Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A thermal perspective on battery safety

Abstract

Electrochemical energy storage is one of the primary technologies for energy storage, making batteries essential in applications such as electric vehicles and energy storage stations. For the battery itself, achieving resistance to extreme temperatures is a critical objective. However, there are no battery materials or systems that can be deemed absolutely safe or performance-temperature-independent. In this Perspective, we discuss battery safety from a thermal point of view and emphasize the importance of battery thermal management. Battery thermal management ensures that electrochemical reactions occur within an optimal temperature range, suppressing side reactions and delaying or even preventing thermal runaway. This equilibrium is essential for improving battery efficiency and extending its operational lifespan. When absolute safety cannot be assured in battery materials and systems, thermal management becomes the primary barrier to battery thermal risks. However, owing to the extremely rapid rate of exothermic side reactions, the importance of fire suppression becomes evident when thermal runaway cannot be contained, leading to fire accidents. The control of heat generation, effective thermal management and robust fire suppression strategies are key to ensure battery thermal safety and will have a crucial role in the development and large-scale application of batteries.

Key points

  • Thermal issues are a critical challenge in battery safety, directly determining the prevention efficacy of thermal runaway-induced hazards.

  • Effective thermal runaway mitigation requires dual approaches: internally suppressing heat generation through electrochemical optimization and externally enhancing heat dissipation via thermal management.

  • Thermal management serves as the fundamental prerequisite for normal battery operation and proactive prevention of thermal hazards.

  • Fire suppression acts as the ultimate safeguard against battery thermal accidents, limiting fire propagation through physical or chemical intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interdependent thermal management, thermal runaway mitigation and fire suppression strategies for battery thermal safety.
Fig. 2: Thermal runaway mechanism and propagation process in batteries.
Fig. 3: Three-tier strategies for ensuring battery thermal safety.
Fig. 4: Fire suppression for batteries.

Similar content being viewed by others

References

  1. Guerra, O. J. Beyond short-duration energy storage. Nat. Energy 6, 460–461 (2021).

    Article  Google Scholar 

  2. Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    Article  Google Scholar 

  3. Chen, S. et al. All-temperature area battery application mechanism, performance, and strategies. Innovation 4, 100465 (2023).

    CAS  Google Scholar 

  4. Guo, Y. et al. Solid-state lithium batteries: safety and prospects. eScience 2, 138–163 (2022).

    Article  Google Scholar 

  5. Ali, H., Khan, H. A., Khalid, M. & Pecht, M. A review and analysis of the safety labeling of lithium-ion batteries. J. Energy Storage 120, 116461 (2025).

    Article  Google Scholar 

  6. Jia, Z. et al. Advances and perspectives in fire safety of lithium-ion battery energy storage systems. eTransportation 24, 100390 (2025).

    Article  Google Scholar 

  7. Feng, X. et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018).

    Article  Google Scholar 

  8. Wang, Q. et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage. eTransportation 20, 100328 (2024).

    Article  Google Scholar 

  9. Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

    Article  CAS  Google Scholar 

  10. Yuan, M. Q. & Liu, K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 43, 58–70 (2020).

    Article  Google Scholar 

  11. Lai, Y. X., Wu, W. X., Chen, K., Wang, S. F. & Xin, C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int. J. Heat Mass Transf. 144, 118581 (2019).

    Article  Google Scholar 

  12. Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    Article  CAS  Google Scholar 

  13. Wang, Y., Zhang, X., Li, K., Zhao, G. & Chen, Z. Perspectives and challenges for future lithium-ion battery control and management. eTransportation 18, 100260 (2023).

    Article  Google Scholar 

  14. Meng, X. et al. Enhancing extinguishing efficiency for lithium-ion battery fire: investigating the extinguishing mechanism and surface/interfacial activity of F-500 microcapsule extinguishing agent. eTransportation 22, 100357 (2024).

    Article  Google Scholar 

  15. Weng, J. et al. Safety issue on PCM-based battery thermal management: material thermal stability and system hazard mitigation. Energy Storage Mater. 53, 580–612 (2022).

    Article  Google Scholar 

  16. Lyu, P. et al. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020).

    Article  Google Scholar 

  17. Liu, X. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2, 2047–2064 (2018).

    Article  CAS  Google Scholar 

  18. E, J., Xiao, H., Tian, S. & Huang, Y. A comprehensive review on thermal runaway model of a lithium-ion battery: mechanism, thermal, mechanical, propagation, gas venting and combustion. Renew. Energy 229, 120762 (2024).

    Article  CAS  Google Scholar 

  19. Kong, D., Wang, G., Ping, P. & Wen, J. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse. eTransportation 12, 100157 (2022).

    Article  Google Scholar 

  20. Feng, X. et al. Propagation dynamics of the thermal runaway front in large-scale lithium-ion batteries: theoretical and experiment validation. Int. J. Heat Mass Transf. 225, 125393 (2024).

    Article  Google Scholar 

  21. Lai, X., Wang, S., Wang, H., Zheng, Y. & Feng, X. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes. Int. J. Heat Mass Transf. 171, 121080 (2021).

    Article  Google Scholar 

  22. Schaeffler, S. & Jossen, A. In situ measurement and modeling of internal thermal runaway propagation within lithium-ion cells under local overheating conditions. J. Power Sources 614, 234968 (2024).

    Article  CAS  Google Scholar 

  23. Feng, X. et al. Mechanism of internal thermal runaway propagation in blade batteries. J. Energy Chem. 89, 184–194 (2024).

    Article  CAS  Google Scholar 

  24. Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015).

    Article  CAS  Google Scholar 

  25. Lyu, P., Liu, X., Liu, C. & Rao, Z. The influence of tab overheating on thermal runaway propagation of pouch-type lithium-ion battery module with different tab connections. Int. J. Heat Mass Transf. 211, 124279 (2023).

    Article  CAS  Google Scholar 

  26. Peng, R. et al. Experimental investigation of the influence of venting gases on thermal runaway propagation in lithium-ion batteries with enclosed packaging. eTransportation 23, 100388 (2025).

    Article  Google Scholar 

  27. Wang, H. et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: a comparative study. eTransportation 13, 100190 (2022).

    Article  Google Scholar 

  28. Feng, X. et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode. Front. Energy Res. 6, 126 (2018).

    Article  Google Scholar 

  29. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  30. Hou, D. et al. Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nat. Commun. 13, 3437 (2022).

    Article  CAS  Google Scholar 

  31. Hou, J. et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020).

    Article  CAS  Google Scholar 

  32. Wang, Y. et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule 6, 2810–2820 (2022).

    Article  CAS  Google Scholar 

  33. Mei, W. et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023).

    Article  CAS  Google Scholar 

  34. Jin, Y. et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning. Joule 4, 1714–1729 (2020).

    Article  CAS  Google Scholar 

  35. Liu, T. et al. Investigation on fine water mist battery thermal management system for thermal runaway control. Appl. Therm. Eng. 211, 118474 (2022).

    Article  Google Scholar 

  36. Lyu, P. et al. Artificial intelligence algorithms optimize immersion boiling heat transfer strategies to mitigate thermal runaway of lithium-ion batteries. eTransportation 24, 100395 (2025).

    Article  Google Scholar 

  37. Deng, J., Bae, C., Marcicki, J., Masias, A. & Miller, T. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy 3, 261–266 (2018).

    Article  Google Scholar 

  38. Li, W., Zhu, J., Xia, Y., Gorji, M. B. & Wierzbicki, T. Data-driven safety envelope of lithium-ion batteries for electric vehicles. Joule 3, 2703–2715 (2019).

    Article  CAS  Google Scholar 

  39. Hao, M. L., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018).

    Article  CAS  Google Scholar 

  40. Chombo, P. V. & Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 478, 228649 (2020).

    Article  CAS  Google Scholar 

  41. Hwang, F. S. et al. Review of battery thermal management systems in electric vehicles. Renew. Sustain. Energy Rev. 192, 114171 (2024).

    Article  CAS  Google Scholar 

  42. Hu, X. et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Prog. Energy Combust. Sci. 77, 100806 (2020).

    Article  Google Scholar 

  43. Shao, D. et al. Advanced low-temperature preheating strategies for power lithium-ion batteries applied in electric vehicles: a review. Int. J. Electrochem. Sci. 19, 24 (2024).

    Article  Google Scholar 

  44. Wu, S., Xiong, R., Li, H., Nian, V. & Ma, S. The state of the art on preheating lithium-ion batteries in cold weather. J. Energy Storage 27, 101059 (2020).

    Article  Google Scholar 

  45. Wang, Y. B. et al. Evaluating the performance of liquid immersing preheating system for lithium-ion battery pack. Appl. Thermal Eng. 190, 116811 (2021).

    Article  Google Scholar 

  46. Liu, Z. Y., Liu, X., Meng, H., Guo, L. K. & Zhang, Z. Numerical analysis of the thermal performance of a liquid cooling battery module based on the gradient ratio flow velocity and gradient increment tube diameter. Int. J. Heat Mass Transf. 175, 121338 (2021).

    Article  Google Scholar 

  47. Ling, Z. Y., Wang, F. X., Fang, X. M., Gao, X. N. & Zhang, Z. G. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015).

    Article  CAS  Google Scholar 

  48. Shamnaz, P. T. M., Bal, D. K. & Sahoo, B. B. A technical review on controlling the Li-ion battery temperature through composite phase change materials and hybrid cooling techniques. J. Energy Storage 112, 115584 (2025).

    Article  Google Scholar 

  49. Ping, P. et al. Experimental study on nano-encapsulated inorganic phase change material for lithium-ion battery thermal management and thermal runaway suppression. Chem. Eng. J. 463, 142401 (2023).

