. USA 122, e2501340122 (2025).
Van Strien, A. J., Van Swaay, C. A. M., Van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234, 116–122 (2019).
Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).
Randle, Z. et al. Atlas of Britain & Ireland’s Larger Moths (Pisces Publications, 2019).
Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
Habel, J. C., Segerer, A. H., Ulrich, W. & Schmitt, T. Succession matters: community shifts in moths over three decades increases multifunctionality in intermediate successional stages. Sci. Rep. 9, 5586 (2019).
Boyes, D. H., Fox, R., Shortall, C. R. & Whittaker, R. J. Bucking the trend: the diversity of Anthropocene ‘winners’ among British moths. Front. Biogeogr. 11, e43862 (2019).
Palmer, G. et al. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160144 (2017).
Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).
Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).
Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
Mair, L. et al. Temporal variation in responses of species to four decades of climate warming. Glob. Change Biol. 18, 2439–2447 (2012).
Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 108259 (2020).
Hölker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).
Merckx, T. et al. Dim light pollution prevents diapause induction in urban and rural moths. J. Appl. Ecol. 60, 1022–1031 (2023).
Minnaar, C., Boyles, J. G., Minnaar, I. A., Sole, C. L. & McKechnie, A. E. Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 52, 522–531 (2015).
Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).
Gallien, L., Altermatt, F., Wiemers, M., Schweiger, O. & Zimmermann, N. E. Invasive plants threaten the least mobile butterflies in Switzerland. Divers. Distrib. 23, 185–195 (2017).
Crossley, M. S. et al. Recent climate change is creating hotspots of butterfly increase and decline across North America. Glob. Change Biol. 27, 2702–2714 (2021).
Checa, M. F., Rodriguez, J., Willmott, K. R. & Liger, B. Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla. Entomol. 97, 1–13 (2014).
Melero, Y., Stefanescu, C. & Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Conserv. 201, 336–342 (2016).
Colom, P., Traveset, A., Carreras, D. & Stefanescu, C. Spatio-temporal responses of butterflies to global warming on a Mediterranean island over two decades. Ecol. Entomol. 46, 262–272 (2021).
Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).
Lawton, J. H. et al. Making space for nature: a review of England’s wildlife sites and ecological network. gov.uk https://www.gov.uk/government/news/making-space-for-nature-a-review-of-englands-wildlife-sites-published-today (2010).
CBD. Kunming-Montreal Global Biodiversity Framework Target 3. Conserve 30% of land, waters and seas. cbd.int https://www.cbd.int/gbf/targets/3 (2022).
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).
Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).
Nakamura, Y. Conservation of butterflies in Japan: status, actions and strategy. J. Insect Conserv. 15, 5–22 (2011).
Ellis, S., Bourn, N. & Bulman, C. Landscape-scale Conservation for Butterflies and Moths: Lessons from the UK (Butterfly Conservation, 2012).
Summerville, K. S. & Crist, T. O. Structure and conservation of lepidopteran communities in managed forests of northeastern North America: a review. Can. Entomol. 140, 475–494 (2008).
Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).
Scriven, S. A., Beale, C. M., Benedick, S. & Hill, J. K. Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica 49, 206–216 (2017).
Ries, L., Fletcher, R. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).
Schlegel, J. Butterflies benefit from forest edge improvements in Western European lowland forests, irrespective of adjacent meadows’ use intensity. For. Ecol. Manag. 521, 120413 (2022).
Kallioniemi, E., Zannese, A., Tinker, J. E. & Franco, A. M. A. Inter- and intra-specific differences in butterfly behaviour at boundaries. Insect Conserv. Divers. 7, 232–240 (2014).
Mair, L., Thomas, C. D., Franco, A. M. A. & Hill, J. K. Quantifying the activity levels and behavioural responses of butterfly species to habitat boundaries. Ecol. Entomol. 40, 823–828 (2015).
Miao, B. et al. Climate and land-use interactively shape butterfly diversity in tropical rainforest and savanna ecosystems of southwestern China. Insect Sci. 28, 1109–1120 (2021).
Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).
Hodgson, J. A., Kunin, W. E., Thomas, C. D., Benton, T. G. & Gabriel, D. Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecol. Lett. 13, 1358–1367 (2010).
Merckx, T. et al. Shelter benefits less mobile moth species: the field-scale effect of hedgerow trees. Agric. Ecosyst. Environ. 138, 147–151 (2010).
Merckx, T., Marini, L., Feber, R. E. & Macdonald, D. W. Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. J. Appl. Ecol. 49, 1396–1404 (2012).
Threadgill, K. R. D., Hodgson, J. A., Jones, N., McClean, C. J. & Hill, J. K. Quantifying trade-offs between butterfly abundance and movement in the management of agricultural set-aside strips. Insect Conserv. Divers. 14, 768–779 (2021).
Nakahama, N., Hayamizu, M., Iwasaki, K. & Nitta, N. Management and landscape of shelterbelts contribute to butterfly and flowering plant diversity in northern Japan. Ecol. Res. 37, 780–790 (2022).
Halbritter, D. A., Daniels, J. C., Whitaker, D. C. & Huang, L. Reducing mowing frequency increases floral resource and butterfly (Lepidoptera: Hesperioidea and Papilionoidea) abundance in managed roadside margins. Fla. Entomol. 98, 1081–1092 (2015).
Nakahama, N. et al. Construction of deer fences restores the diversity of butterflies and bumblebees as well as flowering plants in semi-natural grassland. Biodivers. Conserv. 29, 2201–2215 (2020).
Van Deynze, B., Swinton, S. M., Hennessy, D. A., Haddad, N. M. & Ries, L. Insecticides, more than herbicides, land use, and climate, are associated with declines in butterfly species richness and abundance in the American Midwest. PLoS ONE 19, e0304319 (2024).
Gilburn, A. S. et al. Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ 3, e1402 (2015).
Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).
Morgan-Taylor, M. Regulating light pollution: more than just the night sky. Science 380, 1118–1120 (2023).
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).
Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).
Chen, I.-C. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).
Guralnick, R. P., Campbell, L. P. & Belitz, M. W. Weather anomalies more important than climate means in driving insect phenology. Commun. Biol. 6, 490 (2023).
Steele Cabrera, S. R. et al. Long-term population dynamics of an endangered butterfly are influenced by hurricane-mediated disturbance. Biol. Conserv. 302, 110969 (2025).
Willis, S. G. et al. Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conserv. Lett. 2, 46–52 (2009).
Thomas, J. A., Simcox, D. J. & Clarke, R. T. Successful conservation of a threatened Maculinea butterfly. Science 325, 80–83 (2009).
Ohwaki, A. How should we view temperate semi-natural grasslands? Insights from butterflies in Japan. Glob. Ecol. Conserv. 16, e00482 (2018).
Leone, J. B., Larson, D. L., Richards, A. E., Schatz, J. & Andersen, A. N. Fire regime shapes butterfly communities through changes in nectar resources in an Australian tropical savanna. Ecosphere 14, e4717 (2023).
Huntzinger, M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Conserv. 113, 1–12 (2003).
Schtickzelle, N., Turlure, C. & Baguette, M. Grazing management impacts on the viability of the threatened bog fritillary butterfly Proclossiana eunomia. Biol. Conserv. 136, 651–660 (2007).
Bussan, S. K. & Schultz, C. B. Can cattle grazing contribute to butterfly habitat? Using butterfly behavior as an index of habitat quality in an agroecosystem. Front. Ecol. Evol. 11, 1162060 (2023).
Wang, Z., Zeng, J., Meng, W., Lohman, D. J. & Pierce, N. E. Out of sight, out of mind: public and research interest in insects is negatively correlated with their conservation status. Insect Conserv. Divers. 14, 700–708 (2021).
Wang, Z. et al. One in five butterfly species sold online across borders. Biol. Conserv. 283, 110092 (2023).
Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: we know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
Kawahara, A. Y., Reeves, L. E., Barber, J. R. & Black, S. H. Eight simple actions that individuals can take to save insects from global declines. Proc. Natl Acad. Sci. USA 118, e2002547117 (2021).
Terry, C. N., Alonso-Rodríguez, A. M., Miller, S. E. & Hulshof, C. M. Lepidoptera research in Puerto Rico: reconnecting with historical legacies to guide future priorities. Biotropica 55, 1215–1232 (2023).
Dongmo, M. A. K., Hanna, R. & Bonebrake, T. C. Enhancing scientific and community capacity to conserve Central African Lepidoptera. Biol. Conserv. 279, 109938 (2023).
Duffus, N. E. et al. The present and future of insect biodiversity conservation in the neotropics: policy gaps and recommendations. Neotrop. Entomol. 52, 407–421 (2023).
Barahona-Segovia, R. M. & Zúñiga-Reinoso, Á. An overview of Neotropical arthropod conservation efforts using risk assessment lists. J. Insect Conserv. 25, 361–376 (2021).
Twort, V. G., Minet, J., Wheat, C. W. & Wahlberg, N. Museomics of a rare taxon: placing Whalleyanidae in the Lepidoptera Tree of Life. Syst. Entomol. 46, 926–937 (2021).
Benton, M. J., Wilf, P. & Sauquet, H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022).
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): a versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res. 8, 24 (2023).
Pollard, E. & Yates, T. J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme (Springer, 1993).
Isaac, N. J. B. et al. Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol. Evol. 2, 585–594 (2011).
Taron, D. & Ries, L. in Butterfly Conservation in North America (ed. Daniels, J. C.) 35–57 (Springer, 2015).
Kadlec, T., Tropek, R. & Konvicka, M. Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. J. Insect Conserv. 16, 275–280 (2012).
Edge, D. A. & Mecenero, S. Butterfly conservation in Southern Africa. J. Insect Conserv. 19, 325–339 (2015).
Attiwilli, S., Ravikanthachari, N. & Kunte, K. A comparison between time-constrained counts and line transects as methods to estimate butterfly diversity and monitor populations in tropical habitats. Insect Conserv. Divers. 17, 88–101 (2024).
Walpole, M. J. & Sheldon, I. R. Sampling butterflies in tropical rainforest: an evaluation of a transect walk method. Biol. Conserv. 87, 85–91 (1999).
Prudic, K. L., Oliver, J. C., Brown, B. V. & Long, E. C. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9, 186 (2018).
Pellet, J. Seasonal variation in detectability of butterflies surveyed with Pollard walks. J. Insect Conserv. 12, 155–162 (2008).
Devries, P. J., Murray, D. & Lande, R. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol. J. Linn. Soc. 62, 343–364 (1997).
Melo, D. H. A., Freitas, A. V. L., Tabarelli, M., Leal, I. R. & Filgueiras, B. K. C. Resilient fruit-feeding butterfly assemblages across a Caatinga dry forest chronosequence submitted to chronic anthropogenic disturbance. J. Insect Conserv. 27, 467–477 (2023).
Checa, M. F. et al. Implementing a novel approach to long-term monitoring of butterfly communities in the Neotropics. Insect Conserv. Divers. 15, 416–428 (2022).
Checa, M. F. et al. Combining sampling techniques aids monitoring of tropical butterflies. Insect Conserv. Divers. 12, 362–372 (2019).
Komal, J. et al. Moths (Insecta: Lepidoptera) of Delhi, India: an illustrated checklist based on museum specimens and surveys. Biodivers. Data J. 9, e73997 (2021).
Mustelin, T., Crabo, L. G. & Looney, C. Lepidoptera diversity based on continuous surveys 2009–2011 and 2017–2019 at a transition zone site in the central Cascade range, Washington, USA. J. Lepid. Soc. 74, 263–289 (2020).
Luk, C., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).
Basset, Y. et al. Comparison of rainforest butterfly assemblages across three biogeographical regions using standardized protocols. J. Res. Lepid. 44, 17–28 (2011).
Basset, Y. et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserv. Divers. 6, 223–233 (2013).
Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).
Butterfly Conservation. Big butterfly count. butterfly-conservation.org https://bigbutterflycount.butterfly-conservation.org/ (2024).
Swengel, A. B. Monitoring butterfly populations using the Fourth of July butterfly count. Am. Midl. Nat. 124, 395–406 (1990).
Kunte, K., Sondhi, S. & Roy, P. (eds) Butterflies of India, Vol. 4.27 (Indian Foundation for Butterflies, 2024).
Miyatake, Y., Fukuda, H. & Kanazawa, I. Migrating Butterfly, Parantica sita (Mushi-sha, 2003).
Lu, L. et al. Projecting the distribution range of the chestnut tiger butterfly Parantica sita sita (Lepidoptera: Nymphalidae: Danainae) in southwestern China. Appl. Entomol. Zool. 55, 413–421 (2020).
Rosa, A. H. B. & Freitas, A. V. L. The role of citizens in conservation science: a case study with threatened Brazilian butterflies. J. Insect Conserv. 28, 1149–1160 (2024).
Sondhi, S. & Kunte, K. The role of citizen science in studying Lepidoptera biology and conservation in India. Indian Entomologist 1, 13–22 (2020).
Richter, A. et al. The social fabric of citizen science—drivers for long-term engagement in the German butterfly monitoring scheme. J. Insect Conserv. 22, 731–743 (2018).
Prudic, K. et al. eButterfly: leveraging massive online citizen science for butterfly conservation. Insects 8, 53 (2017).
Ries, L. & Oberhauser, K. A citizen army for science: quantifying the contributions of citizen scientists to our understanding of monarch butterfly biology. BioScience 65, 419–430 (2015).
Shirey, V., Khelifa, R., M’Gonigle, L. K. & Guzman, L. M. Occupancy–detection models with museum specimen data: promise and pitfalls. Methods Ecol. Evol. 14, 402–414 (2023).
Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).
Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).
Inoue, T. & Ishii, M. Range Expansion of Butterflies (Hokuryukan, 2016).
Kwon, T.-S. et al. Evaluation of moth community changes and northward shifts in response to climate warming in Korea using both local and global occurrences. Glob. Ecol. Conserv. 49, e02763 (2024).
Roy, D. B. et al. Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230108 (2024).
Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).
Janzen, D. H. & Hallwachs, W. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica. Genome 59, 641–660 (2016).
Shashank, P. R. et al. CRISPR-based diagnostics detects invasive insect pests. Mol. Ecol. Resour. 24, e13881 (2024).
Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).
Battles, I. et al. Moths are less attracted to light traps than they used to be. J. Insect Conserv. 28, 1007–1018 (2024).
Cooke, R. et al. Integrating multiple evidence streams to understand insect biodiversity change. Science 388, eadq2110 (2025).
Acknowledgements
The authors thank D. Plotkin for helping with the construction of figures and tables. C.J.W. was supported by the Wellcome Trust award 220540/Z/20/A ‘Wellcome Sanger Institute Quinquennial Review 2021–2026’. V.M.S. was supported by a David H. Smith Postdoctoral Conservation Research Fellowship and startup funding from the Florida Museum of Natural History, University of Florida. F.L.C. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (project GAIA, agreement no. 851188). N.E.P. was supported by US National Science Foundation (NSF) DEB #1541560 and PoLS 1411123, and the Putnam Fund of the Museum of Comparative Zoology. A.Y.K. was supported by NSF grant numbers DEB #2426250, EF #2217159 and IOS #1920895.
Author information
Authors and Affiliations
Contributions
C.J.W.: data research, writing, review, editing. V.M.S.: data research, writing, review, editing. F.L.C.: data research, writing, review, editing. J.K.H.: data research, writing, review, editing. N.E.P.: data research, writing, review, editing. N.W.: data research, writing, review, editing. A.Y.K: project organization, data research, writing, review, editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks David Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Butterflies and Moths of North America (BAMONA): https://www.butterfliesandmoths.org
iNaturalist: https://www.inaturalist.org
IUCN Red list: https://www.iucnredlist.org/
MothBox: https://digital-naturalism-laboratories.github.io/Mothbox/
National Center for Biotechnology Information (NCBI): https://www.ncbi.nlm.nih.gov/datasets/genome/
NatureServe: https://www.natureserve.org/
PollardBase: https://pollardbase.org/
The Insect Survey: https://www.rothamsted.ac.uk/national-capability/the-insect-survey
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wright, C.J., Shirey, V.M., Condamine, F.L. et al. Evolution, genomics and conservation of butterflies and moths. Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-025-00128-8
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s44358-025-00128-8