Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution, genomics and conservation of butterflies and moths

Abstract

Butterflies and moths, together forming Lepidoptera, are among the most diverse groups of insects, with at least 161,572 described species. Lepidoptera have a pivotal role as pollinators, represent among the most species-rich clades of herbivorous insects and serve as essential components of food webs, providing sustenance for birds, reptiles, bats and arthropods. Although Lepidoptera have become a model system for many disciplines, a synthetic understanding of their remarkable biodiversity, evolution, distribution and importance is lacking. Here, we address this gap and highlight several key findings. Relationships of some Lepidoptera superfamilies, particularly within Ditrysia, remain unclear. Diversification rates are higher in later-diverging clades of butterflies than earlier-diverging clades. Taxonomic and genomic research on butterflies and large moths are improving in the modern era but remain poor in small moths. Although diversity hotspots are concentrated in the tropics, research efforts have disproportionately focused on temperate regions. Conservation measures such as the creation and restoration of natural habitats that are better connected and managed to improve their quality should be considered in the context of climate and habitat change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-calibrated phylogeny of lepidopteran superfamilies.
Fig. 2: Global diversification dynamics of six diverse butterfly families.
Fig. 3: Trends in genomic resources for Lepidoptera.
Fig. 4: Global genera-level richness for Lepidoptera.

References

  1. Goldstein, P. in Insect Biodiversity: Science and Society 2nd edn, Vol. 1 (eds Foottit, R. G. & Adler, P. H.) Ch. 13 (Wiley, 2017).

  2. Powell, J. A., Mitter, C. & Farrell, B. in Handbook of Zoology Vol. IV, Arthropoda: Insecta, Lepidoptera, Moths and Butterflies, Teilband/Part 35 Vol. 1: Evolution, Systematics, and Biogeography (ed. Kristensen, N. P.) 403–422 (de Gruyter, 1998).

  3. Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact. 10, 21–28 (2016).

    Article  Google Scholar 

  4. Mitter, C., Davis, D. R. & Cummings, M. P. Phylogeny and evolution of Lepidoptera. Annu. Rev. Entomol. 62, 265–283 (2017).

    Article  CAS  Google Scholar 

  5. Scoble, M. J. The Lepidoptera: Form, Function and Diversity (Oxford Univ. Press, 1992).

  6. Gilbert, L. E. & Singer, M. C. Butterfly ecology. Annu. Rev. Ecol. Evol. Syst. 6, 365–395 (1975).

    Article  Google Scholar 

  7. Stireman, J. O. & Shaw, S. R. in Caterpillars in the Middle (eds. Marquis, R. J. & Koptur, S.) 225–272 (Springer, 2022).

  8. Evans, L. C., Burgess, M. D., Potts, S. G., Kunin, W. E. & Oliver, T. H. Population links between an insectivorous bird and moths disentangled through national-scale monitoring data. Ecol. Lett. 27, e14362 (2024).

    Article  Google Scholar 

  9. Janzen, D. H. Ecological characterization of a Costa Rican dry forest caterpillar fauna. Biotropica 20, 120–135 (1988).

    Article  Google Scholar 

  10. Southwood, T. R. E. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46, 336–365 (1977).

    Article  Google Scholar 

  11. Solbreck, C. in Evolution of Insect Migration and Diapause 1st edn (ed. Dingle, H.) 195–217 (Springer, 1978).

  12. Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W. & Zalucki, M. P. Migration in butterflies: a global overview. Biol. Rev. 96, 1462–1483 (2021).

    Article  Google Scholar 

  13. Dicke, M. Insects in western art. Am. Entomol. 46, 228–237 (2000).

    Article  Google Scholar 

  14. Salmon, M. A., Marren, P. & Harley, B. The Aurelian Legacy: British Butterflies and Their Collectors. (Univ. of California Press, 2001).

  15. Nazari, V. Chasing butterflies in medieval Europe. J. Lepid. Soc. 68, 223–231 (2014).

    Google Scholar 

  16. Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663 (2019).

    Article  CAS  Google Scholar 

  17. Derks, M. F. L. et al. The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol. Evol. 7, 2321–2332 (2015).

    Article  CAS  Google Scholar 

  18. Diamond, S. E. et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95, 2613–2621 (2014).

    Article  Google Scholar 

  19. Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).

    Article  CAS  Google Scholar 

  20. Fox, R. et al. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51, 949–957 (2014).

    Article  CAS  Google Scholar 

  21. Wright, C. J., Stevens, L., Mackintosh, A., Lawniczak, M. & Blaxter, M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat. Ecol. Evol. 8, 777–790 (2024).

    Article  Google Scholar 

  22. Pinkert, S., Farwig, N., Kawahara, A. Y. & Jetz, W. Global hotspots of butterfly diversity are threatened in a warming world. Nat. Ecol. Evol. 9, 789–800 (2025).

    Article  Google Scholar 

  23. Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).

    Article  CAS  Google Scholar 

  24. Warren, M. S. et al. The decline of butterflies in Europe: problems, significance, and possible solutions. Proc. Natl Acad. Sci. USA 118, e2002551117 (2021).

    Article  CAS  Google Scholar 

  25. Van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article  Google Scholar 

  26. Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

    Article  CAS  Google Scholar 

  27. Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    Article  CAS  Google Scholar 

  28. Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: butterflies and moths as a case study. Biol. Rev. 96, 2113–2126 (2021).

    Article  Google Scholar 

  29. Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. & Lin, H.-T. Why flying insects gather at artificial light. Nat. Commun. 15, 689 (2024).

    Article  CAS  Google Scholar 

  30. Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Divers. 14, 167–187 (2021).

    Article  Google Scholar 

  31. van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30, R694–R695 (2020).

    Article  Google Scholar 

  32. Belitz, M. W., Sawyer, A., Hendrick, L. K., Kawahara, A. Y. & Guralnick, R. P. Substantial urbanization-driven declines of larval and adult moths in a subtropical environment. Glob. Change Biol. 30, e17241 (2024).

    Article  CAS  Google Scholar 

  33. Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article  CAS  Google Scholar 

  34. Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article  CAS  Google Scholar 

  35. Huang, J. Effects of climate change on different geographical populations of the cotton bollworm Helicoverpa armigera (Lepidoptera, Noctuidae). Ecol. Evol. 11, 18357–18368 (2021).

    Article  Google Scholar 

  36. Fekrat, L. & Farashi, A. Impacts of climatic changes on the worldwide potential geographical dispersal range of the leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae). Glob. Ecol. Conserv. 34, e02050 (2022).

    Google Scholar 

  37. Kristensen, N. P. (ed.) Handbook of Zoology Vol. IV, Arthropoda: Insecta, Lepidoptera, Moths and Butterflies, Teilband/Part 35 Vol. 1: Evolution, Systematics, and Biogeography (de Gruyter, 1998).

  38. van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212–221 (2011).

    Google Scholar 

  39. Regier, J. C. et al. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9, 280 (2009).

    Article  Google Scholar 

  40. Mutanen, M., Wahlberg, N. & Kaila, L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B Biol. Sci. 277, 2839–2848 (2010).

    Article  Google Scholar 

  41. Regier, J. C. et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8, e58568 (2013).

    Article  CAS  Google Scholar 

  42. Bazinet, A. L., Cummings, M. P., Mitter, K. T. & Mitter, C. W. Can RNA-seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS ONE 8, e82615 (2013).

    Article  Google Scholar 

  43. Kawahara, A. Y. & Breinholt, J. W. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. R. Soc. B Biol. Sci. 281, 20140970 (2014).

    Article  Google Scholar 

  44. Bazinet, A. L. et al. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. 42, 305–316 (2017).

    Article  Google Scholar 

  45. Mayer, C. et al. Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens. Syst. Entomol. 46, 649–671 (2021).

    Article  Google Scholar 

  46. Rota, J. et al. The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): assessing the potential causes and consequences. Syst. Entomol. 47, 531–550 (2022).

    Article  Google Scholar 

  47. Yapar, E. Integrating Sanger and next-generation sequencing data sheds light on phylogenetic relationships among gelechioid moths (Lepidoptera: Gelechioidea). Syst. Entomol. 51, e70009 (2026).

    Article  Google Scholar 

  48. Sohn, J.-C., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).

    Article  Google Scholar 

  49. Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).

    Article  Google Scholar 

  50. de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).

    Google Scholar 

  51. Doorenweerd, C., van Nieukerken, E. J., Sohn, C.-J. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334 (2015).

    Article  Google Scholar 

  52. Heikkilä, M. et al. Critical re-examination of known purported fossil Bombycoidea (Lepidoptera). PeerJ 11, e16049 (2023).

    Article  Google Scholar 

  53. Gauweiler, J., Haug, C., Müller, P. & Haug, J. T. Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity 15, 45–59 (2022).

    Article  Google Scholar 

  54. Peris, D. & Condamine, F. L. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat. Commun. 15, 552 (2024).

    Article  CAS  Google Scholar 

  55. Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913 (2023).

    Article  Google Scholar 

  56. Bromham, L. et al. Bayesian molecular dating: opening up the black box. Biol. Rev. 93, 1165–1191 (2018).

    Article  Google Scholar 

  57. Tong, K. J., Duchêne, S., Ho, S. Y. W. & Lo, N. Comment on Phylogenomics resolves the timing and pattern of insect evolution. Science 349, 487 (2015).

    Article  CAS  Google Scholar 

  58. Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE 9, e109085 (2014).

    Article  Google Scholar 

  59. Montagna, M. et al. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proc. R. Soc. B Biol. Sci. 286, 20191854 (2019).

    Article  Google Scholar 

  60. Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS ONE 8, e80875 (2013).

    Article  Google Scholar 

  61. Thomas, J. A., Frandsen, P. B., Prendini, E., Zhou, X. & Holzenthal, R. W. A multigene phylogeny and timeline for Trichoptera (Insecta). Syst. Entomol. 45, 670–686 (2020).

    Article  Google Scholar 

  62. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article  CAS  Google Scholar 

  63. Fiorelli, L. E. et al. Back to the poop: the oldest hexapod scales discovered within a Triassic coprolite from Argentina. J. S. Am. Earth Sci. 162, 105584 (2025).

    Article  Google Scholar 

  64. Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).

    Article  Google Scholar 

  65. Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B Biol. Sci. 276, 4295–4302 (2009).

    Article  Google Scholar 

  66. Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B Biol. Sci. 279, 1093–1099 (2012).

    Article  Google Scholar 

  67. Morlon, H. et al. Phylogenetic insights into diversification. Annu. Rev. Ecol. Evol. Syst. 55, 1–21 (2024).

    Article  Google Scholar 

  68. Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).

    Article  CAS  Google Scholar 

  69. Espeland, M. et al. Ancient Neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenetics Evol. 93, 296–306 (2015).

    Article  Google Scholar 

  70. Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 12, 5717 (2021).

    Article  CAS  Google Scholar 

  71. Carvalho, A. P. S. et al. Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience 27, 109336 (2024).

    Article  Google Scholar 

  72. Toussaint, E. F. A. et al. Global climate cooling spurred skipper butterfly diversification. Syst. Biol. https://doi.org/10.1093/sysbio/syaf029 (2025).

    Article  Google Scholar 

  73. Boyle, J. H. et al. Phylogeny of the Poritiinae (Lepidoptera: Lycaenidae), butterflies with ant associations and unusual lichenivorous diets. Syst. Entomol. 48, 422–433 (2023).

    Article  Google Scholar 

  74. Braby, M. F. et al. Molecular phylogeny of the tribe Candalidini (Lepidoptera: Lycaenidae): systematics, diversification and evolutionary history. Syst. Entomol. 45, 703–722 (2020).

    Article  Google Scholar 

  75. Valencia-Montoya, W. A. et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc. R. Soc. B Biol. Sci. 288, 20202512 (2021).

    Article  CAS  Google Scholar 

  76. Espeland, M. et al. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol. Evol. 13, e10046 (2023).

    Article  Google Scholar 

  77. Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).

    Article  Google Scholar 

  78. Ghanavi, H. R. et al. Region-specific diversification dynamics and biogeographic history of one of the most diverse families of insects. Syst. Entomol. 50, 206–220 (2025).

    Article  Google Scholar 

  79. Seifert, C. L., Strutzenberger, P. & Fiedler, K. Are day-flying moths more specialized in larval dietary breadth?—a test of the “Salient Aroma Hypothesis” in a predominantly nocturnal clade. Evolution 78, 1174–1182 (2024).

    Article  Google Scholar 

  80. St Laurent, R. A., Carvalho, A. P. S., Earl, C. & Kawahara, A. Y. Food plant shifts drive the diversification of sack-bearer moths. Am. Nat. 198, E170–E184 (2021).

    Article  Google Scholar 

  81. Bruzzese, D. J. et al. Phylogeny, host use, and diversification in the moth family Momphidae (Lepidoptera: Gelechioidea). PLoS ONE 14, e0207833 (2019).

    Article  CAS  Google Scholar 

  82. St Laurent, R. A. et al. Phylogenetic systematics, diversification, and biogeography of Cerurinae (Lepidoptera: Notodontidae) and a description of a new genus. Insect Syst. Divers. 7, 3 (2023).

    Article  Google Scholar 

  83. Kubo, T. & Iwasa, Y. Inferring the rates of branching and extinction from molecular phylogenies. Evolution 49, 694–704 (1995).

    Article  Google Scholar 

  84. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article  CAS  Google Scholar 

  85. Helmstetter, A. J. et al. Pulled diversification rates, lineages-through-time plots, and modern macroevolutionary modeling. Syst. Biol. 71, 758–773 (2022).

    Article  Google Scholar 

  86. Morlon, H., Robin, S. & Hartig, F. Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends Ecol. Evol. 37, 497–506 (2022).

    Article  Google Scholar 

  87. Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).

    Article  Google Scholar 

  88. van der Kooi, C. J. & Ollerton, J. The origins of flowering plants and pollinators. Science 368, 1306–1308 (2020).

    Article  Google Scholar 

  89. Krenn, H. W. Feeding mechanisms of adult lepidoptera: structure, function, and evolution of the mouthparts. Annu. Rev. Entomol. 55, 307–327 (2010).

    Article  CAS  Google Scholar 

  90. Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).

    Article  CAS  Google Scholar 

  91. Fagua, G. et al. Genus delimitation, biogeography and diversification of Choristoneura Lederer (Lepidoptera: Tortricidae) based on molecular evidence. Syst. Entomol. 44, 19–38 (2019).

    Article  Google Scholar 

  92. Sierra-Botero, L. et al. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecol. Evol. 13, e9978 (2023).

    Article  Google Scholar 

  93. Barber, J. R. et al. Moth tails divert bat attack: evolution of acoustic deflection. Proc. Natl Acad. Sci. USA 112, 2812–2816 (2015).

    Article  CAS  Google Scholar 

  94. Rubin, J. J. et al. The evolution of anti-bat sensory illusions in moths. Sci. Adv. 4, eaar7428 (2018).

    Article  Google Scholar 

  95. Wang, S. et al. The evolution and diversification of oakleaf butterflies. Cell 185, 3138–3152.e20 (2022).

    Article  CAS  Google Scholar 

  96. Rubin, J. J. et al. Strong bat predation and weak environmental constraints predict longer moth tails. Proc. R. Soc. B Biol. Sci. 292, 20242824 (2025).

    Article  Google Scholar 

  97. Skojec, C., Godfrey, R. K. & Kawahara, A. Y. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 14, jkad292 (2024).

    Article  CAS  Google Scholar 

  98. Kunte, K. The diversity and evolution of Batesian mimicry in Papilio swallowtail butterflies. Evolution 63, 2707–2716 (2009).

    Article  Google Scholar 

  99. Basu, D. N., Bhaumik, V. & Kunte, K. The tempo and mode of character evolution in the assembly of mimetic communities. Proc. Natl Acad. Sci. USA 120, e2203724120 (2023).

    Article  CAS  Google Scholar 

  100. Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans. R. Soc. B Biol. Sci. 308, 433–610 (1985).

    Google Scholar 

  101. Engler-Chaouat, H. S. & Gilbert, L. E. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33, 25–42 (2007).

    Article  CAS  Google Scholar 

  102. Puissant, A., Chotard, A., Condamine, F. L. & Llaurens, V. Convergence in sympatric swallowtail butterflies reveals ecological interactions as a key driver of worldwide trait diversification. Proc. Natl Acad. Sci. USA 120, e2303060120 (2023).

    Article  CAS  Google Scholar 

  103. Thayer, R. C. & Patel, N. H. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J. Exp. Biol. 226, jeb245940 (2023).

    Article  Google Scholar 

  104. Tsai, C.-C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).

    Article  CAS  Google Scholar 

  105. Eisner, T., Alsop, R. & Ettershank, G. Adhesiveness of spider silk. Science 146, 1058–1061 (1964).

    Article  CAS  Google Scholar 

  106. Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).

    Article  Google Scholar 

  107. Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).

    Article  Google Scholar 

  108. Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).

    Article  Google Scholar 

  109. Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).

    Article  Google Scholar 

  110. Condamine, F. L., Nabholz, B., Clamens, A., Dupuis, J. R. & Sperling, F. A. H. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating. Syst. Entomol. 43, 460–480 (2018).

    Article  Google Scholar 

  111. Aduse-Poku, K. et al. Miocene climate and habitat change drove diversification in Bicyclus, Africa’s largest radiation of satyrine butterflies. Syst. Biol. 71, 570–588 (2022).

    Article  Google Scholar 

  112. Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).

    Article  Google Scholar 

  113. Campbell, E. O., MacDonald, Z. G., Gage, E. V., Gage, R. V. & Sperling, F. A. H. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol. Ecol. 31, 2400–2417 (2022).

    Article  Google Scholar 

  114. Janz, N. & Nylin, S. Butterflies and plants: a phylogenetic study. Evolution 52, 486–502 (1998).

    Article  Google Scholar 

  115. Janz, N., Nylin, S. & Wahlberg, N. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6, 4 (2006).

    Article  Google Scholar 

  116. Janz, N., Nyblom, K. & Nylin, S. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55, 783–796 (2001).

    Article  CAS  Google Scholar 

  117. Toussaint, E. F. A. et al. Out of the Orient: post-Tethyan transoceanic and trans-Arabian routes fostered the spread of Baorini skippers in the Afrotropics. Syst. Entomol. 44, 926–938 (2019).

    Article  Google Scholar 

  118. Johns, C. A., Toussaint, E. F. A., Breinholt, J. W. & Kawahara, A. Y. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc. R. Soc. B Biol. Sci. 285, 20181047 (2018).

    Article  Google Scholar 

  119. Haines, W. P., Schmitz, P. & Rubinoff, D. Ancient diversification of Hyposmocoma moths in Hawaii. Nat. Commun. 5, 3502 (2014).

    Article  Google Scholar 

  120. Janzen, D. H. Host plants as islands in evolutionary and contemporary time. Am. Nat. 102, 592–595 (1968).

    Article  Google Scholar 

  121. Schär, S. et al. Ecological specialization is associated with genetic structure in the ant-associated butterfly family Lycaenidae. Proc. R. Soc. B Biol. Sci. 285, 20181158 (2018).

    Article  Google Scholar 

  122. The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036–1045 (2008).

    Article  CAS  Google Scholar 

  123. The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    Article  Google Scholar 

  124. Ahola, V. et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5, 4737 (2014).

    Article  CAS  Google Scholar 

  125. Li, W. et al. Genomes of skipper butterflies reveal extensive convergence of wing patterns. Proc. Natl Acad. Sci. USA 116, 6232–6237 (2019).

    Article  CAS  Google Scholar 

  126. Weng, Y.-M. et al. A near chromosome-level genome assembly of a ghost moth (Lepidoptera, Hepialidae). Sci. Data 11, 1139 (2024).

    Article  CAS  Google Scholar 

  127. Boyes, D. et al. The genome sequence of the Mother Shipton moth, Euclidia mi (Clerck, 1759). Wellcome Open Res. 8, 108 (2023).

    Article  Google Scholar 

  128. Gil, J. et al. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. Preprint at bioRxiv https://doi.org/10.1101/2023.09.14.557757 (2023).

  129. Harrison, P. W. et al. Ensembl 2024. Nucleic Acids Res. 52, D891–D899 (2024).

    Article  CAS  Google Scholar 

  130. Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).

    Article  CAS  Google Scholar 

  131. The Darwin Tree of Life Project Consortium. Sequence locally, think globally: the Darwin Tree of Life Project. Proc. Natl Acad. Sci. USA 119, e2115642118 (2022).

    Article  Google Scholar 

  132. Robinson, G. E. et al. Creating a buzz about insect genomes. Science 331, 1386–1386 (2011).

    Article  Google Scholar 

  133. Wright, C. J. et al. Project Psyche: reference genomes for all Lepidoptera in Europe. Trends Ecol. Evol. 40, 1234–1250 (2025).

    Article  Google Scholar 

  134. Challis, R. J., Kumar, S., Dasmahapatra, K. K., Jiggins, C. D. & Blaxter, M. Lepbase: the Lepidopteran genome database. Preprint at bioRxiv https://doi.org/10.1101/056994 (2016).

  135. Bortoluzzi, C. et al. Lepidoptera genomics based on 88 chromosomal reference sequences informs population genetic parameters for conservation. Preprint at bioRxiv https://doi.org/10.1101/2023.04.14.536868 (2023).

  136. Singh, R. P. et al. Genome assembly of a nocturnal butterfly (Macrosoma leucophasiata) reveals convergent adaptation of visual genes. Commun. Biol. 7, 1664 (2024).

    Article  CAS  Google Scholar 

  137. Chakraborty, M. et al. Sex-linked gene traffic underlies the acquisition of sexually dimorphic UV color vision in Heliconius butterflies. Proc. Natl Acad. Sci. USA 120, e2301411120 (2023).

    Article  CAS  Google Scholar 

  138. Sondhi, Y., Ellis, E. A., Bybee, S. M., Theobald, J. C. & Kawahara, A. Y. Light environment drives evolution of color vision genes in butterflies and moths. Commun. Biol. 4, 177 (2021).

    Article  CAS  Google Scholar 

  139. Rosser, N. et al. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 628, 811–817 (2024).

    Article  CAS  Google Scholar 

  140. van’t Hof, A. E. et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105 (2016).

    Article  Google Scholar 

  141. Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).

    Article  CAS  Google Scholar 

  142. van der Burg, K. R. L. et al. Genomic architecture of a genetically assimilated seasonal color pattern. Science 370, 721–725 (2020).

    Article  Google Scholar 

  143. Mulhair, P. O., Crowley, L., Boyes, D. H., Lewis, O. T. & Holland, P. W. H. Opsin gene duplication in Lepidoptera: retrotransposition, sex linkage, and gene expression. Mol. Biol. Evol. 40, msad241 (2023).

    Article  CAS  Google Scholar 

  144. Mulhair, P. O. et al. Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera. Genome Res. 33, 32–44 (2023).

    Article  CAS  Google Scholar 

  145. Jin, H., Seki, T., Yamaguchi, J. & Fujiwara, H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. Sci. Adv. 5, eaav7569 (2019).

    Article  CAS  Google Scholar 

  146. Iijima, T., Yoda, S. & Fujiwara, H. The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Commun. Biol. 2, 257 (2019).

    Article  Google Scholar 

  147. Breeschoten, T., Van Der Linden, C. F. H., Ros, V. I. D., Schranz, M. E. & Simon, S. Expanding the menu: are polyphagy and gene family expansions linked across Lepidoptera? Genome Biol. Evol. 14, evab283 (2022).

    Article  CAS  Google Scholar 

  148. Dort, H., Van Der Bijl, W., Wahlberg, N., Nylin, S. & Wheat, C. W. Genome-wide gene birth–death dynamics are associated with diet breadth variation in Lepidoptera. Genome Biol. Evol. 16, evae095 (2024).

    Article  Google Scholar 

  149. Hoile, A. E., Holland, P. W. H. & Mulhair, P. O. Gene novelty and gene family expansion in the early evolution of Lepidoptera. BMC Genom. 26, 161 (2025).

    Article  Google Scholar 

  150. Weng, Y.-M. et al. Gene family evolution suggests correlated dietary adaptations in butterflies and moths. Genome Biol. Evol. 17, evaf156 (2025).

    Article  CAS  Google Scholar 

  151. Lucek, K., Augustijnen, H. & Escudero, M. A holocentric twist to chromosomal speciation? Trends Ecol. Evol. 37, 655–662 (2022).

    Article  CAS  Google Scholar 

  152. van der Heijden, E. S. M. et al. Genomics of Neotropical biodiversity indicators: two butterfly radiations with rampant chromosomal rearrangements and hybridisation. Proc. Natl Acad. Sci. USA 122, e2410939122 (2025).

    Article  Google Scholar 

  153. Robinson, R. Lepidoptera Genetics (Pergamon Press, 1971).

  154. Nguyen, P. et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. USA 110, 6931–6936 (2013).

    Article  CAS  Google Scholar 

  155. Carabajal Paladino, L. Z. et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol. Evol. 11, 1307–1319 (2019).

    Article  Google Scholar 

  156. Kandul, N. P., Lukhtanov, V. A. & Pierce, N. E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution 61, 546–559 (2007).

    Article  Google Scholar 

  157. Lukhtanov, V. A. et al. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 436, 385–389 (2005).

    Article  CAS  Google Scholar 

  158. Wright, C. J. et al. Constraints on chromosome evolution revealed by the 229 chromosome pairs of the Atlas blue butterfly. Curr. Biol. 35, 4727–4742 (2025).

    Article  CAS  Google Scholar 

  159. Orteu, A. et al. The Hypolimnas misippus genome supports a common origin of the W chromosome in Lepidoptera. Genome Biol. Evol. 16, evae215 (2024).

    Article  Google Scholar 

  160. Lewis, J. J. et al. The Dryas iulia genome supports multiple gains of a W chromosome from a B chromosome in butterflies. Genome Biol. Evol. 13, evab128 (2021).

    Article  CAS  Google Scholar 

  161. Fraïsse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, 1486 (2017).

    Article  Google Scholar 

  162. Dai, W., Mank, J. & Ban, L. Repeated origin of the W chromosome from the Z chromosome in Lepidoptera. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2211549/v1 (2022).

  163. Han, M.-J. et al. Multiple independent origins of the female W chromosome in moths and butterflies. Sci. Adv. 10, eadm9851 (2024).

    Article  CAS  Google Scholar 

  164. Mank, J. E., Vicoso, B., Berlin, S. & Charlesworth, B. Effective population size and the Faster-X effect: empirical results and their interpretation. Evolution 64, 663–674 (2010).

    Article  Google Scholar 

  165. Mongue, A. J., Hansen, M. E. & Walters, J. R. Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages. Evolution 76, 332–345 (2022).

    Article  CAS  Google Scholar 

  166. Sackton, T. B. et al. Positive selection drives Faster-Z evolution in silkmoths. Evolution 68, 2331–2342 (2014).

    Google Scholar 

  167. Höök, L., Vila, R., Wiklund, C. & Backström, N. Temporal dynamics of faster neo-Z evolution in butterflies. Evolution 78, 1554–1567 (2024).

    Article  Google Scholar 

  168. Rousselle, M., Faivre, N., Ballenghien, M., Galtier, N. & Nabholz, B. Hemizygosity enhances purifying selection: lack of fast-Z evolution in two satyrine butterflies. Genome Biol. Evol. 8, 3108–3119 (2016).

    Article  CAS  Google Scholar 

  169. Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in. Heliconius. J. Evol. Biol. 32, 194–204 (2019).

    Article  CAS  Google Scholar 

  170. Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).

    Article  Google Scholar 

  171. Turelli, M. & Orr, H. A. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154, 1663–1679 (2000).

    Article  CAS  Google Scholar 

  172. Rosser, N. et al. Complex basis of hybrid female sterility and Haldane’s rule in Heliconius butterflies: Z-linkage and epistasis. Mol. Ecol. 31, 959–977 (2022).

    Article  CAS  Google Scholar 

  173. Robinson, G. S., Ackery, P. R., Kitching, I., Beccaloni, G. W. & Hernández, L. M. HOSTS – A Database of the World’s Lepidopteran Hostplants. nhm.ac.uk https://doi.org/10.5519/HAVT50XW (accessed 16 December 2025).

  174. Simon, S. et al. Genome and transcriptome analysis of the beet armyworm Spodoptera exigua reveals targets for pest control. G3 11, jkab311 (2021).

    Article  CAS  Google Scholar 

  175. Amado, D. et al. The genetic architecture of resistance to flubendiamide insecticides in Helicoverpa armigera (Hübner). PLoS ONE 20, e0318154 (2025).

    Article  CAS  Google Scholar 

  176. Yonemura, N. & Sehnal, F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J. Mol. Evol. 63, 42–53 (2006).

    Article  CAS  Google Scholar 

  177. Imada, Y. et al. Absence of fibroin H sequences and a significant divergence in the putative fibroin L homolog in Neomicropteryx cornuta (Micropterigidae) silk. Commun. Biol. 8, 434 (2025).

    Article  CAS  Google Scholar 

  178. Alqassar, J. D., Biot, M., Eccles, L. E., Stoppel, W. L. & Martin, A. Regionalization of gene expression and cell types in the silk glands of Plodia pantry moths. iScience 28, 113865 (2025).

    Article  CAS  Google Scholar 

  179. Kawahara, A. Y. et al. Long-read HiFi sequencing correctly assembles repetitive heavy fibroin silk genes in new moth and caddisfly genomes. Gigabyte https://doi.org/10.46471/gigabyte.64 (2022).

  180. de-Dios, T. et al. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 12, RP87928 (2024).

    Article  Google Scholar 

  181. Marino, A. et al. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. G3 13, jkad239 (2023).

    Article  CAS  Google Scholar 

  182. Reboud, E. L. et al. Genomics, population divergence, and historical demography of the world’s largest and endangered butterfly, the Queen Alexandra’s birdwing. Genome Biol. Evol. 15, evad040 (2023).

    Article  Google Scholar 

  183. MacDonald, Z. G. et al. Whole-genome evaluation of genetic rescue: the case of a curiously isolated and endangered butterfly. Mol. Ecol. 34, e17657 (2025).

    Article  Google Scholar 

  184. van Oosterhout, C. et al. Genomic erosion in the assessment of species extinction risk and recovery potential. Preprint at bioRxiv https://doi.org/10.1101/2022.09.13.507768v2 (2025).

  185. Yoshido, A. et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity 125, 138–154 (2020).

    Article  CAS  Google Scholar 

  186. Wallace, A. R. I. On the phenomena of variation and geographical distribution as illustrated by the Papilionidae of the Malayan region. Trans. Linn. Soc. London 25, 1–71 (1865).

    Article  Google Scholar 

  187. Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  188. Scriber, J. M. Latitudinal gradients in larval feeding specialization of the world Papilionidae (Lepidoptera). Psyche J. Entomol. 80, 355–373 (1973).

    Article  Google Scholar 

  189. Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).

    Article  Google Scholar 

  190. GBIF Secretariat. GBIF Backbone Taxonomy. gbif.org https://doi.org/10.15468/39OMEI (accessed 16 December 2025).

  191. Girardello, M. et al. Gaps in butterfly inventory data: a global analysis. Biol. Conserv. 236, 289–295 (2019).

    Article  Google Scholar 

  192. Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Linn. Soc. 105, 479–497 (2012).

    Article  Google Scholar 

  193. Elias, M. et al. Out of the Andes: patterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).

    Article  CAS  Google Scholar 

  194. Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C. & Cook, L. G. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061–4072 (2009).

    Article  Google Scholar 

  195. Earl, C. et al. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. iScience 24, 102239 (2021).

    Article  Google Scholar 

  196. Yau, E. Y. H. et al. Spatial occurrence records and distributions of tropical Asian butterflies. Sci. Data 12, 1004 (2025).

    Article  Google Scholar 

  197. Seltmann, K. C. et al. LepNet: the Lepidoptera of North America Network. Zootaxa 4247, 073–077 (2017).

    Article  Google Scholar 

  198. Callaghan, C. T., Poore, A. G. B., Major, R. E., Rowley, J. J. L. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B Biol. Sci. 286, 20191487 (2019).

    Article  Google Scholar 

  199. Mesaglio, T., Soh, A., Kurniawidjaja, S. & Sexton, C. ‘First known photographs of living specimens’: the power of iNaturalist for recording rare tropical butterflies. J. Insect Conserv. 25, 905–911 (2021).

    Article  Google Scholar 

  200. Leuenberger, W. et al. Three decades of declines restructure butterfly communities in the Midwestern United States. Proc. Natl Acad. Sci. USA 122, e2501340122 (2025).

    Article  CAS  Google Scholar 

  201. Van Strien, A. J., Van Swaay, C. A. M., Van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234, 116–122 (2019).

    Article  Google Scholar 

  202. Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).

    Article  CAS  Google Scholar 

  203. Randle, Z. et al. Atlas of Britain & Ireland’s Larger Moths (Pisces Publications, 2019).

  204. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    Article  CAS  Google Scholar 

  205. Habel, J. C., Segerer, A. H., Ulrich, W. & Schmitt, T. Succession matters: community shifts in moths over three decades increases multifunctionality in intermediate successional stages. Sci. Rep. 9, 5586 (2019).

    Article  Google Scholar 

  206. Boyes, D. H., Fox, R., Shortall, C. R. & Whittaker, R. J. Bucking the trend: the diversity of Anthropocene ‘winners’ among British moths. Front. Biogeogr. 11, e43862 (2019).

    Article  Google Scholar 

  207. Palmer, G. et al. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160144 (2017).

    Article  Google Scholar 

  208. Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).

    Article  CAS  Google Scholar 

  209. Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).

    Article  CAS  Google Scholar 

  210. Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

    Article  CAS  Google Scholar 

  211. Mair, L. et al. Temporal variation in responses of species to four decades of climate warming. Glob. Change Biol. 18, 2439–2447 (2012).

    Article  Google Scholar 

  212. Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 108259 (2020).

    Article  Google Scholar 

  213. Hölker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).

    Article  Google Scholar 

  214. Merckx, T. et al. Dim light pollution prevents diapause induction in urban and rural moths. J. Appl. Ecol. 60, 1022–1031 (2023).

    Article  Google Scholar 

  215. Minnaar, C., Boyles, J. G., Minnaar, I. A., Sole, C. L. & McKechnie, A. E. Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 52, 522–531 (2015).

    Article  Google Scholar 

  216. Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).

    Article  Google Scholar 

  217. Gallien, L., Altermatt, F., Wiemers, M., Schweiger, O. & Zimmermann, N. E. Invasive plants threaten the least mobile butterflies in Switzerland. Divers. Distrib. 23, 185–195 (2017).

    Article  Google Scholar 

  218. Crossley, M. S. et al. Recent climate change is creating hotspots of butterfly increase and decline across North America. Glob. Change Biol. 27, 2702–2714 (2021).

    Article  CAS  Google Scholar 

  219. Checa, M. F., Rodriguez, J., Willmott, K. R. & Liger, B. Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla. Entomol. 97, 1–13 (2014).

    Article  Google Scholar 

  220. Melero, Y., Stefanescu, C. & Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Conserv. 201, 336–342 (2016).

    Article  Google Scholar 

  221. Colom, P., Traveset, A., Carreras, D. & Stefanescu, C. Spatio-temporal responses of butterflies to global warming on a Mediterranean island over two decades. Ecol. Entomol. 46, 262–272 (2021).

    Article  Google Scholar 

  222. Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).

    Article  CAS  Google Scholar 

  223. Lawton, J. H. et al. Making space for nature: a review of England’s wildlife sites and ecological network. gov.uk https://www.gov.uk/government/news/making-space-for-nature-a-review-of-englands-wildlife-sites-published-today (2010).

  224. CBD. Kunming-Montreal Global Biodiversity Framework Target 3. Conserve 30% of land, waters and seas. cbd.int https://www.cbd.int/gbf/targets/3 (2022).

  225. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  226. Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).

    Article  Google Scholar 

  227. Nakamura, Y. Conservation of butterflies in Japan: status, actions and strategy. J. Insect Conserv. 15, 5–22 (2011).

    Article  Google Scholar 

  228. Ellis, S., Bourn, N. & Bulman, C. Landscape-scale Conservation for Butterflies and Moths: Lessons from the UK (Butterfly Conservation, 2012).

  229. Summerville, K. S. & Crist, T. O. Structure and conservation of lepidopteran communities in managed forests of northeastern North America: a review. Can. Entomol. 140, 475–494 (2008).

    Article  Google Scholar 

  230. Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).

    Article  Google Scholar 

  231. Scriven, S. A., Beale, C. M., Benedick, S. & Hill, J. K. Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica 49, 206–216 (2017).

    Article  Google Scholar 

  232. Ries, L., Fletcher, R. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).

    Article  Google Scholar 

  233. Schlegel, J. Butterflies benefit from forest edge improvements in Western European lowland forests, irrespective of adjacent meadows’ use intensity. For. Ecol. Manag. 521, 120413 (2022).

    Article  Google Scholar 

  234. Kallioniemi, E., Zannese, A., Tinker, J. E. & Franco, A. M. A. Inter- and intra-specific differences in butterfly behaviour at boundaries. Insect Conserv. Divers. 7, 232–240 (2014).

    Article  Google Scholar 

  235. Mair, L., Thomas, C. D., Franco, A. M. A. & Hill, J. K. Quantifying the activity levels and behavioural responses of butterfly species to habitat boundaries. Ecol. Entomol. 40, 823–828 (2015).

    Article  Google Scholar 

  236. Miao, B. et al. Climate and land-use interactively shape butterfly diversity in tropical rainforest and savanna ecosystems of southwestern China. Insect Sci. 28, 1109–1120 (2021).

    Article  Google Scholar 

  237. Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    Article  CAS  Google Scholar 

  238. Hodgson, J. A., Kunin, W. E., Thomas, C. D., Benton, T. G. & Gabriel, D. Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecol. Lett. 13, 1358–1367 (2010).

    Article  Google Scholar 

  239. Merckx, T. et al. Shelter benefits less mobile moth species: the field-scale effect of hedgerow trees. Agric. Ecosyst. Environ. 138, 147–151 (2010).

    Article  Google Scholar 

  240. Merckx, T., Marini, L., Feber, R. E. & Macdonald, D. W. Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. J. Appl. Ecol. 49, 1396–1404 (2012).

    Article  Google Scholar 

  241. Threadgill, K. R. D., Hodgson, J. A., Jones, N., McClean, C. J. & Hill, J. K. Quantifying trade-offs between butterfly abundance and movement in the management of agricultural set-aside strips. Insect Conserv. Divers. 14, 768–779 (2021).

    Article  Google Scholar 

  242. Nakahama, N., Hayamizu, M., Iwasaki, K. & Nitta, N. Management and landscape of shelterbelts contribute to butterfly and flowering plant diversity in northern Japan. Ecol. Res. 37, 780–790 (2022).

    Article  Google Scholar 

  243. Halbritter, D. A., Daniels, J. C., Whitaker, D. C. & Huang, L. Reducing mowing frequency increases floral resource and butterfly (Lepidoptera: Hesperioidea and Papilionoidea) abundance in managed roadside margins. Fla. Entomol. 98, 1081–1092 (2015).

    Article  Google Scholar 

  244. Nakahama, N. et al. Construction of deer fences restores the diversity of butterflies and bumblebees as well as flowering plants in semi-natural grassland. Biodivers. Conserv. 29, 2201–2215 (2020).

    Article  Google Scholar 

  245. Van Deynze, B., Swinton, S. M., Hennessy, D. A., Haddad, N. M. & Ries, L. Insecticides, more than herbicides, land use, and climate, are associated with declines in butterfly species richness and abundance in the American Midwest. PLoS ONE 19, e0304319 (2024).

    Article  Google Scholar 

  246. Gilburn, A. S. et al. Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ 3, e1402 (2015).

    Article  Google Scholar 

  247. Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).

    Article  Google Scholar 

  248. Morgan-Taylor, M. Regulating light pollution: more than just the night sky. Science 380, 1118–1120 (2023).

    Article  CAS  Google Scholar 

  249. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  250. Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).

    Article  Google Scholar 

  251. Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).

    Article  Google Scholar 

  252. Chen, I.-C. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).

    Article  CAS  Google Scholar 

  253. Guralnick, R. P., Campbell, L. P. & Belitz, M. W. Weather anomalies more important than climate means in driving insect phenology. Commun. Biol. 6, 490 (2023).

    Article  CAS  Google Scholar 

  254. Steele Cabrera, S. R. et al. Long-term population dynamics of an endangered butterfly are influenced by hurricane-mediated disturbance. Biol. Conserv. 302, 110969 (2025).

    Article  Google Scholar 

  255. Willis, S. G. et al. Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conserv. Lett. 2, 46–52 (2009).

    Article  Google Scholar 

  256. Thomas, J. A., Simcox, D. J. & Clarke, R. T. Successful conservation of a threatened Maculinea butterfly. Science 325, 80–83 (2009).

    Article  CAS  Google Scholar 

  257. Ohwaki, A. How should we view temperate semi-natural grasslands? Insights from butterflies in Japan. Glob. Ecol. Conserv. 16, e00482 (2018).

    Google Scholar 

  258. Leone, J. B., Larson, D. L., Richards, A. E., Schatz, J. & Andersen, A. N. Fire regime shapes butterfly communities through changes in nectar resources in an Australian tropical savanna. Ecosphere 14, e4717 (2023).

    Article  Google Scholar 

  259. Huntzinger, M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Conserv. 113, 1–12 (2003).

    Article  Google Scholar 

  260. Schtickzelle, N., Turlure, C. & Baguette, M. Grazing management impacts on the viability of the threatened bog fritillary butterfly Proclossiana eunomia. Biol. Conserv. 136, 651–660 (2007).

    Article  Google Scholar 

  261. Bussan, S. K. & Schultz, C. B. Can cattle grazing contribute to butterfly habitat? Using butterfly behavior as an index of habitat quality in an agroecosystem. Front. Ecol. Evol. 11, 1162060 (2023).

    Article  Google Scholar 

  262. Wang, Z., Zeng, J., Meng, W., Lohman, D. J. & Pierce, N. E. Out of sight, out of mind: public and research interest in insects is negatively correlated with their conservation status. Insect Conserv. Divers. 14, 700–708 (2021).

    Article  Google Scholar 

  263. Wang, Z. et al. One in five butterfly species sold online across borders. Biol. Conserv. 283, 110092 (2023).

    Article  Google Scholar 

  264. Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: we know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).

    Article  Google Scholar 

  265. Kawahara, A. Y., Reeves, L. E., Barber, J. R. & Black, S. H. Eight simple actions that individuals can take to save insects from global declines. Proc. Natl Acad. Sci. USA 118, e2002547117 (2021).

    Article  CAS  Google Scholar 

  266. Terry, C. N., Alonso-Rodríguez, A. M., Miller, S. E. & Hulshof, C. M. Lepidoptera research in Puerto Rico: reconnecting with historical legacies to guide future priorities. Biotropica 55, 1215–1232 (2023).

    Article  Google Scholar 

  267. Dongmo, M. A. K., Hanna, R. & Bonebrake, T. C. Enhancing scientific and community capacity to conserve Central African Lepidoptera. Biol. Conserv. 279, 109938 (2023).

    Article  Google Scholar 

  268. Duffus, N. E. et al. The present and future of insect biodiversity conservation in the neotropics: policy gaps and recommendations. Neotrop. Entomol. 52, 407–421 (2023).

    Article  Google Scholar 

  269. Barahona-Segovia, R. M. & Zúñiga-Reinoso, Á. An overview of Neotropical arthropod conservation efforts using risk assessment lists. J. Insect Conserv. 25, 361–376 (2021).

    Article  Google Scholar 

  270. Twort, V. G., Minet, J., Wheat, C. W. & Wahlberg, N. Museomics of a rare taxon: placing Whalleyanidae in the Lepidoptera Tree of Life. Syst. Entomol. 46, 926–937 (2021).

    Article  Google Scholar 

  271. Benton, M. J., Wilf, P. & Sauquet, H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022).

    Article  Google Scholar 

  272. Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  Google Scholar 

  273. Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): a versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res. 8, 24 (2023).

    Article  Google Scholar 

  274. Pollard, E. & Yates, T. J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme (Springer, 1993).

  275. Isaac, N. J. B. et al. Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol. Evol. 2, 585–594 (2011).

    Article  Google Scholar 

  276. Taron, D. & Ries, L. in Butterfly Conservation in North America (ed. Daniels, J. C.) 35–57 (Springer, 2015).

  277. Kadlec, T., Tropek, R. & Konvicka, M. Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. J. Insect Conserv. 16, 275–280 (2012).

    Article  Google Scholar 

  278. Edge, D. A. & Mecenero, S. Butterfly conservation in Southern Africa. J. Insect Conserv. 19, 325–339 (2015).

    Article  Google Scholar 

  279. Attiwilli, S., Ravikanthachari, N. & Kunte, K. A comparison between time-constrained counts and line transects as methods to estimate butterfly diversity and monitor populations in tropical habitats. Insect Conserv. Divers. 17, 88–101 (2024).

    Article  Google Scholar 

  280. Walpole, M. J. & Sheldon, I. R. Sampling butterflies in tropical rainforest: an evaluation of a transect walk method. Biol. Conserv. 87, 85–91 (1999).

    Article  Google Scholar 

  281. Prudic, K. L., Oliver, J. C., Brown, B. V. & Long, E. C. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9, 186 (2018).

    Article  Google Scholar 

  282. Pellet, J. Seasonal variation in detectability of butterflies surveyed with Pollard walks. J. Insect Conserv. 12, 155–162 (2008).

    Article  Google Scholar 

  283. Devries, P. J., Murray, D. & Lande, R. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol. J. Linn. Soc. 62, 343–364 (1997).

    Article  Google Scholar 

  284. Melo, D. H. A., Freitas, A. V. L., Tabarelli, M., Leal, I. R. & Filgueiras, B. K. C. Resilient fruit-feeding butterfly assemblages across a Caatinga dry forest chronosequence submitted to chronic anthropogenic disturbance. J. Insect Conserv. 27, 467–477 (2023).

    Article  Google Scholar 

  285. Checa, M. F. et al. Implementing a novel approach to long-term monitoring of butterfly communities in the Neotropics. Insect Conserv. Divers. 15, 416–428 (2022).

    Article  Google Scholar 

  286. Checa, M. F. et al. Combining sampling techniques aids monitoring of tropical butterflies. Insect Conserv. Divers. 12, 362–372 (2019).

    Article  Google Scholar 

  287. Komal, J. et al. Moths (Insecta: Lepidoptera) of Delhi, India: an illustrated checklist based on museum specimens and surveys. Biodivers. Data J. 9, e73997 (2021).

    Article  CAS  Google Scholar 

  288. Mustelin, T., Crabo, L. G. & Looney, C. Lepidoptera diversity based on continuous surveys 2009–2011 and 2017–2019 at a transition zone site in the central Cascade range, Washington, USA. J. Lepid. Soc. 74, 263–289 (2020).

    Google Scholar 

  289. Luk, C., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).

    Article  Google Scholar 

  290. Basset, Y. et al. Comparison of rainforest butterfly assemblages across three biogeographical regions using standardized protocols. J. Res. Lepid. 44, 17–28 (2011).

    Article  Google Scholar 

  291. Basset, Y. et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserv. Divers. 6, 223–233 (2013).

    Article  Google Scholar 

  292. Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).

    Article  Google Scholar 

  293. Butterfly Conservation. Big butterfly count. butterfly-conservation.org https://bigbutterflycount.butterfly-conservation.org/ (2024).

  294. Swengel, A. B. Monitoring butterfly populations using the Fourth of July butterfly count. Am. Midl. Nat. 124, 395–406 (1990).

    Article  Google Scholar 

  295. Kunte, K., Sondhi, S. & Roy, P. (eds) Butterflies of India, Vol. 4.27 (Indian Foundation for Butterflies, 2024).

  296. Miyatake, Y., Fukuda, H. & Kanazawa, I. Migrating Butterfly, Parantica sita (Mushi-sha, 2003).

  297. Lu, L. et al. Projecting the distribution range of the chestnut tiger butterfly Parantica sita sita (Lepidoptera: Nymphalidae: Danainae) in southwestern China. Appl. Entomol. Zool. 55, 413–421 (2020).

    Article  Google Scholar 

  298. Rosa, A. H. B. & Freitas, A. V. L. The role of citizens in conservation science: a case study with threatened Brazilian butterflies. J. Insect Conserv. 28, 1149–1160 (2024).

    Article  Google Scholar 

  299. Sondhi, S. & Kunte, K. The role of citizen science in studying Lepidoptera biology and conservation in India. Indian Entomologist 1, 13–22 (2020).

    Google Scholar 

  300. Richter, A. et al. The social fabric of citizen science—drivers for long-term engagement in the German butterfly monitoring scheme. J. Insect Conserv. 22, 731–743 (2018).

    Article  Google Scholar 

  301. Prudic, K. et al. eButterfly: leveraging massive online citizen science for butterfly conservation. Insects 8, 53 (2017).

    Article  Google Scholar 

  302. Ries, L. & Oberhauser, K. A citizen army for science: quantifying the contributions of citizen scientists to our understanding of monarch butterfly biology. BioScience 65, 419–430 (2015).

    Article  Google Scholar 

  303. Shirey, V., Khelifa, R., M’Gonigle, L. K. & Guzman, L. M. Occupancy–detection models with museum specimen data: promise and pitfalls. Methods Ecol. Evol. 14, 402–414 (2023).

    Article  Google Scholar 

  304. Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).

    Article  Google Scholar 

  305. Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).

    Article  Google Scholar 

  306. Inoue, T. & Ishii, M. Range Expansion of Butterflies (Hokuryukan, 2016).

  307. Kwon, T.-S. et al. Evaluation of moth community changes and northward shifts in response to climate warming in Korea using both local and global occurrences. Glob. Ecol. Conserv. 49, e02763 (2024).

    Google Scholar 

  308. Roy, D. B. et al. Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230108 (2024).

    Article  CAS  Google Scholar 

  309. Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).

    Article  Google Scholar 

  310. Janzen, D. H. & Hallwachs, W. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica. Genome 59, 641–660 (2016).

    Article  CAS  Google Scholar 

  311. Shashank, P. R. et al. CRISPR-based diagnostics detects invasive insect pests. Mol. Ecol. Resour. 24, e13881 (2024).

    Article  CAS  Google Scholar 

  312. Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).

    Article  Google Scholar 

  313. Battles, I. et al. Moths are less attracted to light traps than they used to be. J. Insect Conserv. 28, 1007–1018 (2024).

    Article  Google Scholar 

  314. Cooke, R. et al. Integrating multiple evidence streams to understand insect biodiversity change. Science 388, eadq2110 (2025).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Plotkin for helping with the construction of figures and tables. C.J.W. was supported by the Wellcome Trust award 220540/Z/20/A ‘Wellcome Sanger Institute Quinquennial Review 2021–2026’. V.M.S. was supported by a David H. Smith Postdoctoral Conservation Research Fellowship and startup funding from the Florida Museum of Natural History, University of Florida. F.L.C. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (project GAIA, agreement no. 851188). N.E.P. was supported by US National Science Foundation (NSF) DEB #1541560 and PoLS 1411123, and the Putnam Fund of the Museum of Comparative Zoology. A.Y.K. was supported by NSF grant numbers DEB #2426250, EF #2217159 and IOS #1920895.

Author information

Authors and Affiliations

Authors

Contributions

C.J.W.: data research, writing, review, editing. V.M.S.: data research, writing, review, editing. F.L.C.: data research, writing, review, editing. J.K.H.: data research, writing, review, editing. N.E.P.: data research, writing, review, editing. N.W.: data research, writing, review, editing. A.Y.K: project organization, data research, writing, review, editing.

Corresponding author

Correspondence to Akito Y. Kawahara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks David Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Butterflies and Moths of North America (BAMONA): https://www.butterfliesandmoths.org

iNaturalist: https://www.inaturalist.org

IUCN Red list: https://www.iucnredlist.org/

MothBox: https://digital-naturalism-laboratories.github.io/Mothbox/

National Center for Biotechnology Information (NCBI): https://www.ncbi.nlm.nih.gov/datasets/genome/

NatureServe: https://www.natureserve.org/

PollardBase: https://pollardbase.org/

The Insect Survey: https://www.rothamsted.ac.uk/national-capability/the-insect-survey

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, C.J., Shirey, V.M., Condamine, F.L. et al. Evolution, genomics and conservation of butterflies and moths. Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-025-00128-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44358-025-00128-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research