    Article  CAS  Google Scholar 

  50. Piao, N. et al. Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022).

    Article  Google Scholar 

  51. Dizaji, H. S., Jafarmadar, S., Khalilarya, S. & Pourhedayat, S. A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation. Renew. Energy 131, 308–317 (2019).

    Article  Google Scholar 

  52. Lei, Z. G., Zhang, C. N., Li, J. Q., Fan, G. C. & Lin, Z. W. Preheating method of lithium-ion batteries in an electric vehicle. J. Mod. Power Syst. Clean Energy 3, 289–296 (2015).

    Article  Google Scholar 

  53. Alaoui, C. & Salameh, Z. M. A novel thermal management for electric and hybrid vehicles. IEEE Trans. Veh. Technol. 54, 468–476 (2005).

    Article  Google Scholar 

  54. Fang Wang, J. X. Design and Manufacturing Technology of Battery Pack for Electric Vehicle (China Science, 2017).

  55. Sadighi Dizaji, H. et al. Enhanced Peltier refrigerator using an innovative hot-side heat-rejection mechanism; experimental study under both transient and steady-state conditions. Energy 309, 133132 (2024).

    Article  Google Scholar 

  56. Seo, J. H., Patil, M. S., Cho, C. P. & Lee, M. Y. Heat transfer characteristics of the integrated heating system for cabin and battery of an electric vehicle under cold weather conditions. Int. J. Heat Mass Transf. 117, 80–94 (2018).

    Article  Google Scholar 

  57. Tang, A. H. et al. Orthogonal design based pulse preheating strategy for cold lithium-ion batteries. Appl. Energy 355, 122277 (2024).

    Article  Google Scholar 

  58. Wang, C.-Y. et al. A fast rechargeable lithium-ion battery at subfreezing temperatures. J. Electrochem. Soc. 163, A1944 (2016).

    Article  CAS  Google Scholar 

  59. Longchamps, R. S., Ge, S., Trdinich, Z. J., Liao, J. & Wang, C.-Y. Battery electronification: intracell actuation and thermal management. Nat. Commun. 15, 5373 (2024).

    Article  CAS  Google Scholar 

  60. Zhang, G. S. et al. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochim. Acta 218, 149–155 (2016).

    Article  CAS  Google Scholar 

  61. Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Article  CAS  Google Scholar 

  62. Ruan, H. J. et al. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction. Appl. Energy 256, 113797 (2019).

    Article  Google Scholar 

  63. Petzl, M., Kasper, M. & Danzer, M. A. Lithium plating in a commercial lithium-ion battery a low-temperature aging study. J. Power Sources 275, 799–807 (2015).

    Article  CAS  Google Scholar 

  64. Guo, S. S., Yang, R. X., Shen, W. X., Liu, Y. S. & Guo, S. G. DC–AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures. Energy 238, 121809 (2022).

    Article  CAS  Google Scholar 

  65. Xie, Y. et al. A health-aware AC heating strategy with lithium plating criterion for batteries at low temperatures. IEEE Trans. Ind. Inform. 20, 2295–2306 (2024).

    Article  Google Scholar 

  66. Wang, Y. J., Zhang, X. C. & Chen, Z. H. Low temperature preheating techniques for lithium-ion batteries: recent advances and future challenges. Appl. Energy 313, 118832 (2022).

    Article  CAS  Google Scholar 

  67. Hu, Z. X. B. et al. Experimental study on the mechanism of frequency-dependent heat in AC preheating of lithium-ion battery at low temperature. Appl. Therm. Eng. 214, 118860 (2022).

    Article  Google Scholar 

  68. Qu, Z. G., Jiang, Z. Y. & Wang, Q. Experimental study on pulse self-heating of lithium-ion battery at low temperature. Int. J. Heat Mass Transf. 135, 696–705 (2019).

    Article  CAS  Google Scholar 

  69. Qin, Y. D. et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: heating effect and impact on battery life. Appl. Energy 280, 115957 (2020).

    Article  Google Scholar 

  70. Wu, X. G., Cui, Z. H., Chen, E. S. & Du, J. Y. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature. J. Energy Storage 31, 101746 (2020).

    Article  Google Scholar 

  71. Ruan, H. J. et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries. Appl. Energy 177, 771–782 (2016).

    Article  Google Scholar 

  72. Guo, S. S., Xiong, R., Wang, K. & Sun, F. C. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application. Appl. Energy 219, 256–263 (2018).

    Article  Google Scholar 

  73. Zhang, J. B., Ge, H., Li, Z. & Ding, Z. M. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain. J. Power Sources 273, 1030–1037 (2015).

    Article  CAS  Google Scholar 

  74. Li, J. Q., Sun, D. N., Chai, Z. X., Jiang, H. F. & Sun, C. Sinusoidal alternating current heating strategy and optimization of lithium-ion batteries with a thermo-electric coupled model. Energy 186, 115798 (2019).

    Article  Google Scholar 

  75. Mohan, S., Kim, Y. & Stefanopoulou, A. G. Energy-conscious warm-up of Li-ion cells from subzero temperatures. IEEE Trans. Ind. Electron. 63, 2954–2964 (2016).

    Article  Google Scholar 

  76. Zhu, C. et al. Modeling and control of an integrated self-heater for automotive batteries based on traction motor drive reconfiguration. IEEE J. Emerg. Sel. Top. Power Electron. 11, 384–395 (2023).

    Article  Google Scholar 

  77. Ouyang, T., Liu, B., Xu, P., Wang, C. & Ye, J. Electrochemical–thermal coupled modelling and multi-measure prevention strategy for Li-ion battery thermal runaway. Int. J. Heat Mass Transf. 194, 123082 (2022).

    Article  CAS  Google Scholar 

  78. Suresh Patil, M., Seo, J.-H. & Lee, M.-Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management. Energy Convers. Manag. 229, 113715 (2021).

    Article  CAS  Google Scholar 

  79. Zhao, G., Wang, X. L., Negnevitsky, M. & Zhang, H. Y. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 501, 230001 (2021).

    Article  CAS  Google Scholar 

  80. Ma, Y., Ma, Q., Liu, Y., Gao, J. & Chen, H. Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs. Appl. Energy 361, 122928 (2024).

    Article  Google Scholar 

  81. Zhou, H., Zhou, F., Xu, L., Kong, J. & QingxinYang Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe. Int. J. Heat Mass Transf. 131, 984–998 (2019).

    Article  Google Scholar 

  82. Wang, T., Tseng, K. J. & Zhao, J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl. Therm. Eng. 90, 521–529 (2015).

    Article  Google Scholar 

  83. Zichen, W. & Changqing, D. A comprehensive review on thermal management systems for power lithium-ion batteries. Renew. Sustain. Energy Rev. 139, 110685 (2021).

    Article  Google Scholar 

  84. Luo, J., Zou, D., Wang, Y., Wang, S. & Huang, L. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review. Chem. Eng. J. 430, 132741 (2022).

    Article  CAS  Google Scholar 

  85. Jouhara, H. et al. Heat pipe based systems — advances and applications. Energy 128, 729–754 (2017).

    Article  Google Scholar 

  86. Lin, X., Zhang, X., Liu, L., Liang, J. & Liu, W. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management. J. Clean. Prod. 331, 130014 (2022).

    Article  CAS  Google Scholar 

  87. Dwivedi, A. et al. A comprehensive review on heat pipe-assisted hybrid battery thermal management strategies: opportunities, challenges and its future aspects. J. Energy Storage 112, 115475 (2025).

    Article  Google Scholar 

  88. Faiza Mohamed, N., Mohd Zulkifly, A. & Mohd Azmi, I. Effect of heat pipe’s configuration in managing the temperature of EV battery. CFD Lett. 15, 22–34 (2023).

    Article  Google Scholar 

  89. Parthasarathi, S., Nagarajan, S., Desai, S., Reddy, S. U. & Narasimham, G. S. V. L. Effect of bend radius and insulation on adiabatic section on the performance of a single closed loop pulsating heat pipe: experimental study and heat transfer correlation. Heat Mass Transf. 57, 1871–1892 (2021).

    Article  CAS  Google Scholar 

  90. Lian, Y. B., Ling, H. P., Song, G., Ma, Q. C. & He, B. Experimental investigation on a heating-and-cooling difunctional battery thermal management system based on refrigerant. Appl. Therm. Eng. 225, 120138 (2023).

    Article  Google Scholar 

  91. Dai, H. S., Yang, C. X., Zhang, F., Liao, G. L. & Zhang, B. L. Transient heat dissipation performance investigation on the battery thermal management system based on S-CO2 immersion cooling. Energy 318, 134656 (2025).

    Article  CAS  Google Scholar 

  92. Li, Y. et al. Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions. Appl. Therm. Eng. 227, 120287 (2023).

    Article  CAS  Google Scholar 

  93. Wang, Q., Jiang, B., Li, B. & Yan, Y. Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106–128 (2016).

    Article  Google Scholar 

  94. Lin, X. W. et al. A comparative investigation of two-phase immersion thermal management system for lithium-ion battery pack. J. Clean. Prod. 434, 140472 (2024).

    Article  CAS  Google Scholar 

  95. Roe, C. et al. Immersion cooling for lithium-ion batteries — a review. J. Power Sources 525, 231094 (2022).

    Article  CAS  Google Scholar 

  96. Chakraborty, S., Shukla, D. & Panigrahi, P. K. A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach. Appl. Therm. Eng. 245, 122807 (2024).

    Article  CAS  Google Scholar 

  97. Wu, C. X. et al. A review on the liquid cooling thermal management system of lithium-ion batteries. Appl. Energy 375, 124173 (2024).

    Article  CAS  Google Scholar 

  98. Zhu, T., Cruden, A., Peng, Q. & Liu, K. L. Enabling extreme fast charging. Joule 7, 2660–2662 (2023).

    Article  Google Scholar 

  99. Liu, Q. et al. The electro-thermal equalization behaviors of battery modules with immersion cooling. Appl. Energy 351, 121826 (2023).

    Article  Google Scholar 

  100. Fu, W. C. et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. Nat. Energy 7, 270–280 (2022).

    Article  CAS  Google Scholar 

  101. Liu, K. L. et al. Adaptive battery thermal management systems in unsteady thermal application contexts. J. Energy Chem. 97, 650–668 (2024).

    Article  Google Scholar 

  102. Adhikari, N., Bhandari, R. & Joshi, P. Thermal analysis of lithium-ion battery of electric vehicle using different cooling medium. Appl. Energy 360, 122781 (2024).

    Article  CAS  Google Scholar 

  103. Xiao, Y. Y. et al. High-temperature resistant, super elastic aerogel sheet prepared based on in-situ supercritical separation method for thermal runaway prohibition of lithium-ion batteries. Energy Storage Mater. 61, 102871 (2023).

    Article  Google Scholar 

  104. Feng, J. B. et al. Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37, e2411856 (2025).

    Article  Google Scholar 

  105. Li, C. D. et al. A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J. Non Cryst. Solids 553, 120517 (2021).

    Article  CAS  Google Scholar 

  106. Wang, A. et al. Research progress of aerogel used in lithium-ion power batteries. J. Loss Prevent. Process Indus. 92, 105433 (2024).

    Article  CAS  Google Scholar 

  107. Zhang, Z. et al. Thermal interface materials with low modulus and high thermal conductivity by manipulating multi-branched PDMS network: the disentanglement and entanglement effect of dangling chain. Chem. Eng. J. 495, 153352 (2024).

    Article  CAS  Google Scholar 

  108. Xu, X. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019).

    Article  CAS  Google Scholar 

  109. Li, P., Zou, Q., Liu, X. & Yang, R. A heat transfer model for liquid film boiling on micro-structured surfaces. Natl Sci. Rev. 11, nwae090 (2024).

    Article  CAS  Google Scholar 

  110. Može, M. et al. Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance. ACS Appl. Mater. Interfaces 12, 24419–24431 (2020).

    Article  Google Scholar 

  111. Cho, H. J., Preston, D. J., Zhu, Y. Y. & Wang, E. N. Nanoengineered materials for liquid–vapour phase-change heat transfer. Nat. Rev. Mater. 2, 16092 (2017).

    Article  CAS  Google Scholar 

  112. Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    Article  CAS  Google Scholar 

  113. Kim, J., Oh, J. & Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 149, 192–212 (2019).

    Article  Google Scholar 

  114. Jiang, W., Lyu, P., Liu, X. J. & Rao, Z. H. An immersion flow boiling heat dissipation strategy for efficient battery thermal management in non-steady conditions. Appl. Therm. Eng. 245, 122783 (2024).

    Article  Google Scholar 

  115. Sun, S. L., Ma, C. Y., Wang, X. Y., Yang, Y. & Mei, J. Design and optimisation of a novel serpentine flow channel with branch structure. Energy 293, 130494 (2024).

    Article  Google Scholar 

  116. Schöberl, J., Ank, M., Schreiber, M., Wassiliadis, N. & Lienkamp, M. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: safety requirements and impact on system integration. eTransportation 19, 100305 (2024).

    Article  Google Scholar 

  117. Nishijima, M. et al. Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat. Commun. 5, 4553 (2014).

    Article  CAS  Google Scholar 

  118. Feng, X. N. et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 246, 53–64 (2019).

    Article  CAS  Google Scholar 

  119. Song, Y. Z. et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34, e2106335 (2022).

    Article  Google Scholar 

  120. Liu, X. H., Ai, W. L., Marlow, M. N., Patel, Y. & Wu, B. The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs. Appl. Energy 248, 489–499 (2019).

    Article  Google Scholar 

  121. Song, W. J. et al. Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery. Appl. Therm. Eng. 128, 1165–1174 (2018).

    Article  CAS  Google Scholar 

  122. Xia, G., Cao, L. & Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 367, 90–105 (2017).

    Article  CAS  Google Scholar 

  123. Liu, Q. Q., Petibon, R., Du, C. Y. & Dahn, J. R. Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells. J. Electrochem. Soc. 164, A1173–A1183 (2017).

    Article  CAS  Google Scholar 

  124. Wang, C. Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  CAS  Google Scholar 

  125. Khan, S. A. et al. Advancements in battery thermal management system for fast charging/discharging applications. Energy Storage Mater. 65, 103144 (2024).

    Article  Google Scholar 

  126. Talele, V., Patil, M. S., Panchal, S., Fraser, R. & Fowler, M. Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: dual functionality battery thermal design. J. Energy Storage 65, 107253 (2023).

    Article  Google Scholar 

  127. Ma, J., Sun, Y. F. & Zhang, S. Experimental investigation on energy consumption of power battery integrated thermal management system. Energy 270, 126860 (2023).

    Article  Google Scholar 

  128. Ebbs-Picken, T., Da Silva, C. M. & Amon, C. H. Design optimization methodologies applied to battery thermal management systems: a review. J. Energy Storage 67, 107460 (2023).

    Article  Google Scholar 

  129. García, A., Monsalve-Serrano, J., Micó, C. & Guaraco-Figueira, C. Detailed characterisation of particle emissions from the thermal runaway of nickel–manganese–cobalt 811 lithium-ion batteries at different states of charge. J. Energy Storage 96, 112695 (2024).

    Article  Google Scholar 

  130. Mathieu, O., Keesee, C., Gregoire, C. & Petersen, E. L. Experimental and chemical kinetics study of the effects of halon 1211 (CF2BrCl) on the laminar flame speed and ignition of light hydrocarbons. J. Phys. Chem. A 119, 7611–7626 (2015).

    Article  CAS  Google Scholar 

  131. Wang, Q. S. et al. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol. 52, 387–396 (2016).

    Article  Google Scholar 

  132. Zhao, J. et al. Preparation of hydrophobic and oleophobic fine sodium bicarbonate by gel–sol–gel method and enhanced fire extinguishing performance. Mater. Des. 186, 108331 (2020).

    Article  CAS  Google Scholar 

  133. Meng, X. et al. Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery. J. Energy Storage 30, 101532 (2020).

    Article  Google Scholar 

  134. Ubaldi, S. et al. Suppression capacity and environmental impact of three extinguishing agents for lithium-ion battery fires. Case Stud. Chem. Environ. Eng. 10, 100810 (2024).

    Article  CAS  Google Scholar 

  135. Rohilla, M., Saxena, A., Dixit, P. K., Mishra, G. K. & Narang, R. Aerosol forming compositions for fire fighting applications: a review. Fire Technol. 55, 2515–2545 (2019).

    Article  Google Scholar 

  136. Zhang, L., Jin, K. Q., Sun, J. H. & Wang, Q. S. A review of fire-extinguishing agents and fire suppression strategies for lithium-ion batteries fire. Fire Technol. 60, 817–858 (2024).

    Article  Google Scholar 

  137. Xu, C. et al. Preparation and characterization of fire-extinguishing efficiency of novel gel foam for lithium-ion battery fires. Process Saf. Environ. Prot. 197, 106999 (2025).

    Article  CAS  Google Scholar 

  138. Zhou, G. et al. Preparation of environment-friendly gel–protein foam and its fire suppression performance for lithium-ion batteries. Fuel 384, 133979 (2025).

    Article  CAS  Google Scholar 

  139. Zhang, L. et al. Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf. J. 120, 103117 (2021).

    Article  CAS  Google Scholar 

  140. Ma, Y. F. et al. Thermal runaway propagation behavior and cooling effect of water mist within a 18650-type LiFePO4 battery module under different conditions. Process Saf. Environ. Prot. 185, 1362–1372 (2024).

    Article  CAS  Google Scholar 

  141. Lu, J. Z. et al. Experimental evaluation of protecting high-voltage electrical transformers using water mist with and without additives. Fire Technol. 55, 1671–1690 (2019).

    Article  Google Scholar 

  142. Li, L. X. et al. Efficient and environmentally friendly composite additive fine water mist for suppressing thermal runaway of lithium-ion batteries. J. Energy Storage 114, 115780 (2025).

    Article  Google Scholar 

  143. Jia, H. L., Shen, H. D., Xiang, H. J., Li, D. H. & Zhai, R. P. Analysis of the fire-extinguishing effect and the weakening of flame intensification of nonionic liquid water mist. Combust. Sci. Technol. 192, 902–914 (2020).

    Article  CAS  Google Scholar 

  144. Yuan, S., Chang, C., Zhang, J., Liu, Y. & Qian, X. Experimental investigation of a micelle encapsulator F-500 on suppressing lithium ion phosphate batteries fire and rapid cooling. J. Loss Prev. Process Ind. 79, 104816 (2022).

    Article  CAS  Google Scholar 

  145. Yuan, S. et al. The extinguishment mechanisms of a micelle encapsulator F-500 on lithium-ion battery fires. J. Energy Storage 55, 105186 (2022).

    Article  Google Scholar 

  146. Zhang, T., Han, Z., Du, Z., Zhang, Z. & Liu, K. Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int. J. Hydrog. Energy 41, 15078–15088 (2016).

    Article  CAS  Google Scholar 

  147. Joseph, P., Nichols, E. & Noyozhilov, V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf. J. 58, 221–225 (2013).

    Article  CAS  Google Scholar 

  148. Cao, X. Y., Bi, M. S., Ren, J. J. & Chen, B. Experimental research on explosion suppression affected by ultrafine water mist containing different additives. J. Hazard. Mater. 368, 613–620 (2019).

    Article  CAS  Google Scholar 

  149. Liu, Y. et al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J. Energy Storage 28, 101185 (2020).

    Article  Google Scholar 

  150. Bai, Z. J. et al. Overview of anti-fire technology for suppressing thermal runaway of lithium battery: material, performance, and applications. J. Power Sources 640, 236767 (2025).

    Article  CAS  Google Scholar 

  151. Liu, Y. J. et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. J. Energy Chem. 65, 532–540 (2022).

    Article  CAS  Google Scholar 

  152. Huang, Z., Liu, P., Duan, Q., Zhao, C. & Wang, Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J. Power Sources 495, 229795 (2021).

    Article  CAS  Google Scholar 

  153. Wang, Z. et al. Revealing suppression effects of injection location and dose of liquid nitrogen on thermal runaway in lithium iron phosphate battery packs. Int. J. Heat Mass Transf. 219, 124866 (2024).

    Article  CAS  Google Scholar 

  154. Wang, Z. et al. Effects of injection methods and occasions of liquid nitrogen on thermal runaway characteristics in 65 Ah LiFePO4 batteries. Appl. Therm. Eng. 239, 122126 (2024).

    Article  CAS  Google Scholar 

  155. Ping, P. et al. Experimental study on the synergistic strategy of liquid nitrogen and water mist for fire extinguishing and cooling of lithium-ion batteries. Process Saf. Environ. Prot. 188, 713–725 (2024).

    Article  CAS  Google Scholar 

  156. Shi, B. et al. Experimental study on suppressing thermal runaway propagation of lithium-ion battery modules by using liquid nitrogen: influence of injection pipe diameter and position. Therm. Sci. Eng. Prog. 50, 102580 (2024).

    Article  CAS  Google Scholar 

  157. Yuan, S. et al. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 62, 262–280 (2021).

    Article  CAS  Google Scholar 

  158. Meng, X. et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires. eTransportation 11, 100142 (2022).

    Article  Google Scholar 

  159. Hong, Y. et al. Experimental study of the suppressing effect of the primary fire and thermal runaway propagation for electric bicycle batteries using flood cooling. J. Clean. Prod. 435, 140392 (2024).

    Article  CAS  Google Scholar 

  160. Wahab, A. et al. Immersion cooling innovations and critical hurdles in Li-ion battery cooling for future electric vehicles. Renew. Sustain. Energy Rev. 211, 115268 (2025).

    Article  CAS  Google Scholar 

  161. Zhang, W. et al. Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Mater. Adv. 2, 4634–4642 (2021).

    Article  CAS  Google Scholar 

  162. Li, L. et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 40, 329–336 (2021).

    Article  Google Scholar 

  163. Mao, Y., Ye, Y., Zhao, L., Chen, Y. & Chen, M. Suppression of lithium-ion battery thermal runaway propagation by zirconia ceramics and aerogel felt in confined space. Process Saf. Environ. Prot. 189, 1258–1273 (2024).

    Article  CAS  Google Scholar 

  164. Yang, C., Sunderlin, N., Wang, W., Churchill, C. & Keyser, M. Compressible battery foams to prevent cascading thermal runaway in Li-ion pouch batteries. J. Power Sources 541, 231666 (2022).

    Article  CAS  Google Scholar 

  165. Ma, H. H. et al. High-energy laser protection performance of fibrous felt-reinforced aerogels with hierarchical porous architectures. ACS Appl. Mater. Int. 16, 25568–25580 (2024).

    Article  CAS  Google Scholar 

  166. Ge, S. K. et al. A passive fire protection method for main cables and slings of suspension bridges utilizing fiber felt/aerogel composites. Constr. Build. Mater. 408, 133822 (2023).

    Article  CAS  Google Scholar 

  167. Luo, Y. et al. Lightweight, compressible, and stretchable composite foams for ultra-efficient and high-stable electromagnetic interference shielding materials. Carbon 215, 118480 (2023).

    Article  CAS  Google Scholar 

  168. Hodlur, R. M. & Rabinal, M. K. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165 (2014).

    Article  CAS  Google Scholar 

  169. Nambisan, P. et al. Characterization of commercial thermal barrier materials to prevent thermal runaway propagation in large format lithium-ion cells. J. Energy Storage 74, 109414 (2023).

    Article  Google Scholar 

  170. Dhuchakallaya, I. & Saechan, P. Enhancing the cooling efficiency of the air cooling system for electric vehicle battery modules through liquid spray integration. J. Energy Storage 72, 108751 (2023).

    Article  Google Scholar 

  171. Zou, K., Xu, J., Zhao, M. & Lu, S. Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries. Process Saf. Environ. Prot. 185, 1352–1361 (2024).

    Article  CAS  Google Scholar 

  172. Han, D., Wang, J., Yin, C. & Zhao, Y. Advances in early warning of thermal runaway in lithium‐ion battery energy storage systems. Adv. Sensor Res. 4, 2400165 (2025).

    Article  Google Scholar 

  173. Yang, S. et al. Comparing different battery thermal management systems for suppressing thermal runaway propagation. J. Energy Storage 101, 114005 (2024).

    Article  Google Scholar 

  174. Zhang, X., Li, Z., Luo, L., Fan, Y. & Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652 (2022).

    Article  CAS  Google Scholar 

  175. Li, L. et al. Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: side-cooling vs. terminal-cooling. Energy 274, 127414 (2023).

    Article  Google Scholar 

  176. Huang, J. Q. et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020).

    Article  CAS  Google Scholar 

  177. Qin, Y. et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3. Science 383, 1204–1209 (2024).

    Article  CAS  Google Scholar 

  178. Xiao, Y. & Zhao, L.-D. Seeking new, highly effective thermoelectrics. Science 367, 1196–1197 (2020).

    Article  CAS  Google Scholar 

  179. Jiang, Z. Y., Li, J. Y., Qu, Z. G., Wang, L. & Miao, J. Y. Theoretical analysis on thermal grease dry-out degradation in space environment. Int. J. Therm. Sci. 179, 107694 (2022).

    Article  Google Scholar 

  180. Lee, S., Lee, H., Jun, Y. J. & Lee, H. Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material. Appl. Energy 353, 122043 (2024).

    Article  CAS  Google Scholar 

  181. Sheng, P. et al. Enhanced curing behavior, mechanical and thermal properties of 3D printed aluminum nitride ceramics using a powder coating strategy. Addit. Manuf. 74, 103732 (2023).

    CAS  Google Scholar 

  182. Wang, J. X. F. Design and Manufacturing Technology of Battery Pack for Electric Vehicle (China Science, 2017).

  183. Zhai, R. et al. Effect of flame retardant R134a on the flammability characteristics of R1234yf. Energy 313, 134092 (2024).

    Article  CAS  Google Scholar 

  184. Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013).

    Article  CAS  Google Scholar 

  185. Zeng, S. et al. A review of research on immersion cooling technology for lithium-ion batteries. Energy Storage Sci. Technol. 12, 2888–2903 (2023).

    Google Scholar 

  186. Chen, K., Wu, W. X., Yuan, F., Chen, L. & Wang, S. F. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 167, 781–790 (2019).

    Article  Google Scholar 

  187. Lv, Y. F., Yang, X. Q., Zhang, G. Q. & Li, X. X. Experimental research on the effective heating strategies for a phase change material based power battery module. Int. J. Heat Mass Transf. 128, 392–400 (2019).

    Article  Google Scholar 

  188. Rezgar, H., Taher, A., Ali, D. & Richard, E. L. Thermal conductivity of low density polyethylene foams part I: comprehensive study of theoretical models. J. Therm. Sci. 28, 745–754 (2019).

    Article  CAS  Google Scholar 

  189. Zhou, W. Y., Qi, S. H., Tu, C. C. & Zhao, H. Z. Novel heat-conductive composite silicone rubber. J. Appl. Polym. Sci. 104, 2478–2483 (2007).

    Article  CAS  Google Scholar 

  190. Coman, P. T., Darcy, E. C., Veje, C. T. & White, R. E. Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway. Appl. Energy 203, 189–200 (2017).

    Article  Google Scholar 

  191. Wang, H. Y. et al. Study on the fire suppression efficiency of common extinguishing agents for lithium iron phosphate battery fires. Fire Technol. https://doi.org/10.1007/s10694-024-01687-6 (2025).

  192. Hazard Control Technologies. Safety data sheet: F-500 multi-purpose encapsulator agent. https://firerover.com/wp-content/uploads/2024/06/f500-sds-french-canadian.pdf (HCT, 2024).

  193. Yan, Z. et al. Experimental research on heat insulation performance of assembled thermal insulation materials in cryogenic tank. Manned Spacefl. 23, 56–60 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos 52176092 and 52311530086), the Ministry of Science and Technology of the People’s Republic of China (No. 2022YFE0207900), the Science Fund for Distinguished Young Scholars of Hebei Province (No. E2024202056), the S&T Program of Hebei (No. E2024202293) and the Science Research Project of Hebei Education Department (No. JZX2024003).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Zhonghao Rao  (饶中浩) or Xuning Feng  (冯旭宁).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Yikai Jia and Chuanbo Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Z., Lyu, P., Li, M. et al. A thermal perspective on battery safety. Nat. Rev. Clean Technol. 1, 511–524 (2025). https://doi.org/10.1038/s44359-025-00073-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-025-00073-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing