Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Promises and challenges of indoor photovoltaics

Abstract

Indoor photovoltaics (IPVs) harvest ambient light to produce electricity and can cleanly power the rapidly growing number of Internet-of-Things (IoT) sensors. The surge in IPV development, with new proposed materials, devices and products, creates the need to critically evaluate how IPV devices have advanced and to assess their prospects. In this Review, we analyse the status, challenges and opportunities of established and emerging IPV technologies, including metal-halide perovskite, organic photovoltaics, dye-sensitized solar cell and perovskite-inspired materials. Many emerging low-toxicity semiconductor materials could reach IPV efficiencies of up to 50%, but carrier localization and defect trapping hinder their performance. Wide adoption of standardized performance assessment methods is essential, and further harmonization is needed for stress tests, qualification standards and energy rating assessments. For seamless IPV integration in IoT devices, series-connected cell modules and appropriate power management hardware are crucial to maximize energy extraction. IPV device stability, technology upscaling and cost-effective integration in IoT sensors must be further developed but balanced with sustainability across the entire value chain.

Key points

  • By harvesting energy widely and freely available from ambient lighting, emerging indoor photovoltaics (IPVs) could become a sustainable and practical energy supply for low-power Internet-of-Things (IoT) nodes.

  • Standardizing indoor light sources and measurement methods for testing IPV devices is essential for comparability across different research groups. At the same time, given the wide variation in indoor light sources, IPVs should be tested under diverse conditions to avoid discarding potential technologies and to accurately gauge their power output for IoT applications.

  • Emerging IPV technologies can be manufactured with low capital intensity due to their rapid and simple processes, and they can be quickly customized. However, it is crucial for manufacturers, engineers and financial planners to consider the technical and financial aspects of shipping and integrating them into third-party electronic products.

  • Establishing collaborations between photovoltaics experts and IoT engineers will be key to ensure that IPVs are tailor-made to address the needs of IoT.

  • Life cycle assessment on IPVs, particularly emerging materials, will be essential to account for the environmental impact at various stages and to develop eco-design strategies to improve the overall sustainability of IPV devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working conditions for indoor photovoltaics.
Fig. 2: Established and emerging indoor photovoltaic technologies.
Fig. 3: Maximum efficiency of selected materials.
Fig. 4: Differences between testing for outdoor and indoor photovoltaics.
Fig. 5: Efficiencies of large-area new-generation indoor photovoltaics.

Similar content being viewed by others

References

  1. Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11, 2100698 (2021). This examines both established and emerging IPV technologies, focusing on their material and device characteristics, and discusses the advantages of IPV over other energy-harvesting technologies.

    CAS  Google Scholar 

  2. World Economic Forum. Why Buildings Are the Foundation of an Energy-Efficient Future. World Economic Forum https://www.weforum.org/agenda/2021/02/why-the-buildings-of-the-future-are-key-to-an-efficient-energy-ecosystem/ (2021).

  3. Mathews, I., Kantareddy, S. N., Buonassisi, T. & Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 3, 1415–1426 (2019). The primary focus of this perspective is to demonstrate the market perspective including the manufacturing costs related to IPV devices.

    CAS  Google Scholar 

  4. Elgazzar, K. et al. Revisiting the internet of things: new trends, opportunities and grand challenges. Front. Internet Things 1, 1073780 (2022).

    Google Scholar 

  5. EnABLES — European Infrastructure Powering the Internet of Things. EnABLES Position Paper coordinated by Tyndall recommends key actions to power IoT in a reliable and sustainable way. EnABLES https://www.enables-project.eu/outputs/position-paper/ (2020).

  6. Freunek, M. in Indoor Photovoltaics: Materials, Modeling and Applications (ed. Freunek, M.) 25–37 (Wiley, 2020).

  7. Burwell, G. et al. Scaling considerations for organic photovoltaics for indoor applications. Sol. RRL 6, 2200315 (2022). This article, focused on OPVs, deals with the device size considerations for harvesting of indoor light of various intensities.

    CAS  Google Scholar 

  8. Michaels, H. et al. Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management. Chem. Sci. 14, 5350–5360 (2023).

    CAS  Google Scholar 

  9. Wang, X., Ganose, A. M., Kavanagh, S. R. & Walsh, A. Band versus polaron: charge transport in antimony chalcogenides. ACS Energy Lett. 7, 2954–2960 (2022).

    CAS  Google Scholar 

  10. Wang, W. et al. Indoor organic photovoltaic module with 30.6% efficiency for efficient wireless power transfer. Nano Energy 128, 109893 (2024).

    CAS  Google Scholar 

  11. Ma, Q. et al. Wide-band-gap perovskite solar minimodules exceeding 43% efficiency under indoor light illumination. Device 1, 100174 (2023).

    Google Scholar 

  12. Kauer, M. & Bellanger, M. in Indoor Photovoltaics: Materials, Modeling and Applications (ed. Freunek, M.) 213–239 (2020).

  13. Cui, Y. et al. Accurate photovoltaic measurement of organic cells for indoor applications. Joule 5, 1016–1023 (2021).

    Google Scholar 

  14. British Standards Institute. BS EN 12464-1:202: Light and lighting. Lighting of work places. Indoor work places. British Standards Institute https://www.en-standard.eu/bs-en-12464-1-2021-light-and-lighting-lighting-of-work-places-indoor-work-places/?srsltid=AfmBOoqQvBhvO6il-s_bESCNxgNkoc7yYJ2h-uNtWLmFRDwtffzLtu8Q (2021).

  15. Seunarine, K. et al. Light power resource availability for energy harvesting photovoltaics for self-powered IoT. J. Phys. Energy 6, 015018 (2024). This article demonstrates the forecasting of the efficiency of energy-harvesting photovoltaic systems in indoor environments.

    CAS  Google Scholar 

  16. Reynaud, C. A. et al. Evaluation of indoor photovoltaic power production under directional and diffuse lighting conditions. Sol. Energy Mater. Sol. Cell 200, 110010 (2019).

    CAS  Google Scholar 

  17. Kay, A. M. et al. The thermodynamic limit of indoor photovoltaics based on energetically‐disordered molecular semiconductors. Sol. RRL 7, 2300277 (2023).

    CAS  Google Scholar 

  18. Peng, Y. et al. Lead‐free perovskite‐inspired absorbers for indoor photovoltaics. Adv. Energy Mater. 11, 2002761 (2021).

    CAS  Google Scholar 

  19. Ruhle, K. & Kasemann, M. Approaching high efficiency wide range silicon solar cells. IEEE 39th Photovoltaic Specialists Conference (PVSC) 2651–2654 (IEEE, 2013).

  20. Chen, X. et al. Additive engineering for Sb2S3 indoor photovoltaics with efficiency exceeding 17%. Light Sci. Appl. 13, 281 (2024).

    CAS  Google Scholar 

  21. Guo, Z., Jena, A. K. & Miyasaka, T. Halide perovskites for indoor photovoltaics: the next possibility. ACS Energy Lett. 8, 90–95 (2022). This article discusses the potential of lead halide perovskites among the other emerging IPV technologies.

    Google Scholar 

  22. Cui, Y. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 4, 768–775 (2019).

    CAS  Google Scholar 

  23. Zhang, H. et al. Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. J. Mater. Chem. A 4, 18043–18049 (2016).

    CAS  Google Scholar 

  24. Ann, M. H. et al. Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy 68, 104321 (2020).

    CAS  Google Scholar 

  25. Ho, J. K. W., Yin, H. & So, S. K. From 33% to 57% — an elevated potential of efficiency limit for indoor photovoltaics. J. Mater. Chem. A 8, 1717–1723 (2020).

    CAS  Google Scholar 

  26. Ma, L.-K. et al. High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4, 1486–1500 (2020).

    CAS  Google Scholar 

  27. Ma, Q. et al. One-step dual-additive passivated wide-bandgap perovskites to realize 44.72%-efficient indoor photovoltaics. Energy Environ. Sci. 17, 1637–1644 (2024).

    CAS  Google Scholar 

  28. European Commission. Restriction of hazardous substances in electrical and electronic equipment (RoHS). European Commission https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en (2021).

  29. Reich, N. H., van Sark, W. G. J. H. M. & Turkenburg, W. C. Charge yield potential of indoor-operated solar cells incorporated into product integrated photovoltaic (PIPV). Renew. Energy 36, 642–647 (2011).

    Google Scholar 

  30. Müller, D. et al. Indoor photovoltaics for the Internet-of-Things — a comparison of state-of-the-art devices from different photovoltaic technologies. ACS Appl. Energy Mater. 6, 10404–10414 (2023). This article deals with the performance losses of various established and emerging IPV technologies under varying indoor light intensities.

    Google Scholar 

  31. Proctor, C. M. & Nguyen, T.-Q. Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106, 083301 (2015).

    Google Scholar 

  32. Glowienka, D. & Galagan, Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34, 2105920 (2022).

    CAS  Google Scholar 

  33. Steim, R. et al. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cell 95, 3256–3261 (2011).

    CAS  Google Scholar 

  34. Zhou, X. et al. Different morphology dependence for efficient indoor organic photovoltaics: the role of the leakage current and recombination losses. ACS Appl. Mater. Interfaces 13, 44604–44614 (2021).

    CAS  Google Scholar 

  35. Blakesley, J. C. et al. Roadmap on established and emerging photovoltaics for sustainable energy conversion. J. Phys. Energy 6, 041501 (2024).

    CAS  Google Scholar 

  36. Wang, K. et al. Ion‐dipole interaction enabling highly efficient CsPbI3 perovskite indoor photovoltaics. Adv. Mater. 35, 2210106 (2023).

    CAS  Google Scholar 

  37. Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).

    CAS  Google Scholar 

  38. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  39. Toikkonen, S. et al. Is doping of spiro-OMeTAD a requirement for efficient and stable perovskite indoor photovoltaics? Adv. Devices Instrum. 5, 0048 (2024).

    Google Scholar 

  40. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    CAS  Google Scholar 

  41. Burwell, G. et al. Wide‐gap perovskites for indoor photovoltaics. Sol. RRL 8, 2400180 (2024).

    CAS  Google Scholar 

  42. Jagadamma, L. K. & Wang, S. Wide-bandgap halide perovskites for indoor photovoltaics. Front. Chem. 9, 71 (2021).

    Google Scholar 

  43. Lu, Q. et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 31, 2100151 (2021).

    CAS  Google Scholar 

  44. Chu, Q.-Q. et al. Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6, 3838–3863 (2023).

    CAS  Google Scholar 

  45. Jung, H. S., Han, G. S., Park, N.-G. & Ko, M. J. Flexible perovskite solar cells. Joule 3, 1850–1880 (2019).

    CAS  Google Scholar 

  46. Dkhili, M. et al. Attributes of high-performance electron transport layers for perovskite solar cells on flexible PET versus on glass. ACS Appl. Energy Mater. 5, 4096–4107 (2022).

    CAS  Google Scholar 

  47. Teixeira, C. et al. Charge extraction in flexible perovskite solar cell architectures for indoor applications — with up to 31% efficiency. Adv. Funct. Mater. 32, 2206761 (2022).

    CAS  Google Scholar 

  48. Skafi, Z. et al. Highly efficient flexible perovskite solar cells on polyethylene terephthalate films via dual halide and low‐dimensional interface engineering for indoor photovoltaics. Sol. RRL 7, 2300324 (2023).

    CAS  Google Scholar 

  49. Liu, C. et al. Flexible indoor perovskite solar cells by in situ bottom‐up crystallization modulation and interfacial passivation. Adv. Mater. 36, 2311562 (2024).

    CAS  Google Scholar 

  50. Gong, O. Y. et al. Van der Waals force-assisted heat-transfer engineering for overcoming limited efficiency of flexible perovskite solar cells. ACS Energy Lett. 7, 2893–2903 (2022).

    CAS  Google Scholar 

  51. Chen, C.-H. et al. Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34, 2200320 (2022).

    CAS  Google Scholar 

  52. Solak, E. K. & Irmak, E. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Adv. 13, 12244–12269 (2023).

    CAS  Google Scholar 

  53. Kim, T. H. et al. Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management. Nano Energy 112, 108429 (2023).

    CAS  Google Scholar 

  54. Ding, Z., Zhao, R., Yu, Y. & Liu, J. All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A 7, 26533–26539 (2019).

    CAS  Google Scholar 

  55. Liu, X., Xu, S., Tang, B. & Song, X. Indoor organic photovoltaics for low-power internet of things devices: recent advances, challenges, and prospects. Chem. Eng. J. 497, 154944 (2024).

    CAS  Google Scholar 

  56. Meethal, S. M. et al. Asymmetric dual species copper (II/I) electrolyte dye-sensitized solar cells with 35.6% efficiency under indoor light. J. Mater. Chem. A 12, 1081–1093 (2024).

    CAS  Google Scholar 

  57. Kokkonen, M. et al. Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 9, 10527–10545 (2021).

    CAS  Google Scholar 

  58. Deng, H. et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nat. Commun. 12, 3107 (2021).

    CAS  Google Scholar 

  59. Yan, B. et al. Indoor photovoltaics awaken the world’s first solar cells. Sci. Adv. 8, eadc9923 (2022).

    CAS  Google Scholar 

  60. Hou, B. et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30, 2004563 (2020).

    CAS  Google Scholar 

  61. Moody, N. et al. Assessing the regulatory requirements of lead-based perovskite photovoltaics. Joule 4, 970–974 (2020).

    Google Scholar 

  62. Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).

    Google Scholar 

  63. Ganose, A. M., Savory, C. N. & Scanlon, D. O. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 53, 20–44 (2017).

    CAS  Google Scholar 

  64. Mosquera-Lois, I. et al. Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors. Preprint at https://doi.org/10.48550/arXiv.2408.16663 (2024).

  65. Cao, J.-J. et al. Multifunctional potassium thiocyanate interlayer for eco-friendly tin perovskite indoor and outdoor photovoltaics. Chem. Eng. J. 433, 133832 (2022).

    CAS  Google Scholar 

  66. Yu, B.-B. et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).

    CAS  Google Scholar 

  67. Gao, Z. et al. Adhesion-controlled heterogeneous nucleation of tin halide perovskites for eco-friendly indoor photovoltaics. Adv. Mater. 36, 2403413 (2024).

    CAS  Google Scholar 

  68. Yang, W. F. et al. Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics. Appl. Phys. Lett. 118, 023501 (2021).

    CAS  Google Scholar 

  69. Yang, W. F. et al. Nicotinamide-modified PEDOT:PSS for high performance indoor and outdoor tin perovskite photovoltaics. Sol. RRL 5, 1–7 (2021).

    CAS  Google Scholar 

  70. Peng, Y. et al. Lead-free perovskite-inspired absorbers for indoor photovoltaics. Adv. Energy Mater. 11, 2002761 (2020).

    Google Scholar 

  71. Jagt, R. A. et al. Layered BiOI single crystals capable of detecting low dose rates of X-rays. Nat. Commun. 14, 2452 (2023).

    CAS  Google Scholar 

  72. Hoye, R. L. Z. et al. Strongly enhanced photovoltaic performance and defect physics of air‐stable bismuth oxyiodide (BiOI). Adv. Mater. 29, 1702176 (2017).

    Google Scholar 

  73. Rondiya, S. R., Jagt, R. A., MacManus-Driscoll, J. L., Walsh, A. & Hoye, R. L. Z. Self-trapping in bismuth-based semiconductors: opportunities and challenges from optoelectronic devices to quantum technologies. Appl. Phys. Lett. 119, 220501 (2021).

    CAS  Google Scholar 

  74. Jagt, R. A. et al. Controlling the preferred orientation of layered BiOI solar absorbers. J. Mater. Chem. C. 8, 10791–10797 (2020).

    CAS  Google Scholar 

  75. Guo, X. et al. Air-stable bismuth sulfobromide (BiSBr) visible-light absorbers: optoelectronic properties and potential for energy harvesting. J. Mater. Chem. A 11, 22775–22785 (2023).

    CAS  Google Scholar 

  76. Barthwal, S. et al. A comprehensive insight into deep-level defect engineering in antimony chalcogenide solar cells. Mater. Adv. 4, 5998–6030 (2023).

    CAS  Google Scholar 

  77. Liu, X. et al. Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage. Adv. Mater. 36, 2305841 (2024).

    CAS  Google Scholar 

  78. Zheng, J. et al. Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells. Chem. Eng. J. 446, 136474 (2022).

    CAS  Google Scholar 

  79. Yang, Z. et al. Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nat. Commun. 10, 1–8 (2019).

    Google Scholar 

  80. Zhao, R., Yang, X., Shi, H. & Du, M.-H. Intrinsic and complex defect engineering of quasi-one-dimensional ribbons Sb2S3for photovoltaics performance. Phys. Rev. Mater. 5, 054605 (2021).

    CAS  Google Scholar 

  81. Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Upper efficiency limit of Sb2Se3 solar cells. Joule 8, 2105–2122 (2024).

    CAS  Google Scholar 

  82. Hoye, R. L. Z. et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic–inorganic solar absorber. Chem. - Eur. J. 22, 2605–2610 (2016).

    CAS  Google Scholar 

  83. Hoye, R. L. Z. et al. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12, 2100499 (2022).

    CAS  Google Scholar 

  84. Hodgkins, T. L. et al. Anionic order and band gap engineering in vacancy ordered triple perovskites. Chem. Commun 55, 3164–3167 (2019).

    CAS  Google Scholar 

  85. Lamminen, N. et al. Triple A-site cation mixing in 2D perovskite-inspired antimony halide absorbers for efficient indoor photovoltaics. Adv. Energy Mater 13, 2203175 (2022).

    Google Scholar 

  86. Zhu, H. et al. Progress and applications of (Cu–)Ag–Bi–I semiconductors, and their derivatives, as next-generation lead-free materials for photovoltaics, detectors and memristors. Int. Mater. Rev 69, 19–62 (2024). A broader view on the Cu–Ag–Bi–I family of compounds, including their potential for IPV applications.

    CAS  Google Scholar 

  87. Sansom, H. C. et al. Chemical control of the dimensionality of the octahedral network of solar absorbers from the CuI–AgI–BiI3 phase space by synthesis of 3D CuAgBiI5. Inorg. Chem. 60, 18154–18167 (2021).

    CAS  Google Scholar 

  88. Turkevych, I., Kazaoui, S., Shirakawa, N. & Fukuda, N. Potential of AgBiI4 rudorffites for indoor photovoltaic energy harvesters in autonomous environmental nanosensors. Jpn. J. Appl. Phys 60, SCCE06 (2021).

    CAS  Google Scholar 

  89. Lal, S. et al. The role of chemical composition in determining the charge-carrier dynamics in (AgI)x(BiI3)y rudorffites. Adv. Funct. Mater. 34, 2315942 (2024).

    CAS  Google Scholar 

  90. Sansom, H. C. et al. Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI–AgI–BiI3 phase space. J. Am. Chem. Soc. 143, 3983–3992 (2021).

    CAS  Google Scholar 

  91. Buizza, L. R. V. et al. Charge-carrier mobility and localization in semiconducting Cu2AgBiI6 for photovoltaic applications. ACS Energy Lett. 6, 1729–1739 (2021).

    CAS  Google Scholar 

  92. Al-Anesi, B. et al. Antimony-bismuth alloying: the key to a major boost in the efficiency of lead-free perovskite-inspired indoor photovoltaics. Preprint at https://doi.org/10.26434/chemrxiv-2023-nb5jj (2023).

  93. Grandhi, G. K., Toikkonen, S., Al-Anesi, B., Pecunia, V. & Vivo, P. Perovskite-inspired Cu2AgBiI6 for mesoscopic indoor photovoltaics under realistic low-light intensity conditions. Sustain. Energy Fuels 7, 66–73 (2022).

    Google Scholar 

  94. Grandhi, G. K. et al. Enhancing the microstructure of perovskite‐inspired Cu–Ag–Bi–I absorber for efficient indoor photovoltaics. Small 18, 2203768 (2022).

    CAS  Google Scholar 

  95. Ren, Y. et al. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 613, 60–65 (2023).

    CAS  Google Scholar 

  96. Harikisun, R. & Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011).

    CAS  Google Scholar 

  97. Baxter, J. B. Commercialization of dye sensitized solar cells: present status and future research needs to improve efficiency, stability, and manufacturing. J. Vac. Sci. Technol. A 30, 020801 (2012).

    Google Scholar 

  98. Jahandar, M., Kim, S. & Lim, D. C. Indoor organic photovoltaics for self-sustaining IoT devices: progress, challenges and practicalization. ChemSusChem 14, 3449–3474 (2021).

    CAS  Google Scholar 

  99. Mathews, I. et al. Self-powered sensors enabled by wide-bandgap perovskite indoor photovoltaic cells. Adv. Funct. Mater. 29, 1904072 (2019).

    CAS  Google Scholar 

  100. International Renewable Energy Agency. Boosting Solar PV Markets: The Role of Quality Infrastructure. IRENA https://www.irena.org/Publications/2017/Sep/Boosting-solar-PV-markets-The-role-of-quality-infrastructure (2017).

  101. International Electrotechnical Commission. IEC TS 62607-7-2 Part 7-2: Nano-Enabled Photovoltaics — Device Evaluation Method for Indoor Light (IEC, 2023).

  102. Zeiske, S., Meredith, P., Armin, A. & Burwell, G. Importance of spectrally invariant broadband attenuation of light in indoor photovoltaic characterization. APL Energy 1, 026103 (2023).

    CAS  Google Scholar 

  103. Bothe, K., Hinken, D., Min, B. & Schinke, C. Accuracy of simplifications for spectral responsivity measurements of solar cells. IEEE J. Photovolt. 8, 611–620 (2018).

    Google Scholar 

  104. Osterwald, C. R. et al. Improved primary reference cell calibrations for higher accuracy photovoltaic cell and module performance measurements. Sol. RRL 7, 0–11 (2023).

    Google Scholar 

  105. Parsons, D. E., Koutsourakis, G. & Blakesley, J. C. Performance measurements for indoor photovoltaic devices: classification of a novel light source. APL Energy https://doi.org/10.1063/5.0186028 (2024).

  106. International Electrotechnical Commission. IEC 61215-1 (Terrestrial Photovoltaic (PV) Modules — Design Qualification and Type Approval — Part 1: Test Requirements). https://webstore.iec.ch/en/publication/61345 (IEC, 2021).

  107. Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cell 95, 1253–1267 (2011).

    CAS  Google Scholar 

  108. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Google Scholar 

  109. Ma, X., Bader, S. & Oelmann, B. Power estimation for indoor light energy harvesting systems. IEEE Trans. Instrum. Meas. 69, 7513–7521 (2020).

    CAS  Google Scholar 

  110. Jiang, E. et al. Side connection for high-efficiency organic photovoltaic modules for indoor applications: shunt reduction and performance improvement. Sol. RRL 8, 2400303 (2024).

    CAS  Google Scholar 

  111. Qamar, M. Z. et al. Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self-powered IoT applications. Nano Energy 129, 109994 (2024).

    CAS  Google Scholar 

  112. De Rossi, F., Polino, G. & Brunetti, F. in Sustainable Strategies in Organic Electronics (ed. Marrocchi, A.) 463–503 (Woodhead, 2022).

  113. Agresti, A., Di Giacomo, F., Pescetelli, S. & Di Carlo, A. Scalable deposition techniques for large-area perovskite photovoltaic technology: a multi-perspective review. Nano Energy 122, 109317 (2024).

    CAS  Google Scholar 

  114. Sun, L., Fukuda, K. & Someya, T. Recent progress in solution-processed flexible organic photovoltaics. npj Flex. Electron. 6, 89 (2022). This explores the latest progress in flexible indoor OPVs, addressing the current challenges and outlining future directions to maximize the potential of OPV technology.

    Google Scholar 

  115. Muñoz-García, A. B. et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50, 12450–12550 (2021).

    Google Scholar 

  116. Tsai, M.-C. et al. A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1,000 lux indoor light. J. Mater. Chem. A 6, 1995–2003 (2018).

    CAS  Google Scholar 

  117. Ylikunnari, M. et al. Flexible OPV modules for highly efficient indoor applications. Flex. Print. Electron. 5, 014008 (2020).

    CAS  Google Scholar 

  118. Zhang, C. et al. Occlusal architecture of the buried interface enables record-efficiency flexible perovskite photovoltaic modules with enhanced in-plane bending mechanical endurance. Adv. Funct. Mater. 34, 2313910 (2024).

    CAS  Google Scholar 

  119. De Rossi, F. et al. All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency. Adv. Mater. Technol. 3, 1800156 (2018).

    Google Scholar 

  120. Jeon, G. G. et al. Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer. EcoMat 6, e12455 (2024).

    CAS  Google Scholar 

  121. Zhang, Y. et al. All-polymer indoor photovoltaic modules. iScience 24, 103104 (2021).

    CAS  Google Scholar 

  122. Müller, D., Campos Guzmán, L., Jiang, E., Zimmermann, B. & Würfel, U. ITO-free indoor OPV modules from nonhalogenated solvents. Sol. RRL 6, 2200175 (2022).

    Google Scholar 

  123. Cui, Y. et al. 100 cm2 organic photovoltaic cells with 23% efficiency under indoor illumination. Chin. J. Polym. Sci. 40, 979–988 (2022).

    CAS  Google Scholar 

  124. Wang, W. et al. High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders. Joule 7, 1067–1079 (2023).

    CAS  Google Scholar 

  125. Xu, X. et al. Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years. Sci. Bull. 65, 208–216 (2020).

    CAS  Google Scholar 

  126. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    CAS  Google Scholar 

  127. Venkateswararao, A., Ho, J. K. W., So, S. K., Liu, S.-W. & Wong, K.-T. Device characteristics and material developments of indoor photovoltaic devices. Mater. Sci. Eng. R Rep. 139, 100517 (2020). This report summarizes in detail the developments in materials and corresponding photovoltaic device for indoor light harvesting.

    Google Scholar 

  128. Muhammad, B. T., Kar, S., Stephen, M. & Leong, W. L. Halide perovskite-based indoor photovoltaics: recent development and challenges. Mater. Today Energy 23, 100907 (2022).

    CAS  Google Scholar 

  129. Parisi, M. L. & Sinicropi, A. Closing the loop for perovskite solar modules. Nat. Sustain. 4, 754–755 (2021).

    Google Scholar 

  130. Fernández-González, J., Rumayor, M., Domínguez-Ramos, A., Irabien, A. & Ortiz, I. The relevance of life cycle assessment tools in the development of emerging decarbonization technologies. JACS Au 3, 2631–2639 (2023).

    Google Scholar 

  131. European Commission. Energy Efficient Products. https://energy-efficient-products.ec.europa.eu/index_en?prefLang=it (accessed 14 July 24).

  132. European Commission. Ecodesign for Sustainable Products Regulation. European Commission https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/sustainable-products/ecodesign-sustainable-products-regulation_en (2024).

  133. European Commission. Safe and Sustainable by Design Chemicals and Materials — Methodological Guidance. https://doi.org/10.2760/28450 (Publications Office of the European Union, 2023).

  134. Frischknecht, R., Heath, G., Raugei, M., Sinha, P. & de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity 3rd edn (IEA, 2016).

  135. Dou, D., Sun, H., Li, C., Gan, S. & Li, L. Perovskite‐based indoor photovoltaics and their competitors. Adv. Funct. Mater. 34, 2314398 (2024).

    CAS  Google Scholar 

  136. Wagner, L. et al. The resource demands of multi-terawatt-scale perovskite tandem photovoltaics. Joule 8, 1142–1160 (2024).

    CAS  Google Scholar 

  137. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4, 277–285 (2021).

    Google Scholar 

  138. Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).

    Google Scholar 

  139. Bartie, N. et al. Cost versus environment? Combined life cycle, techno-economic, and circularity assessment of silicon- and perovskite-based photovoltaic systems. J. Ind. Ecol 27, 993–1007 (2023).

    CAS  Google Scholar 

  140. Wu, Q. et al. High-performance organic photovoltaic modules using eco-friendly solvents for various indoor application scenarios. Joule 6, 2138–2151 (2022).

    CAS  Google Scholar 

  141. Vesce, L. et al. Perovskite solar cell technology scaling-up: eco-efficient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating. Prog. Photovoltaics Res. Appl. 32, 115–129 (2024).

    CAS  Google Scholar 

  142. Pescetelli, S. et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022).

    Google Scholar 

  143. Hoye, R. L. Z. Preventing lead release from perovskites. Nat. Sustain. 6, 1297–1299 (2023).

    Google Scholar 

  144. Yang, M. et al. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat. Sustain. 6, 1455–1464 (2023).

    Google Scholar 

  145. Li, X. et al. On-device lead sequestration for perovskite solar cells. Nature 578, 555–558 (2020).

    CAS  Google Scholar 

  146. Valastro, S. et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nat. Sustain. 6, 974–983 (2023).

    Google Scholar 

  147. Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 4, 636–643 (2021).

    Google Scholar 

  148. Ndalloka, Z. N., Nair, H. V., Alpert, S. & Schmid, C. Solar photovoltaic recycling strategies. Sol. Energy 270, 112379 (2024).

    Google Scholar 

  149. Grandhi, G. K. et al. Lead-free perovskite-inspired semiconductors for indoor light-harvesting — the present and the future. Chem. Commun. 59, 8616–8625 (2023). This perspective focuses on low-toxicity perovskite-inspired materials for IPVs, especially the challenges they are facing from material and device level.

    CAS  Google Scholar 

  150. Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F.-J. & Ballif, C. Review: progress in solar cells from hydrogenated amorphous silicon. Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).

    CAS  Google Scholar 

  151. Crandall, R. & Luft, W. The future of amorphous silicon photovoltaic technology. Prog. Photovoltaics Res. Appl. 3, 315–332 (1995).

    CAS  Google Scholar 

  152. Blanco, C. F. et al. Environmental impacts of III–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Energy. Environ. Sci. 13, 4280–4290 (2020).

    CAS  Google Scholar 

  153. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    CAS  Google Scholar 

  154. Burlingame, Q. et al. Intrinsically stable organic solar cells under high-intensity illumination. Nature 573, 394–397 (2019).

    CAS  Google Scholar 

  155. Subramaniam, S. V., Kutsarov, D., Sauermann, T. & Meier, S. B. Commercialization of organic photovoltaics and its product integration: a perspective focusing on durability. Energy Technol. 8, 2000234 (2020).

    Google Scholar 

  156. Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F. & Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7, 3952–3981 (2014).

    CAS  Google Scholar 

  157. Grand View Research. Dye Sensitized Solar Cell Market Size, Share & Trends Report Dye Sensitized Solar Cell Market Size, Share & Trends Analysis Report By Application (Portable Charging, BIPV/BAPV, Embedded Electronics, Outdoor Advertising, Automotive (AIPV)), and Segment Forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/dye-sensitized-solar-cell-market (accessed 22 September 2024).

  158. Pirc, M., Ajdič, Z., Uršič, D., Jošt, M. & Topič, M. Indoor energy harvesting with perovskite solar cells for IoT applications — a full year monitoring study. ACS Appl. Energy Mater. 7, 565–575 (2024).

    CAS  Google Scholar 

  159. De Rossi, F. et al. A systematic investigation of permeation barriers for flexible dye-sensitized solar cells. Energy Technol. 4, 1455–1462 (2016).

    Google Scholar 

  160. Perini, C. A. R., Doherty, T. A. S., Stranks, S. D., Correa-Baena, J.-P. & Hoye, R. L. Z. Pressing challenges in halide perovskite photovoltaics — from the atomic to module level. Joule 5, 1024–1030 (2021).

    Google Scholar 

  161. Cheek, G., Yang, F. & Lee, H. Thin film PV: moving at the speed of solar. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) 3407–3410 (IEEE, 2013).

  162. Smith, B., Woodhouse, M., Feldman, D. & Margolis, R. Solar Photovoltaic (PV) Manufacturing Expansions in the United States, 2017–2019: Motives, Challenges, Opportunities, and Policy Context (NREL, 2021).

  163. Pan, Y. et al. Vapor transport deposition of highly efficient Sb2(S,Se)3 solar cells via controllable orientation growth. Adv. Funct. Mater. 31, 2101476 (2021).

    CAS  Google Scholar 

  164. Wen, X. et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 9, 2179 (2018).

    Google Scholar 

  165. Xie, Y. et al. Fabrication of Sb2S3 solar cells by close space sublimation and enhancing the efficiency via co-selenization. Mater. Sci. Semicond. Process. 142, 106451 (2022).

    CAS  Google Scholar 

  166. Li, Z. et al. 9.2%-efficient core–shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019).

    Google Scholar 

  167. Scarpulla, M. A. et al. CdTe-based thin film photovoltaics: recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. Cell 255, 112289 (2023).

    CAS  Google Scholar 

  168. Cunningham, D., Rubcich, M. & Skinner, D. Cadmium telluride PV module manufacturing at BP Solar. Prog. Photovoltaics: Res. Appl. 10, 159–168 (2002).

    CAS  Google Scholar 

  169. Franco, M. A. & Groesser, S. N. A systematic literature review of the solar photovoltaic value chain for a circular economy. Sustainability 13, 9615 (2021).

    CAS  Google Scholar 

  170. European Commission. Waste from Electrical and Electronic Equipment (WEEE). European Commission https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_enpublications (2024).

  171. Charles, R. G., Doolin, A., García-Rodríguez, R., Villalobos, K. V. & Davies, M. L. Circular economy for perovskite solar cells — drivers, progress and challenges. Energy Environ. Sci. 16, 3711–3733 (2023).

    Google Scholar 

  172. De Rossi, F., Pontecorvo, T. & Brown, T. M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 156, 413–422 (2015).

    Google Scholar 

  173. Castro‐Hermosa, S., Top, M., Dagar, J., Fahlteich, J. & Brown, T. M. Quantifying performance of permeation barrier–encapsulation systems for flexible and glass‐based electronics and their application to perovskite solar cells. Adv. Electron. Mater. 5, 1800978 (2019).

    Google Scholar 

  174. Corsini, F. & Griffini, G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. J. Phys. Energy 2, 031002 (2020).

    CAS  Google Scholar 

  175. Zhang, C. et al. Br vacancy defects healed perovskite indoor photovoltaic modules with certified power conversion efficiency exceeding 36%. Adv. Sci. 9, 2204138 (2022).

    CAS  Google Scholar 

  176. Lee, H. K. H. et al. Outstanding indoor performance of perovskite photovoltaic cells — effect of device architectures and interlayers. Sol. RRL 3, 1800207 (2019).

    Google Scholar 

  177. Chiang, C. & Wu, C. Large‐area perovskite film prepared by new FFASE method for stable solar modules having high efficiency under both outdoor and indoor light harvesting. Adv. Sci. 10, 2205967 (2023).

    CAS  Google Scholar 

  178. Li, T.-T. et al. Photo-rechargeable all-solid-state lithium−sulfur batteries based on perovskite indoor photovoltaic modules. Chem. Eng. J. 455, 140684 (2023).

    CAS  Google Scholar 

  179. Ishiyama, T. Indoor Photovoltaic Energy Harvesting and Power Management for IoT Devices. In 2022 11th International Conference on Renewable Energy Research and Application (ICRERA) 461–464 (2022).

  180. Thomas, S. K. et al. Will the Internet of Things be perovskite powered? Energy yield measurement and real-world performance of perovskite solar cells in ambient light conditions. IoT 3, 109–121 (2022). This article demonstrates the integration of IPV devices into Internet-of-Things sensors and the operation of the sensors under real-world conditions.

    Google Scholar 

Download references

Acknowledgements

G.K.G. thanks Tampere Institute for Advanced Study, Tampere University, for postdoctoral research funding. G.K. and J.C.B. acknowledge funding from the UK Department for Science, Innovation & Technology through the National Measurement System. F.B. and F.D.R. acknowledge the financial support of Lazio Region through ISIS@MACH (Research infrastructure approved by Giunta Regionale no. G10795, 7 August 2019 published on BURL no. 69, 27 August 2019), the project IGEA-A0613-2023-078007 and the SPOT-IT project funded by the Clean and Energy Transition Partnership under the 2022 CETPartnership joint call for research proposal, co-funded by the European Commission (Grant Agreement no. 101069750) and with the funding of the organizations detailed on https://cetpartnership.eu/funding-agencies-and-call-modules. R.L.Z.H. thanks UK Research and Innovation for financial support through a Frontier Grant (no. EP/X022900/1), awarded via the 2021 ERC Starting Grant scheme. P.V. thanks the Research Council of Finland, decision no. 347772, and Business Finland (SPOT-IT project). The work is part of the Research Council of Finland Flagship Programme, Photonics Research and Innovation (PREIN), decision no. 346511. T.M.B. acknowledges the Italian Ministry of Research for the PRIN2022 PNRR INPOWER (project no. P2022PXS5S) grant.

Author information

Authors and Affiliations

Authors

Contributions

G.K.G. and P.V. contributed to the ‘Devices and materials’ section, as well as to the Abstract, Introduction and ‘Summary and future perspectives’ sections. R.L.Z.H. contributed to the ‘Devices and materials’ and ‘Sustainability and commercialization’ sections, as well as to the ‘Summary and future perspectives’ section. G.K. and J.C.B. contributed to the ‘Measurements, characterization and standards’ and ‘Summary and future perspectives’ sections. F.D.R., F.B. and M.J.C. contributed to the ‘Scalability and integration’ section. S.Ö. and T.M.B. contributed to the ‘Sustainability and commercialization’ section. A.S. and M.L.P. contributed to the ‘Sustainability and commercialization’ and ‘Summary and future perspectives’ sections. All authors edited the Review together.

Corresponding author

Correspondence to Paola Vivo.

Ethics declarations

Competing interests

S.Ö. is the CEO of Solaveni GmbH, a subsidiary of Saule Technologies, a perovskite solar cell company that markets devices for applications including indoor photovoltaics. R.L.Z.H. has a project funded by First Solar, a photovoltaic company, and a short-term project funded by Nissan that is related to photovoltaics, and is CTO of NanoPrint Innovations Ltd, a company that makes reactors for the photovoltaic industry.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Peifen Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

III–V semiconductors

For example, GaAs. A class of semiconductor materials that comprise elements of groups III and V of the periodic table.

Copper indium gallium sulfide

(CIGS). A widely used thin-film photovoltaic absorber.

Exciton binding energy

The energy required to dissociate a bound electron–hole pair (that is, an exciton) into free carriers.

Fill factor

(FF). The ratio of the actual maximum power output of a photovoltaic device to its theoretical maximum, reflecting the squareness of the device’s current–voltage curve.

Lux

Unit of measure for illuminance, indicating how much light falls on a surface per square metre.

Open-circuit voltage

(VOC). The open-circuit voltage of a photovoltaic (PV) device is the voltage across its terminals under illumination with no load connected (no current flows).

Photoluminescence

The re-emission of absorbed photons by a semiconductor at a longer wavelength.

p–i–n device configuration

An intrinsic semiconductor (i layer) is sandwiched between a hole-transport layer (p layer) and an electron-transport layer (n layer).

Short-circuit current density

(JSC). Refers to the amount of electrical current that flows through a photovoltaic device under short-circuit conditions under illumination, measured in amperes per unit area.

Shunt resistance

Shunt resistance in a photovoltaic cell’s equivalent circuit represents current leakage paths and can severely affect open-circuit voltage and fill factor under low-light conditions.

Urbach energy

This quantifies the width of the exponential tail in a semiconductor material’s optical absorption or band edge, revealing its degree of energy disorder.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandhi, G.K., Koutsourakis, G., Blakesley, J.C. et al. Promises and challenges of indoor photovoltaics. Nat. Rev. Clean Technol. 1, 132–147 (2025). https://doi.org/10.1038/s44359-024-00013-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-024-00013-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene