Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biodiversity science and policy need more model intercomparisons

Abstract

Halting the accelerating decline of global biodiversity requires robust models to project future changes and inform policy decisions. Climate models, especially model intercomparison projects, were pivotal for advancing the mechanistic understanding of climate change attributing to anthropogenic causes. Analogous biodiversity model intercomparison projects (BMIPs), developed only in the past decade, could emulate this success. In this Perspective, we briefly summarize existing BMIPs and highlight the opportunities, gaps and challenges for developing BMIPs by applying lessons learned from the climate model intercomparison projects. BMIPs offer valuable insights into potential global and regional biodiversity trajectories and their uncertainty and can help to attribute changes in biodiversity to drivers when based on standardized, historical benchmark data. Moving forward, BMIPs should adopt mechanistic approaches, establish governance structures and ensure open access to modelling tools and data. With strategic investments in data infrastructure, modelling capabilities and global governance, BMIPs can meaningfully contribute to the delivery of the Kunming–Montreal Global Biodiversity Framework by providing robust projections that support policy and action planning across various spatial scales and scenarios. Achieving this vision requires concerted international coordination, increased funding and proactive knowledge sharing.

Key points

  • Biodiversity model intercomparison projects (BMIPs) provide a coordinated and standardized experimental framework to systematically compare biodiversity models, ensuring consistency in inputs, scenarios and outputs.

  • BMIPs are particularly useful both for addressing general biodiversity modelling questions and for supporting national to international actions to reach the Global Biodiversity Framework goals and targets.

  • Establishing historical benchmark datasets is crucial for validating biodiversity models, enabling impact attribution and a cross-system understanding of predictive performance and model complexity and enhancing confidence in model predictions.

  • Strengthening international collaboration, coordination and knowledge sharing and fostering broader community engagement will enhance the relevance, transparency and impact of BMIPs.

  • Establishing clear governance structures for BMIPs, including mechanisms for overseeing modelling activities, infrastructure and community consultation and strategies for long-term funding, is essential for ensuring the sustainability and effectiveness of BMIPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of climate modelling, biodiversity modelling and related model intercomparison projects.
Fig. 2: Spatially explicit biodiversity models and their typical input data requirements and outputs.
Fig. 3: Scale dependence in biodiversity modelling.

References

  1. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  2. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  Google Scholar 

  3. Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).

    Article  CAS  Google Scholar 

  4. Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. Decision CBD/COP/DEC/15/4 (CBD, 2022).

  5. Urban, M. C. Projecting biological impacts from climate change like a climate scientist. WIREs Clim. Change 10, e585 (2019).

    Article  Google Scholar 

  6. Purvis, A. Bending the curve of biodiversity loss requires a ‘satnav’ for nature. Philos. Trans. R. Soc. B 380, 20230210 (2025).

    Article  Google Scholar 

  7. Grimm, V., Johnston, A. S. A., Thulke, H.-H., Forbes, V. E. & Thorbek, P. Three questions to ask before using model outputs for decision support. Nat. Commun. 11, 4959 (2020).

    Article  Google Scholar 

  8. Urban, M. C. et al. Coding for life: designing a platform for projecting and protecting global biodiversity. BioScience 72, 91–104 (2022).

    Article  Google Scholar 

  9. Zurell, D. et al. Spatially explicit models for decision-making in animal conservation and restoration. Ecography 4, e05787 (2022).

    Article  Google Scholar 

  10. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services (IPBES, 2016).

  11. Dietze, M. et al. Near-term ecological forecasting for climate change action. Nat. Clim. Change 14, 1236–1244 (2024).

    Article  Google Scholar 

  12. Touzé-Peiffer, L., Barberousse, A. & Le Treut, H. The Coupled Model Intercomparison Project: history, uses, and structural effects on climate research. WIREs Clim. Change 11, e648 (2020).

    Article  Google Scholar 

  13. IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021).

  14. Griffies, S. M. et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev. 9, 3231–3296 (2016).

    Article  Google Scholar 

  15. Notz, D. et al. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geosci. Model Dev. 9, 3427–3446 (2016).

    Article  Google Scholar 

  16. Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article  Google Scholar 

  17. Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  18. Durack, P. J. et al. The Coupled Model Intercomparison Project (CMIP): reviewing project history, evolution, infrastructure and implementation. EGUsphere https://doi.org/10.5194/egusphere-2024-3729 (2025).

  19. Novaglio, C. et al. The past and future of the Fisheries and Marine Ecosystem Model Intercomparison Project. Earth’s Future 12, e2023EF004398 (2024).

    Article  Google Scholar 

  20. Frieler, K. et al. Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Article  Google Scholar 

  21. Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).

    Article  Google Scholar 

  22. Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).

    Article  Google Scholar 

  23. Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    Article  CAS  Google Scholar 

  24. Blanchard, J. L. et al. Detecting, attributing, and projecting global marine ecosystem and fisheries change: FishMIP 2.0. Earth’s Future 12, e2023EF004402 (2024).

    Article  Google Scholar 

  25. Ortega-Cisneros, K. et al. An integrated global-to-regional scale workflow for simulating climate change impacts on marine ecosystems. Earth’s Future 13, e2024EF004826 (2025).

    Article  Google Scholar 

  26. Eddy, T. D. et al. Global and regional marine ecosystem models reveal key uncertainties in climate change projections. Earth’s Future 13, e2024EF005537 (2025).

    Article  Google Scholar 

  27. Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. 11, 4537–4562 (2018).

    Article  Google Scholar 

  28. Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    Article  CAS  Google Scholar 

  29. Frieler, K. et al. Scenario setup and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). Geosci. Model Dev. 17, 1–51 (2024).

    Article  CAS  Google Scholar 

  30. Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).

    Article  CAS  Google Scholar 

  31. Mahnken, M. et al. Accuracy, realism and general applicability of European forest models. Glob. Change Biol. 28, 6921–6943 (2022).

    Article  CAS  Google Scholar 

  32. Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).

    Article  Google Scholar 

  33. Briscoe, N. J. et al. Can dynamic occupancy models improve predictions of species’ range dynamics? A test using Swiss birds. Glob. Change Biol. 27, 4269–4282 (2021).

    Article  CAS  Google Scholar 

  34. Buckley, L. B. et al. Can mechanism inform species’ distribution models? Ecol. Lett. 13, 1041–1054 (2010).

    Article  Google Scholar 

  35. Farmer, G. T. & Cook, J. Climate Change Science: A Modern Synthesis, Vol. 1 The Physical Climate (Springer, 2013).

  36. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  37. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A 365, 2053–2075 (2007).

    Article  Google Scholar 

  38. Guillemot, H. in A Critical Assessment of the Intergovernmental Panel on Climate Change (eds De Pryck, K. & Hulme, M.) 126–136 (Cambridge Univ. Press, 2022).

  39. Ruane, A. C. et al. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3493–3515 (2016).

    Article  Google Scholar 

  40. Ruane, A. C. et al. CMIP7 data request: impacts and adaptation priorities and opportunities. EGUsphere https://doi.org/10.5194/egusphere-2025-3408 (2025).

  41. CMIP Panel. MIP best practice guidance. Zenodo https://doi.org/10.5281/zenodo.10572155 (2024).

  42. Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).

    Article  Google Scholar 

  43. Cabral, J. S., Valente, L. & Hartig, F. Mechanistic simulation models in macroecology and biogeography: state-of-art and prospects. Ecography 40, 267–280 (2017).

    Article  Google Scholar 

  44. Levins, R. The strategy of model building in population ecology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  45. Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849 (1972).

    Article  Google Scholar 

  46. Bugmann, H. & Seidl, R. The evolution, complexity and diversity of models of long-term forest dynamics. J. Ecol. 110, 2288–2307 (2022).

    Article  Google Scholar 

  47. Bugmann, H. A review of forest gap models. Clim. Change 51, 259–305 (2001).

    Article  Google Scholar 

  48. Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13, 1–54 (1973).

    Article  CAS  Google Scholar 

  49. Briscoe, N. J. et al. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. Glob. Change Biol. 29, 1451–1470 (2023).

    Article  CAS  Google Scholar 

  50. Booth, T. H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 43, 852–860 (2018).

    Article  Google Scholar 

  51. Watters, G. M. et al. Physical forcing and the dynamics of the pelagic ecosystem in the eastern tropical Pacific: simulations with ENSO-scale and global-warming climate drivers. Can. J. Fish. Aquat. Sci. 60, 1161–1175 (2003).

    Article  Google Scholar 

  52. Pastor, J. & Post, W. M. Response of northern forests to CO2-induced climate change. Nature 334, 55–58 (1988).

    Article  Google Scholar 

  53. Busby, J. R. in Greenhouse: Planning for Climate Change (ed. Pearman, G. I.) 387–398 (CSIRO, 1988).

  54. McDonald, K. A. & Brown, J. H. Using montane mammals to model extinctions due to global change. Conserv. Biol. 6, 409–415 (1992).

    Article  Google Scholar 

  55. Carey, P. D. Disperse: a cellular automaton for predicting the distribution of species in a changed climate. Glob. Ecol. Biogeogr. Lett. 5, 217 (1996).

    Article  Google Scholar 

  56. Jager, H. I., Van Winkle, W. & Holcomb, B. D. Would hydrologic climate changes in Sierra Nevada streams influence trout persistence? Trans. Am. Fish. Soc. 128, 222–240 (1999).

    Article  Google Scholar 

  57. Shuter, B. J. & Post, J. R. Climate, population viability, and the zoogeography of temperate fishes. Trans. Am. Fish. Soc. 119, 314–336 (1990).

    Article  Google Scholar 

  58. Schwartz, M. W. Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodivers. Conserv. 2, 51–61 (1993).

    Article  Google Scholar 

  59. Hinch, S. G. et al. Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can. J. Fish. Aquat. Sci. 52, 2651–2659 (1995).

    Article  Google Scholar 

  60. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009).

    Article  Google Scholar 

  61. Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).

    Article  Google Scholar 

  62. Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).

    Article  Google Scholar 

  63. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

  64. Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, E3276–E3284 (2019).

    Article  Google Scholar 

  65. Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    Article  CAS  Google Scholar 

  66. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  67. Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).

    Article  Google Scholar 

  68. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article  Google Scholar 

  69. Akçakaya, H. R. Viability analyses with habitat-based metapopulation models. Popul. Ecol. 42, 45–53 (2000).

    Google Scholar 

  70. Akçakaya, H. R., Butchart, S. H. M., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. Use and misuse of the IUCN red list criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006).

    Article  Google Scholar 

  71. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article  Google Scholar 

  72. Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).

    Article  Google Scholar 

  73. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge Univ. Press, 2017).

  74. Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  75. Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ Preprints https://doi.org/10.7287/peerj.preprints.2615v2 (2016).

  76. Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).

    Article  Google Scholar 

  77. Wüest, R. O. et al. Macroecology in the age of big data — where to go from here? J. Biogeogr. 47, 1–12 (2020).

    Article  Google Scholar 

  78. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article  Google Scholar 

  79. Elith, J. et al. Novel methods improve prediction of species’ distribution from occurrence data. Ecography 29, 129–151 (2006).

    Article  Google Scholar 

  80. Cheaib, A. et al. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol. Lett. 15, 533–544 (2012).

    Article  Google Scholar 

  81. Bahlburg, D., Thorpe, S. E., Meyer, B., Berger, U. & Murphy, E. J. An intercomparison of models predicting growth of Antarctic krill (Euphausia superba): the importance of recognizing model specificity. PLoS ONE 18, e0286036 (2023).

    Article  CAS  Google Scholar 

  82. Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).

    Article  Google Scholar 

  83. Ruane, A. C. et al. Carbon–temperature–water change analysis for peanut production under climate change: a prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). Glob. Change Biol. 20, 394–407 (2014).

    Article  Google Scholar 

  84. Daigneault, A. et al. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Glob. Environ. Change 76, 102582 (2022).

    Article  Google Scholar 

  85. Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Article  Google Scholar 

  86. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    Article  Google Scholar 

  87. Merow, C., Bois, S. T., Allen, J. M., Xie, Y. & Silander, J. A. Climate change both facilitates and inhibits invasive plant ranges in New England. Proc. Natl Acad. Sci. USA 114, E3276–E3284 (2017).

    Article  CAS  Google Scholar 

  88. Briscoe, N. J., Kearney, M. R., Taylor, C. A. & Wintle, B. A. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Glob. Change Biol. 22, 2425–2439 (2016).

    Article  Google Scholar 

  89. Zurell, D. et al. Predicting the way forward for the global biodiversity framework. Proc. Natl Acad. Sci. USA 122, e2501695122 (2025).

    Article  CAS  Google Scholar 

  90. Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).

    Article  Google Scholar 

  91. Bouchet, P. J. et al. Better model transfers require knowledge of mechanisms. Trends Ecol. Evol. 34, 489–490 (2019).

    Article  Google Scholar 

  92. Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015).

    Article  Google Scholar 

  93. Gonzalez, A., Chase, J. M. & O’Connor, M. I. A framework for the detection and attribution of biodiversity change. Philos. Trans. R. Soc. B 378, 20220182 (2023).

    Article  Google Scholar 

  94. Malchow, A.-K., Hartig, F., Reeg, J., Kéry, M. & Zurell, D. Demography–environment relationships improve mechanistic understanding of range dynamics under climate change. Philos. Trans. R. Soc. B 378, 20220194 (2023).

    Article  Google Scholar 

  95. McGowan, P. J. K. et al. Understanding and achieving species elements in the Kunming–Montreal Global Biodiversity Framework. BioScience 74, 614–623 (2024).

    Article  Google Scholar 

  96. Bell-James, J. & Watson, J. E. M. Ambitions in national plans do not yet match bold international protection and restoration commitments. Nat. Ecol. Evol. 9, 417–424 (2025).

    Article  Google Scholar 

  97. Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article  Google Scholar 

  98. Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article  Google Scholar 

  99. Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article  Google Scholar 

  100. Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).

    Article  Google Scholar 

  101. Cabral, J. S. et al. The road to integrate climate change projections with regional land-use–biodiversity models. People Nat. 6, 1716–1741 (2024).

    Article  Google Scholar 

  102. Navarro, L. M. et al. Integrating historical sources for long-term ecological knowledge and biodiversity conservation. Nat. Rev. Biodivers. 1, 657–670 (2025).

    Article  Google Scholar 

  103. Hartig, F. et al. Novel community data in ecology-properties and prospects. Trends Ecol. Evol. 39, 280–293 (2024).

    Article  CAS  Google Scholar 

  104. Pollock, L. J. et al. Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge. Nat. Rev. Biodivers. 1, 166–182 (2025).

    Article  Google Scholar 

  105. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article  CAS  Google Scholar 

  106. Ling, F. et al. Diffusion model-based probabilistic downscaling for 180-year East Asian climate reconstruction. npj Clim. Atmos. Sci. 7, 131 (2024).

    Article  Google Scholar 

  107. Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    Article  CAS  Google Scholar 

  108. Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).

    Article  Google Scholar 

  109. Kause, A. et al. Confidence levels and likelihood terms in IPCC reports: a survey of experts from different scientific disciplines. Clim. Change 173, 2 (2022).

    Article  Google Scholar 

  110. Grimm, V. Ecology needs to overcome siloed modelling. Trends Ecol. Evol. 38, 1122–1124 (2023).

    Article  Google Scholar 

  111. Griffith, J. et al. BON in a Box: an open and collaborative platform for biodiversity monitoring, indicator calculation, and reporting. BioScience https://doi.org/10.1093/biosci/biaf189 (2026).

  112. Grimm, V. et al. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J. Artif. Soc. Soc. Simul. 23, 7 (2020).

    Article  Google Scholar 

  113. Grimm, V. et al. Towards better modelling and decision support: documenting model development, testing, and analysis using TRACE. Ecol. Model. 280, 129–139 (2014).

    Article  Google Scholar 

  114. Giorgi, F. Thirty years of regional climate modeling: where are we and where are we going next? J. Geophys. Res. 124, 5696–5723 (2019).

    Article  Google Scholar 

  115. Hanski, I. et al. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat. Commun. 8, 14504 (2017).

    Article  CAS  Google Scholar 

  116. Jackson, J., Childs, D. Z., Mar, K. U., Htut, W. & Lummaa, V. Long-term trends in wild-capture and population dynamics point to an uncertain future for captive elephants. Proc. R. Soc. B 286, 20182810 (2019).

    Article  Google Scholar 

  117. Rosen, A. et al. Tracking shifts in forest structural complexity through space and time in human-modified tropical landscapes. Ecography 2024, e07377 (2024).

    Article  Google Scholar 

  118. Hoeinghaus, D. J., Winemiller, K. O. & Agostinho, A. A. Hydrogeomorphology and river impoundment affect food-chain length of diverse neotropical food webs. Oikos 117, 984–995 (2008).

    Article  Google Scholar 

  119. Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).

    Article  Google Scholar 

  120. Araújo, M. B., Pearson, R. G., Thuillers, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).

    Article  Google Scholar 

  121. Sofaer, H. R., Jarnevich, C. S. & Flather, C. H. Misleading prioritizations from modelling range shifts under climate change. Glob. Ecol. Biogeogr. 27, 658–666 (2018).

    Article  Google Scholar 

  122. Wheatley, C. J. et al. Climate change vulnerability for species—assessing the assessments. Glob. Change Biol. 23, 3704–3715 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

D.Z. and K.S. are supported by DFG Grant No. 518316503. S.J.L.G. is funded by the Novo Nordisk Challenge Programme grant number NNF20OC0060118. G.B. is funded by a Royal Society University Research Fellowship (UF160614).

Author information

Authors and Affiliations

Authors

Contributions

D.Z., S.J.L.G., J.S.C, K.S., S.J.E.V. and M.C.U. researched data for the article. D.Z., A.G. and M.C.U. contributed substantially to discussion of the content. D.Z., C.H.A., G.B., N.J.B., L.B.B., G.G.-A., N.J.B.I., C.M., J.S.C., S.J.E.V. and M.C.U wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Damaris Zurell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Alice Johnston, who co-reviewed with Harriet Gold; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BES-SIM: https://bes-sim.org/

BON in a Box: https://boninabox.geobon.org/

FishMIP: https://fishmip.org

GEO BON EcoCode: https://geobon.org/ecocode-modelling-life-on-earth/

ISIMIP: https://www.isimip.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurell, D., Albert, C.H., Bocedi, G. et al. Biodiversity science and policy need more model intercomparisons. Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-026-00134-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44358-026-00134-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing