Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Grid-enhancing technologies for clean energy systems

Abstract

Renewable energy source integration into energy systems can contribute to transmission congestion, which requires time-consuming and capital-intensive upgrades to address. Grid-enhancing technologies (GETs) can increase the capacity of grids with minimal investment, preventing congestion and curtailment of renewable energy. In this Review, we discuss the principles and uses of GETs, which use software and/or hardware to interpret real-time conditions to better use the existing capacity of grid assets. GETs include dynamic line ratings, dynamic transformer ratings, power flow controls, topology optimization, advanced conductor technologies, energy storage systems, and demand response. These GETs can enhance system performance individually, but the deployment of multiple GETs together would greatly increase their effect on the grid capacity and stability by removing multiple capacity bottlenecks in parallel. Infrastructure for real-time data acquisition, transmission and analysis is key to successfully deploying GETs but requires further development and commercialization for broader deployment.

Key points

  • Grid-enhancing technologies (GETs) can unlock more transmission capacity from existing energy grids, which is essential for rapidly enabling the clean energy transition.

  • GETs use a combination of hardware and software upgrades to allow transmission assets to respond more flexibly to changing conditions, which is particularly important for intermittent power sources like solar photovoltaics and offshore wind.

  • Although large-scale upgrading of transmission networks is still essential, GETs can quickly, economically and efficiently alleviate grid congestion and optimize transmission when compared with full upgrades.

  • Successful pilot schemes and initiatives in North America, Europe and Asia have demonstrated that GET deployments contribute to increased grid reliability and resilience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renewable electricity capacity and addition.
Fig. 2: Grid-enhancing technology integration into decarbonized energy systems.
Fig. 3: Features of grid-enhancing technologies.
Fig. 4: Application of grid-enhancing technologies during renewable energy integration.
Fig. 5: Global use of grid-enhancing technologies.

Similar content being viewed by others

References

  1. International Energy Agency. Renewables 2023. IEA https://www.iea.org/reports/renewables-2023 (2024).

  2. US Department of Energy. Grid Enhancing Technologies: A Case Study on Ratepayer Impact. US DOE https://inl.gov/national-security/grid-enhancing-technologies/ (2022).

  3. Prajapati, V. K. & Mahajan, V. Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources. Energy 215, 119134 (2021).

    Article  Google Scholar 

  4. US Department of Energy. National Transmission Needs Study. US DOE https://www.energy.gov/gdo/national-transmission-needs-study (2023).

  5. O’Shaughnessy, E., Cruce, J. R. & Xu, K. Too much of a good thing? Global trends in the curtailment of solar PV. Sol. Energy 208, 1068–1077 (2020).

    Article  Google Scholar 

  6. Doying, R., Goggin, M. & Sherman, A. Transmission Congestion Costs Rise Again in U.S. RTOs. Grid Strategies https://gridstrategiesllc.com/wp-content/uploads/2023/07/GS_Transmission-Congestion-Costs-in-the-U.S.-RTOs1.pdf (2023).

  7. European Union Agency for the Cooperation of Energy Regulators. Transmission capacities for cross-zonal trade of electricity and congestion management in the EU. ACER https://www.acer.europa.eu/monitoring/MMR/crosszonal_electricity_trade_capacities_2024 (2024).

  8. Mirzapour, O., Rui, X. & Sahraei-Ardakani, M. Grid-enhancing technologies: progress, challenges, and future research directions. Electr. Power Syst. Res. 230, 110304 (2024).

    Article  Google Scholar 

  9. Mulvaney, K., Siegner, K., Teplin, C. & Toth, S. GETting Interconnected in PJM. RMI https://rmi.org/insight/analyzing-gets-as-a-tool-for-increasing-interconnection-throughput-from-pjms-queue/ (2024).

  10. Kundur, P. et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19, 1387–1401 (2004).

    Article  Google Scholar 

  11. US Department of Energy. National Electric Transmission Congestion Study. US DOE https://www.energy.gov/oe/articles/2020-national-electric-transmission-congestion-study (2020).

  12. US Department of Energy. Advanced Transmission Technologies. US DOE https://www.energy.gov/sites/prod/files/2021/02/f82/Advanced%20Transmission%20Technologies%20Report%20-%20final%20as%20of%2012.3%20-%20FOR%20PUBLIC.pdf (2020).

  13. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. IEEE Std 738-2023 (IEEE Power & Energy Society, December 2023).

  14. IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators. IEEE Std C57.91-2011 (IEEE Power & Energy Society, March 2012).

  15. Karimi, S., Musilek, P. & Knight, A. M. Dynamic thermal rating of transmission lines: a review. Renew. Sustain. Energy Rev. 91, 600–612 (2018).

    Article  Google Scholar 

  16. U.S. Department of Energy. Dynamic Line Rating. US DOE https://inl.gov/national-security/grid-enhancing-technologies/ (2019).

  17. Hashemi, S. & Østergaard, J. Methods and strategies for overvoltage prevention in low voltage distribution systems with PV. IET Renew. Power Gener. 11, 205–214 (2017).

    Article  Google Scholar 

  18. Impram, S., Varbak Nese, S. & Oral, B. Challenges of renewable energy penetration on power system flexibility: a survey. Energy Strategy Rev. 31, 100539 (2020).

    Article  Google Scholar 

  19. Douglass, D. A. et al. A review of dynamic thermal line rating methods with forecasting. IEEE Trans. Power Deliv. 34, 2100–2109 (2019).

    Article  Google Scholar 

  20. Deb, A. K. Powerline Ampacity System: Theory, Modeling and Applications (CRC Press, 2017).

  21. International Renewable Energy Agency. Dynamic Line Rating: Innovation Landscape Brief. IRENA https://www.irena.org/publications/2020/Jul/System-Operation-Innovation-Landscape-briefs (2020).

  22. Michiorri, A. et al. Forecasting for dynamic line rating. Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).

    Article  Google Scholar 

  23. Abas, N. H. et al. Optimizing grid with dynamic line rating of conductors: a comprehensive review. IEEE Access. 12, 9738–9756 (2024).

    Article  Google Scholar 

  24. Morgan, V. T. Thermal Behaviour of Electrical Conductors: Steady, Dynamic, and Fault-Current Ratings (Research Studies Press, 1991).

  25. Working Group 22.12. Thermal Behaviour of Overhead Conductors. CIGRE https://www.e-cigre.org/publications/detail/207-thermal-behaviour-of-overhead-conductors.html (2002).

  26. Working Group B2.12. Guide for Selection of Weather Parameters for Bare Overhead Conductor Ratings. CIGRE https://www.e-cigre.org/publications/detail/299-guide-for-the-selection-of-weather-parameters-for-bare-overhead-conductor-ratings.html (2006).

  27. Working Group B2.42. Guide for Thermal Rating Calculations of Overhead Lines. CIGRE https://www.e-cigre.org/publications/detail/601-guide-for-thermal-rating-calculations-of-overhead-lines.html (2014).

  28. Arroyo, A. et al. Comparison between IEEE and CIGRE thermal behaviour standards and measured temperature on a 132-kV overhead power line. Energies 8, 13660–13671 (2015).

    Article  Google Scholar 

  29. Wang, M., Yang, M. & Han, X. Optimal power flow considering transient thermal behavior of overhead transmission lines. Int. J. Electr. Power Energy Syst. 114, 105396 (2020).

    Article  Google Scholar 

  30. Alvarez, D. L. et al. An approach to dynamic line rating state estimation at thermal steady state using direct and indirect measurements. Electr. Power Syst. Res. 163, 599–611 (2018).

    Article  Google Scholar 

  31. Metwaly, M. K. & Teh, J. Fuzzy dynamic thermal rating system-based SIPS for enhancing transmission line security. IEEE Access. 9, 83628–83641 (2021).

    Article  Google Scholar 

  32. Ahmadi, A., Nabipour, M., Mohammadi-Ivatloo, B. & Vahidinasab, V. Ensemble learning-based dynamic line rating forecasting under cyberattacks. IEEE Trans. Power Deliv. 37, 230–238 (2022).

    Article  Google Scholar 

  33. Viafora, N., Delikaraoglou, S., Pinson, P. & Holbøll, J. Chance-constrained optimal power flow with non-parametric probability distributions of dynamic line ratings. Int. J. Electr. Power Energy Syst. 114, 105389 (2020).

    Article  Google Scholar 

  34. Szabó, D. & Németh, B. A novel methodology for critical span identification for dynamic line rating system implementation. Energy Rep. 7, 242–249 (2021).

    Article  Google Scholar 

  35. Douglass, D. A. & Edris, A.-A. Real-time monitoring and dynamic thermal rating of power transmission circuits. IEEE Trans. Power Deliv. 11, 1407–1418 (1996).

    Article  Google Scholar 

  36. US Department of Energy. Large Power Transformers and the U.S. Electric Grid. US DOE https://www.energy.gov/sites/default/files/2014/04/f15/LPTStudyUpdate-040914.pdf (2014).

  37. Ariza Rocha, O. D. et al. Dynamic rating assists cost-effective expansion of wind farms by utilizing the hidden capacity of transformers. Int. J. Electr. Power Energy Syst. 123, 106188 (2020).

    Article  Google Scholar 

  38. Pradhan, M. K. & Ramu, T. S. Prediction of hottest spot temperature (HST) in power and station transformers. IEEE Trans. Power Deliv. 18, 1275–1283 (2003).

    Article  Google Scholar 

  39. Gezegin, C., Ozgonenel, O. & Dirik, H. A monitoring method for average winding and hot-spot temperatures of single-phase, oil-immersed transformers. IEEE Trans. Power Deliv. 36, 3196–3203 (2021).

    Article  Google Scholar 

  40. Dong, M. A data-driven long-term dynamic rating estimating method for power transformers. IEEE Trans. Power Deliv. 36, 686–697 (2021).

    Article  Google Scholar 

  41. Daminov, I., Prokhorov, A., Caire, R. & Alvarez-Herault, M.-C. Assessment of dynamic transformer rating, considering current and temperature limitations. Int. J. Electr. Power Energy Syst. 129, 106886 (2021).

    Article  Google Scholar 

  42. Alvarez, D. L., Rivera, S. R. & Mombello, E. E. Transformer thermal capacity estimation and prediction using dynamic rating monitoring. IEEE Trans. Power Deliv. 34, 1695–1705 (2019).

    Article  Google Scholar 

  43. Gonzólez-Cagigal, M. Á., Rosendo-Macías, J. A. & Gómez-Expósito, A. Parameter estimation for hot-spot thermal model of power transformers using unscented kalman filters. J. Mod. Power Syst. Clean. Energy 11, 634–642 (2023).

    Article  Google Scholar 

  44. Bracale, A., Caramia, P., Carpinelli, G. & De Falco, P. SmarTrafo: a probabilistic predictive tool for dynamic transformer rating. IEEE Trans. Power Deliv. 36, 1619–1630 (2021).

    Article  Google Scholar 

  45. Zarei, T. et al. Reliability considerations and economic benefits of dynamic transformer rating for wind energy integration. Int. J. Electr. Power Energy Syst. 106, 598–606 (2019).

    Article  Google Scholar 

  46. Li, Y., Wang, Y. & Chen, Q. Optimal dispatch with transformer dynamic thermal rating in ADNs incorporating high PV penetration. IEEE Trans. Smart Grid 12, 1989–1999 (2021).

    Article  Google Scholar 

  47. Botkin-Levy, M., Engelmann, A., Mühlpfordt, T., Faulwasser, T. & Almassalkhi, M. R. Distributed control of charging for electric vehicle fleets under dynamic transformer ratings. IEEE Trans. Control. Syst. Technol. 30, 1578–1594 (2022).

    Article  Google Scholar 

  48. Viafora, N. et al. Day-ahead dispatch optimization with dynamic thermal rating of transformers and overhead lines. Electr. Power Syst. Res. 171, 194–208 (2019).

    Article  Google Scholar 

  49. Maza-Ortega, J. M., Acha, E., García, S. & Gómez-Expósito, A. Overview of power electronics technology and applications in power generation transmission and distribution. J. Mod. Power Syst. Clean. Energy 5, 499–514 (2017).

    Article  Google Scholar 

  50. Kundur, P. Power System Stability and Control. (McGraw-Hill Education, New York, 1994).

  51. Peng, F. Z. Flexible AC transmission systems (FACTS) and resilient AC distribution systems (RACDS) in smart grid. Proc. IEEE 105, 2099–2115 (2017).

    Article  Google Scholar 

  52. Mattavelli, P., Verghese, G. C. & Stankovic, A. M. Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans. Power Syst. 12, 1259–1267 (1997).

    Article  Google Scholar 

  53. Afaq, U., Ali, F., Hasan, A., Rana, I. A. & Asif, M. Non-linear synergetic control of UPFC for efficient damping of local and inter-area oscillations. IEEE Trans. Power Syst. 39, 2106–2114 (2024).

    Article  Google Scholar 

  54. Song, Y.-H. & Johns, A. T. Flexible AC Transmission Systems (FACTS) (Inst. Electr. Eng., 1999).

  55. Ordóñez M, C. A., Gómez-Expósito, A., Vinasco M, G. E. & Maza-Ortega, J. M. Optimal coordinated operation of distributed static series compensators for wide-area network congestion relief. J. Mod. Power Syst. Clean. Energy 10, 1374–1384 (2022).

    Article  Google Scholar 

  56. Zhang, X. et al. Optimal allocation of series FACTS devices under high penetration of wind power within a market environment. IEEE Trans. Power Syst. 33, 6206–6217 (2018).

    Article  Google Scholar 

  57. Teng, F. et al. Understanding the benefits of dynamic line rating under multiple sources of uncertainty. IEEE Trans. Power Syst. 33, 3306–3314 (2018).

    Article  Google Scholar 

  58. Tamimi, B. & Cañizares, C. A. Modeling and application of hybrid power flow controller in distribution systems. IEEE Trans. Power Deliv. 33, 2673–2682 (2018).

    Article  Google Scholar 

  59. Tamimi, B., Cañizares, C. & Battistelli, C. Hybrid power flow controller steady-state modeling, control, and practical application. IEEE Trans. Power Syst. 32, 1483–1492 (2017).

    Google Scholar 

  60. Islam, Md. R., Guo, Y. & Zhu, J. A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems. IEEE Trans. Power Electron. 29, 4167–4182 (2014).

    Article  Google Scholar 

  61. Guo, C., Zhang, Y., Gole, A. M. & Zhao, C. Analysis of dual-infeed HVDC with LCC–HVDC and VSC–HVDC. IEEE Trans. Power Deliv. 27, 1529–1537 (2012).

    Article  Google Scholar 

  62. Imdadullah, Amrr, S. M., Jamil Asghar, M. S., Ashraf, I. & Meraj, M. A comprehensive review of power flow controllers in interconnected power system networks. IEEE Access. 8, 18036–18063 (2020).

    Article  Google Scholar 

  63. Kirakosyan, A., Moursi, M. S. E. & Khadkikar, V. Fault ride through and grid support topology for the VSC-HVDC connected offshore wind farms. IEEE Trans. Power Deliv. 32, 1592–1604 (2017).

    Article  Google Scholar 

  64. Bianchi, F. D., Domínguez-García, J. L. & Gomis-Bellmunt, O. Control of multi-terminal HVDC networks towards wind power integration: a review. Renew. Sustain. Energy Rev. 55, 1055–1068 (2016).

    Article  Google Scholar 

  65. Rodriguez, P. & Rouzbehi, K. Multi-terminal DC grids: challenges and prospects. J. Mod. Power Syst. Clean. Energy 5, 515–523 (2017).

    Article  Google Scholar 

  66. Li, X. et al. Nanao multi-terminal VSC-HVDC project for integrating large-scale wind generation. in: Proc. IEEE Power Eng. Soc. Gen. Meet. 1–5 (IEEE, 2014).

  67. Wu, J., Wang, Z.-X., Xu, L. & Wang, G.-Q. Key technologies of VSC-HVDC and its application on offshore wind farm in China. Renew. Sustain. Energy Rev. 36, 247–255 (2014).

    Article  Google Scholar 

  68. Fu, Y., Wang, C., Tian, W. & Shahidehpour, M. Integration of large-scale offshore wind energy via VSC-HVDC in day-ahead scheduling. IEEE Trans. Sustain. Energy 7, 535–545 (2016).

    Article  Google Scholar 

  69. Ambia, M. N., Meng, K., Xiao, W., Al-Durra, A. & Dong, Z. Y. Adaptive droop control of multi-terminal HVDC network for frequency regulation and power sharing. IEEE Trans. Power Syst. 36, 566–578 (2021).

    Article  Google Scholar 

  70. Dehghanian, P. & Kezunovic, M. Probabilistic decision making for the bulk power system optimal topology control. IEEE Trans. Smart Grid 7, 2071–2081 (2016).

    Article  Google Scholar 

  71. Hedman, K. W., Oren, S. S. & O’Neill, R. P. A review of transmission switching and network topology optimization. in Proc. IEEE Power Energy Soc. Gen. Meet. 1–7 (IEEE, 2011).

  72. Xiao, R., Xiang, Y., Wang, L. & Xie, K. Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization. IEEE Trans. Power Syst. 33, 6000–6012 (2018).

    Article  Google Scholar 

  73. Numan, M. et al. The role of optimal transmission switching in enhancing grid flexibility: a review. IEEE Access. 11, 32437–32463 (2023).

    Article  Google Scholar 

  74. Han, T., Hill, D. J. & Song, Y. Optimal topology transition. IEEE Trans. Power Syst. 38, 3029–3042 (2023).

    Article  Google Scholar 

  75. Han, T. & Hill, D. J. Learning-based topology optimization of power networks. IEEE Trans. Power Syst. 38, 1366–1378 (2023).

    Article  Google Scholar 

  76. Damjanović, I., Pavić, I., Puljiz, M. & Brcic, M. Deep reinforcement learning-based approach for autonomous power flow control using only topology changes. Energies 15, 6920 (2022).

    Article  Google Scholar 

  77. Xu, P. et al. Active power correction strategies based on deep reinforcement learning—part I: a simulation-driven solution for robustness. CSEE J. Power Energy Syst. 8, 1122–1133 (2022).

    CAS  Google Scholar 

  78. Zheng, Y. et al. Vulnerability assessment of deep reinforcement learning models for power system topology optimization. IEEE Trans. Smart Grid 12, 3613–3623 (2021).

    Article  Google Scholar 

  79. Chen, G., Zhang, H. & Song, Y. Efficient constraint learning for data-driven active distribution network operation. IEEE Trans. Power Syst. 39, 1472–1484 (2024).

    Article  Google Scholar 

  80. Zhang, J., Wang, Y., Weng, Y. & Zhang, N. Topology identification and line parameter estimation for non-PMU distribution network: a numerical method. IEEE Trans. Smart Grid 11, 4440–4453 (2020).

    Article  Google Scholar 

  81. Ma, L., Wang, L. & Liu, Z. Topology identification of distribution networks using a split-EM based data-driven approach. IEEE Trans. Power Syst. 37, 2019–2031 (2022).

    Article  Google Scholar 

  82. Hossain, R. R., Huang, Q. & Huang, R. Graph convolutional network-based topology embedded deep reinforcement learning for voltage stability control. IEEE Trans. Power Syst. 36, 4848–4851 (2021).

    Article  Google Scholar 

  83. Idaho National Laboratory. Advanced Conductor Scan Report. INL https://inl.gov/national-security/grid-enhancing-technologies/ (2023).

  84. Riba, J.-R., Bogarra, S., Gómez-Pau, Á. & Moreno-Eguilaz, M. Uprating of transmission lines by means of HTLS conductors for a sustainable growth: challenges, opportunities, and research needs. Renew. Sustain. Energy Rev. 134, 110334 (2020).

    Article  Google Scholar 

  85. Working Group B2.55. Conductors for the Uprating of Existing Overhead Lines. CIGRE https://www.e-cigre.org/publications/detail/763-conductors-for-the-uprating-of-existing-overhead-lines.html (2019).

  86. Alawar, A., Bosze, E. J. & Nutt, S. R. A composite core conductor for low sag at high temperatures. IEEE Trans. Power Deliv. 20, 2193–2199 (2005).

    Article  Google Scholar 

  87. Douglass, D. A. & Thrash, F. R. in Electric Power Generation, Transmission, and Distribution (ed. Grigsby, L. L.) 15-1–15-42 (CRC Press, 2012).

  88. Reddy, B. S. & Mitra, G. Investigations on high temperature low sag (HTLS) conductors. IEEE Trans. Power Deliv. 35, 1716–1724 (2020).

    Article  Google Scholar 

  89. Gómez-Expósito, A., Santos, J. R. & Romero, P. C. Planning and operational issues arising from the widespread use of HTLS conductors. IEEE Trans. Power Syst. 22, 1446–1455 (2007).

    Article  Google Scholar 

  90. Albizu, I., Fernández, E., Alberdi, R., Bedialauneta, M. T. & Mazón, A. J. Adaptive static line rating for systems with HTLS conductors. IEEE Trans. Power Deliv. 33, 2849–2855 (2018).

    Article  Google Scholar 

  91. Song, X., Zhang, H., Fan, L., Zhang, Z. & Peña-Mora, F. Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side. Energy 282, 128976 (2023).

    Article  Google Scholar 

  92. Gao, D., Zhao, B., Kwan, T. H., Hao, Y. & Pei, G. The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions. Appl. Energy 321, 119326 (2022).

    Article  Google Scholar 

  93. Huber, M., Dimkova, D. & Hamacher, T. Integration of wind and solar power in Europe: assessment of flexibility requirements. Energy 69, 236–246 (2014).

    Article  Google Scholar 

  94. Wang, W., Yuan, B., Sun, Q. & Wennersten, R. Application of energy storage in integrated energy systems — a solution to fluctuation and uncertainty of renewable energy. J. Energy Storage 52, 104812 (2022).

    Article  Google Scholar 

  95. Teleke, S., Baran, M. E., Bhattacharya, S. & Huang, A. Q. Rule-based control of battery energy storage for dispatching intermittent renewable sources. IEEE Trans. Sustain. Energy 1, 117–124 (2010).

    Article  Google Scholar 

  96. Chen, Q., Kuang, Z., Liu, X. & Zhang, T. Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings. Appl. Energy 312, 118744 (2022).

    Article  Google Scholar 

  97. Bunzel, K., Bovet, J., Thrän, D. & Eichhorn, M. Hidden outlaws in the forest? A legal and spatial analysis of onshore wind energy in Germany. Energy Res. Soc. Sci. 55, 14–25 (2019).

    Article  Google Scholar 

  98. Pandžić, H., Wang, Y., Qiu, T., Dvorkin, Y. & Kirschen, D. S. Near-optimal method for siting and sizing of distributed storage in a transmission network. IEEE Trans. Power Syst. 30, 2288–2300 (2015).

    Article  Google Scholar 

  99. Yekini Suberu, M., Wazir Mustafa, M. & Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 35, 499–514 (2014).

    Article  Google Scholar 

  100. Denholm, P. & Sioshansi, R. The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy 37, 3149–3158 (2009).

    Article  Google Scholar 

  101. Sabihuddin, S., Kiprakis, A. & Mueller, M. A numerical and graphical review of energy storage technologies. Energies 8, 172–216 (2014).

    Article  Google Scholar 

  102. Del Rosso, A. D. & Eckroad, S. W. Energy storage for relief of transmission congestion. IEEE Trans. Smart Grid 5, 1138–1146 (2014).

    Article  Google Scholar 

  103. Abdalla, A. N. et al. Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview. J. Energy Storage 40, 102811 (2021).

    Article  Google Scholar 

  104. Koltermann, L. et al. Potential analysis of current battery storage systems for providing fast grid services like synthetic inertia – case study on a 6 MW system. J. Energy Storage 57, 106190 (2023).

    Article  Google Scholar 

  105. Tofighi-Milani, M., Fattaheian-Dehkordi, S., Fotuhi-Firuzabad, M. & Lehtonen, M. Decentralized active power management in multi-agent distribution systems considering congestion issue. IEEE Trans. Smart Grid 13, 3582–3593 (2022).

    Article  Google Scholar 

  106. Agarwal, A. & Pileggi, L. Large scale multi-period optimal power flow with energy storage systems using differential dynamic programming. IEEE Trans. Power Syst. 37, 1750–1759 (2022).

    Article  Google Scholar 

  107. China Energy Storage Alliance. Energy Storage Industry White Paper. CNESA https://en.cnesa.org/white-paper-access-multyear (2023).

  108. Rana, M. M. et al. Applications of energy storage systems in power grids with and without renewable energy integration — a comprehensive review. J. Energy Storage 68, 107811 (2023).

    Article  Google Scholar 

  109. Kebede, A. A., Kalogiannis, T., Van Mierlo, J. & Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 159, 112213 (2022).

    Article  CAS  Google Scholar 

  110. Mahmoud, M., Ramadan, M., Olabi, A.-G., Pullen, K. & Naher, S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Convers. Manag. 210, 112670 (2020).

    Article  Google Scholar 

  111. Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).

    Article  Google Scholar 

  112. Farhadi, M. & Mohammed, O. Energy storage technologies for high-power applications. IEEE Trans. Ind. Appl. 52, 1953–1961 (2016).

    Article  CAS  Google Scholar 

  113. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  CAS  Google Scholar 

  114. Alva, G., Lin, Y. & Fang, G. An overview of thermal energy storage systems. Energy 144, 341–378 (2018).

    Article  Google Scholar 

  115. Azizivahed, A. et al. Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage. IEEE Trans. Sustain. Energy 11, 662–673 (2020).

    Article  Google Scholar 

  116. Lai, C.-M. & Teh, J. Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability. Appl. Energy 305, 117837 (2022).

    Article  Google Scholar 

  117. Wang, Y., Qiu, D. & Strbac, G. Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems. Appl. Energy 310, 118575 (2022).

    Article  Google Scholar 

  118. Aghdam, F. H., Mudiyanselage, M. W., Mohammadi-Ivatloo, B. & Marzband, M. Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management. Appl. Energy 333, 120569 (2023).

    Article  CAS  Google Scholar 

  119. Siano, P. Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014).

    Article  Google Scholar 

  120. Gedra, T. W. Optional forward contracts for electric power markets. IEEE Trans. Power Syst. 9, 1766–1773 (1994).

    Article  Google Scholar 

  121. Naval, N. & Yusta, J. M. Virtual power plant models and electricity markets-a review. Renew. Sustain. Energy Rev. 149, 111393 (2021).

    Article  Google Scholar 

  122. Vázquez-Canteli, J. R. & Nagy, Z. Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl. Energy 235, 1072–1089 (2019).

    Article  Google Scholar 

  123. United Nations Environment Programme. Global Status Report for Buildings and Construction. UNEP https://www.unep.org/resources/report/global-status-report-buildings-and-construction (2024).

  124. O′Connell, N., Pinson, P., Madsen, H. & O′Malley, M. Benefits and challenges of electrical demand response: a critical review. Renew. Sustain. Energy Rev. 39, 686–699 (2014).

    Article  Google Scholar 

  125. International Energy Agency. What the Data Centre and AI Boom Could Mean for the Energy Sector. IEA https://www.iea.org/commentaries/what-the-data-centre-and-ai-boom-could-mean-for-the-energy-sector (2024).

  126. Chen, M., Gao, C., Shahidehpour, M. & Li, Z. Incentive-compatible demand response for spatially coupled internet data centers in electricity markets. IEEE Trans. Smart Grid 12, 3056–3069 (2021).

    Article  Google Scholar 

  127. Nikzad, M. & Mozafari, B. Reliability assessment of incentive- and priced-based demand response programs in restructured power systems. Int. J. Electr. Power Energy Syst. 56, 83–96 (2014).

    Article  Google Scholar 

  128. Jordehi, A. R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 103, 308–319 (2019).

    Article  Google Scholar 

  129. Singh, K., Padhy, N. P. & Sharma, J. Influence of price responsive demand shifting bidding on congestion and LMP in pool-based day-ahead electricity markets. IEEE Trans. Power Syst. 26, 886–896 (2011).

    Article  Google Scholar 

  130. Haider, H. T., See, O. H. & Elmenreich, W. A review of residential demand response of smart grid. Renew. Sustain. Energy Rev. 59, 166–178 (2016).

    Article  Google Scholar 

  131. Zhuang, P. & Liang, H. Stochastic energy management of electric bus charging stations with renewable energy integration and B2G capabilities. IEEE Trans. Sustain. Energy 12, 1206–1216 (2021).

    Article  Google Scholar 

  132. Paterakis, N. G., Erdinç, O. & Catalão, J. P. S. An overview of demand response: key-elements and international experience. Renew. Sustain. Energy Rev. 69, 871–891 (2017).

    Article  Google Scholar 

  133. Dehnavi, E. & Abdi, H. Determining optimal buses for implementing demand response as an effective congestion management method. IEEE Trans. Power Syst. 32, 1537–1544 (2017).

    Google Scholar 

  134. Stawska, A., Romero, N., De Weerdt, M. & Verzijlbergh, R. Demand response: for congestion management or for grid balancing? Energy Policy 148, 111920 (2021).

    Article  Google Scholar 

  135. Liu, W., Wu, Q., Wen, F. & Østergaard, J. Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices. IEEE Trans. Smart Grid 5, 2739–2747 (2014).

    Article  Google Scholar 

  136. Muratori, M. & Rizzoni, G. Residential demand response: dynamic energy management and time-varying electricity pricing. IEEE Trans. Power Syst. 31, 1108–1117 (2016).

    Article  Google Scholar 

  137. Aggarwal, S. & Kumar, N. A consortium blockchain-based energy trading for demand response management in vehicle-to-grid. IEEE Trans. Veh. Technol. 70, 9480–9494 (2021).

    Article  Google Scholar 

  138. Lu, R., Hong, S. H. & Yu, M. Demand response for home energy management using reinforcement learning and artificial neural network. IEEE Trans. Smart Grid 10, 6629–6639 (2019).

    Article  Google Scholar 

  139. Yoon, J. H., Baldick, R. & Novoselac, A. Dynamic demand response controller based on real-time retail price for residential buildings. IEEE Trans. Smart Grid 5, 121–129 (2014).

    Article  Google Scholar 

  140. Zhang, X., Hug, G., Kolter, J. Z. & Harjunkoski, I. Demand response of ancillary service from industrial loads coordinated with energy storage. IEEE Trans. Power Syst. 33, 951–961 (2018).

    Article  Google Scholar 

  141. Callaway, D. S. & Hiskens, I. A. Achieving controllability of electric loads. Proc. IEEE 99, 184–199 (2011).

    Article  Google Scholar 

  142. US Congress. Infrastructure Investment and Jobs Act, Pub. L. No. 117-58, 135 Stat. 429 (2021).

  143. Federal Energy Regulatory Commission. Managing Transmission Line Ratings, Order No. 881, 87 Fed. Reg. 2244 (2022).

  144. US Congress. Advancing Grid Enhancing Technologies Act, S. 3918 (2023).

  145. Minnesota House of Representatives. Taxation and State Government Operations Bill, HF5247 (2024).

  146. Idaho National Laboratory. A Guide to Case Studies of Grid Enhancing Technologies. INL https://inl.gov/national-security/grid-enhancing-technologies/ (2022).

  147. WindEurope. Making the Most of Europe’s Grids: Grid Optimisation Technologies to Build a Greener Europe. WindEurope https://windeurope.org/policy/position-papers/making-the-most-of-europes-grids-grid-optimisation-technologies-to-build-a-greener-europe/ (2020).

  148. Glaum, P. & Hofmann, F. Enhancing the German transmission grid through dynamic line rating. in Proc. Int. Conf. Eur. Energy Market 1–7 (IEEE, 2022).

  149. U.S. Department of Energy. Innovative Grid Deployment. US DOE https://liftoff.energy.gov/innovative-grid-deployment/ (2024).

  150. Pierri, E., Binder, O., Hemdan, N. G. A. & Kurrat, M. Challenges and opportunities for a European HVDC grid. Renew. Sustain. Energy Rev. 70, 427–456 (2017).

    Article  Google Scholar 

  151. International Energy Agency. Demand Response. IEA https://www.iea.org/energy-system/energy-efficiency-and-demand/demand-response (2023).

  152. Yousefi, A., Nguyen, T. T., Zareipour, H. & Malik, O. P. Congestion management using demand response and FACTS devices. Int. J. Electr. Power Energy Syst. 37, 78–85 (2012).

    Article  Google Scholar 

  153. National Institute of Standards and Technology. Advanced Electrical Power System Sensors Workshop Report. NIST https://www.nist.gov/publications/advanced-electrical-power-system-sensors-workshop-report (2017).

  154. Gungor, V. C. et al. Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform. 7, 529–539 (2011).

    Article  Google Scholar 

  155. Taherzadeh, E., Radmanesh, H., Javadi, S. & Gharehpetian, G. B. Circuit breakers in HVDC systems: state-of-the-art review and future trends. Prot. Control. Mod. Power Syst. 8, 38 (2023).

    Article  Google Scholar 

  156. She, X., Huang, A. Q. & Burgos, R. Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1, 186–198 (2013).

    Article  Google Scholar 

  157. Parag, Y. & Sovacool, B. K. Electricity market design for the prosumer era. Nat. Energy 1, 1–6 (2016).

    Article  Google Scholar 

  158. Spiecker, S. & Weber, C. The future of the European electricity system and the impact of fluctuating renewable energy – a scenario analysis. Energy Policy 65, 185–197 (2014).

    Article  Google Scholar 

  159. European Network of Transmission System Operators for Electricity. Technologies for Transmission System. ENTSO-E https://tyndp.entsoe.eu/resources/tyndp-2018-technologies-for-transmission-system (2017).

  160. Center for Sustainable Systems. US Energy Storage Factsheet. Pub. No. CSS15-17. University of Michigan https://css.umich.edu/publications/factsheets/energy/us-grid-energy-storage-factsheet (2024).

Download references

Acknowledgements

The authors thank F. Palma, A. Ghassemian and D. Howard at the US Department of Energy for providing technical support for this Review. The authors also acknowledge financial support provided by the Advanced Grid Modeling program and Office of Electricity under U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and J.Z. conceived the article. All authors participated in the writing of the initial draft as well as discussions and finalization of the article.

Corresponding author

Correspondence to Junbo Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Joshua Rhodes, Mostafa Sahraei-Ardakani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Ampacity

Ampere capacity. Maximum capacity of current that a conductor can carry without exceeding its temperature rating.

Clearance

Minimum safe distance of the overhead conductor from the ground, or other obstacle such as buildings or trees.

Congestion

Economic impact on the users of electricity resulting from physical transmission constraints that limit the amount of power flow to ensure safe and reliable operation.

Curtailment

Involuntary reduction of renewable energy output compared with available natural resources due to grid constraints, overgeneration or other issues.

Energy system

The process chain from the extraction of primary energy to the use of final energy to supply services and goods.

Inertia

Energy stored in large rotating generators and some industrial motors, which can continue rotating and help stabilize the grid during sudden disturbances.

Load centre

Location where electricity is consumed, either a domestic or commercial consumer or a large industrial site.

Mischmetal

An alloy containing multiple rare earth elements to enhance the high-temperature resistance and extend lifespan.

Phase angle difference

Relative phase shift between two sinusoidal waveforms, indicating how much one waveform leads or lags behind the other.

Reactance

Opposition presented to alternating current, with an increase in reactance pushing power flow away from the line, while a decrease in reactance pulls more power flow into the line.

Transformer

A crucial component of the power system that steps up the voltage on the generation side for transmission and steps down the voltage on the load side for consumer use.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Zhao, J., Gomez-Exposito, A. et al. Grid-enhancing technologies for clean energy systems. Nat. Rev. Clean Technol. 1, 16–31 (2025). https://doi.org/10.1038/s44359-024-00001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-024-00001-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing