Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Concentrating solar technologies for low-carbon energy

Abstract

Concentrating solar technologies (CSTs) can provide both electricity and process heat on a commercial scale. Although ~6.7 GW of concentrating solar power plants have been installed worldwide, providing electricity at costs close to US$0.10 kWhe−1, deployment of CST has not grown at the same rate as photovoltaic technologies. In this Review, we summarize the current state of technology and discuss limitations and further developments to reduce the levelized cost of electricity and heat. Integrating CST with low-cost thermal energy storage permits dispatchable, on-demand energy, which can be supplied even at low sunlight or at night. CST systems for temperatures up to 565 °C are already commercially available and are used for electricity production as well as for industrial processes and district heating. The development of new receivers that operate with high-temperature heat transfer media such as molten sodium or ceramic particles or the combination with advanced heat cycles introduces the next generation of CST. This technology can supply process heat at temperatures of up to 1,500 °C, permitting applications in high-temperature mineral processing and chemical synthesis, which would otherwise be difficult to defossilize through electrification alone.

Key points

  • Concentrating solar power plants are operating on commercial scales for renewable energy supply: equipped with thermal storage, the technology provides flexibility in low-carbon electricity and heat markets.

  • Parabolic trough collectors are a mature solution providing utility-scale dispatchable heat and electricity from solar energy. Solar tower collectors have been deployed at utility scale, but further development is needed for reliable power generation and thermal energy storage.

  • Intensified development towards higher concentration factors and high-temperature heat transfer media will help to further reduce levelized costs of electricity and heat.

  • High-temperature heat transfer media offer the opportunity to defossilize hard-to-abate sectors by providing renewable heat at temperatures up to and above 1,000 °C, where technically feasible alternatives for the defossilization of industrial processes are rare.

  • Development and application of international standards for the technology would derisk large-scale projects and encourage market growth.

  • In electricity markets that remunerate benefits regarding power dispatchability, hybrid photovoltaic–concentrated solar power plants can realize their full economic potential by complementing each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Commercial CSP deployment.
Fig. 2: Conceptual example, how CST can integrate with TES and BES to enable low-carbon electricity from sunshine, independent of current solar irradiation.
Fig. 3: Solar thermal technologies and their applications.
Fig. 4: Relative emissions of solar thermal components.
Fig. 5: Achieved and anticipated cost reduction of concentrating solar power systems.

Similar content being viewed by others

References

  1. Islam, M. T., Huda, N., Abdullah, A. B. & Saidur, R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew. Sustain. Energy Rev. 91, 987–1018 (2018).

    Article  Google Scholar 

  2. Palacios, A., Barreneche, C., Navarro, M. E. & Ding, Y. Thermal energy storage technologies for concentrated solar power – a review from a materials perspective. Renew. Energy 156, 1244–1265 (2020).

    Article  CAS  Google Scholar 

  3. Budischak, C. et al. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 225, 60–74 (2013).

    Article  CAS  Google Scholar 

  4. REN21. Renewables 2024 Global Status Report. Collection: Energy Supply. Report No. ISBN 978-3-948393-15-1 (Paris, REN21 Secretariat, 2024).

  5. Nijsse, F. J. M. M. et al. The momentum of the solar energy transition. Nat. Commun. 14, 6542 (2023).

    Article  CAS  Google Scholar 

  6. IRENA. Renewable Power Generation Costs in 2022. Report No. ISBN 978-92-9260-544-5 (International Renewable Energy Agency, 2023).

  7. Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and the energy transition. Joule 6, 2057–2082 (2022).

    Article  Google Scholar 

  8. International Energy Agency. Net Zero by 2050 — a Roadmap for the Global Energy Sector (IEA, 2021).

  9. Graham, E. & Fulghum, N. Solar’s record breaking growth in 2024. EMBER https://ember-climate.org/insights/in-brief/solar-power-continues-to-surge-in-2024/ (2024).

  10. Heard, B. P., Brook, B. W., Wigley, T. & Bradshaw, C. Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 76, 1122–1133 (2017).

    Article  Google Scholar 

  11. Manufacturing energy and carbon footprints. US Department of Energy Advanced Manufacturing Office https://www.energy.gov/eere/iedo/manufacturing-energy-and-carbon-footprints-2018-mecs (2018).

  12. Ravi Kumar, K., Krishna Chaitanya, N. & Sendhil Kumar, N. Solar thermal energy technologies and its applications for process heating and power generation — a review. J. Clean. Prod. 282, 125296 (2021).

    Article  Google Scholar 

  13. Costa, D. et al. Environmental and economic impacts of photovoltaic integration in concentrated solar power plants. Sol. Energy 274, 112550 (2024).

    Article  Google Scholar 

  14. Rosenstiel, A. et al. Electrochemical hydrogen production powered by PV/CSP hybrid power plants: a modelling approach for cost optimal system design. Energies 14, 3437 (2021).

    Article  CAS  Google Scholar 

  15. Tong, D. et al. Geophysical constraints on the reliability of solar and wind power worldwide. Nat. Commun. 12, 6146 (2021).

    Article  CAS  Google Scholar 

  16. Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M. & Stefanakos, E. K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285–319 (2013).

    Article  Google Scholar 

  17. Li, X., Wu, X., de Gui, Hua, Y. & Guo, P. Power system planning based on CSP–CHP system to integrate variable renewable energy. Energy 232, 121064 (2021).

    Article  Google Scholar 

  18. Wang, P., Hu, B., Tai, N., Zhao, L. & Vafai, K. Peak shaving auxiliary service analysis for the photovoltaic and concentrating solar power hybrid system under the planning-dispatch optimization framework. Energy Convers. Manag. 295, 117609 (2023).

    Article  Google Scholar 

  19. Du, E. et al. Operation of a high renewable penetrated power system with CSP plants: a look-ahead stochastic unit commitment model. IEEE Trans. Power Syst. 34, 140–151 (2019).

    Article  Google Scholar 

  20. Wang, Y. et al. Modeling concentrating solar power plants in power system optimal planning and operation: a comprehensive review. Sustain. Energy Technol. Assess. 71, 103992 (2024).

    Google Scholar 

  21. McPherson, M., Mehos, M. & Denholm, P. Leveraging concentrating solar power plant dispatchability: a review of the impacts of global market structures and policy. Energy Policy 139, 111335 (2020).

    Article  Google Scholar 

  22. Jacobson, M. Z. et al. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci. 8, 2093–2117 (2015).

    Article  CAS  Google Scholar 

  23. Li, J., Lu, T., Yi, X., An, M. & Hao, R. Energy systems capacity planning under high renewable penetration considering concentrating solar power. Sustain. Energy Technol. Assess. 64, 103671 (2024).

    Google Scholar 

  24. Li, J., Lu, T., Zhao, J. & He, X. Collaborative planning and economic analyses of high renewable penetrated energy systems considering concentrating solar power. In 2022 IEEE Industry Applications Society Annual Meeting 1–6 (IEEE, 2022).

  25. Soria, R. et al. The role of CSP in Brazil: a multi-model analysis. AIP Conf. Proc. 1734, 110004 (2016).

    Article  Google Scholar 

  26. Kennedy, K. M. et al. The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy. Adv. Appl. Energy 6, 100091 (2022).

    Article  Google Scholar 

  27. Weiss, W. & Spörk-Dür, M. Solar Heat Worldwide (IEA Solar Heating & Cooling Programme, 2024).

  28. O’Donnell, J. & Bierman, B. Solar thermal field experience at a South Oman oilfield. In IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019 1–7 (International Solar Energy Society, 2019).

  29. Häberle, A. Task 64: solar thermal at work. Heineken showcases solar thermal potential with innovative SHIP project (IEA Solar Heating & Cooling Programme, 2023).

  30. Masera, K., Tannous, H., Stojceska, V. & Tassou, S. An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes. Renew. Sustain. Energy Rev. 172, 113028 (2023).

    Article  Google Scholar 

  31. Krüger, D., Epp, B., Hirsch, T. & Stengler, J. Status in solar heat from concentrating solar systems. AIP Conf. Proc. 2815, 14007 (2023).

    Google Scholar 

  32. Azteq Powers Europe’s Largest Industrial CSP Plant. Azteq https://azteq.be/azteq-powers-europes-largest-industrial-csp-plant/ (2023).

  33. Walker, S. & Dawkins, R. Australia’s first manufacturing facility fully powered by renewable energy. CSIRO https://www.csiro.au/en/news/All/Articles/2024/October/renewable-manufacturing (2024).

  34. Epp, B. Parabolic trough collector field as part of 100% carbon-free heat supply for food factory in Australia. Solar Thermal World https://solarthermalworld.org/news/parabolic-trough-collector-field-as-part-of-100-carbon-free-heat-supply-for-food-factory-in-australia/ (2024).

  35. International Energy Agency and Solar Heating and Cooling Programme. Innovations in the front-running solar district heating country Denmark. SHC https://task64.iea-shc.org/article?NewsID=458 (2023).

  36. Avery Dennison commissions Europe’s largest concentrated solar thermal platform and thermal storage unit in Turnhout, Belgium. Avery Dennison https://www.averydennison.com/en/home/news/press-releases/avery-dennison-commissions-europes-largest-concentrated-solar-thermal-platform-and-thermal-storage-unit-in-turnhout-belgium.html (2023).

  37. Kretschmann, J., Lovegrove, K., Klump, F., Zapata, J. & Puppe, M. The Australian concentrating solar thermal value proposition — dispatchable power generation, process heat and green fuels (Australian Solar Thermal Research Institute, 2023).

  38. Profaiser, A., Saw, W., Nathan, G. J. & Ingenhoven, P. Bottom-up estimates of the cost of supplying high-temperature industrial process heat from intermittent renewable electricity and thermal energy storage in Australia. Processes 10, 1070 (2022).

    Article  CAS  Google Scholar 

  39. Rosales-Pérez, J. F., Villarruel-Jaramillo, A., Pérez-García, M., Cardemil, J. M. & Escobar, R. Energy and economic performance evaluation of solar thermal and photovoltaic hybrid systems for industrial process heating. Energy 332, 135765 (2025).

    Article  Google Scholar 

  40. Nathan, G. J. et al. Pathways to the use of concentrated solar heat for high temperature industrial processes. Sol. Compass 5, 100036 (2023).

    Article  Google Scholar 

  41. Merchán, R. P., Santos, M. J., Medina, A. & Calvo Hernández, A. High temperature central tower plants for concentrated solar power: 2021 overview. Renew. Sustain. Energy Rev. 155, 111828 (2022).

    Article  Google Scholar 

  42. Moumin, G. et al. CO2 emission reduction in the cement industry by using a solar calciner. Renew. Energy 145, 1578–1596 (2020).

    Article  CAS  Google Scholar 

  43. Moretti, C. et al. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels. Sci. Total. Environ. 901, 166005 (2023).

    Article  CAS  Google Scholar 

  44. Synhelion A. G. Pushing forward: synhelion produces syncrude at plant DAWN. Synhelion https://synhelion.com/news/pushing-forward-synhelion-produces-syncrude-at-plant-dawn (2024).

  45. McMillan, C. et al. Opportunities for Solar Industrial Process Heat in the United States. Report No. NREL/TP-6A20-77760 (National Renewable Energy Laboratory, 2021).

  46. Storing heat for a cold day in Denmark’s capital region. State of Green https://stateofgreen.com/en/solutions/storing-heat-for-a-cold-day-in-denmarks-capital-region/ (2023).

  47. Epp, B. Seasonal pit heat storage: cost benchmark of 30 EUR/m3. Solar Thermal World https://solarthermalworld.org/news/seasonal-pit-heat-storage-cost-benchmark-30-eurm3/ (2019).

  48. Witter, E. et al. A review of geological thermal energy storage for seasonal, grid-scale dispatching. Renew. Sustain. Energy Rev. 218, 115761 (2025).

    Article  Google Scholar 

  49. Green, S. et al. Geothermal battery energy storage. Renew. Energy 164, 777–790 (2021).

    Article  Google Scholar 

  50. Risthaus, K., Linder, M. & Schmidt, M. Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide. Appl. Energy 315, 118976 (2022).

    Article  CAS  Google Scholar 

  51. Pelay, U., Luo, L., Fan, Y., Stitou, D. & Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 79, 82–100 (2017).

    Article  Google Scholar 

  52. Mubarrat, M., Mashfy, M. M., Farhan, T. & Ehsan, M. M. Research advancement and potential prospects of thermal energy storage in concentrated solar power application. Int. J. Thermofluids 20, 100431 (2023).

    Article  Google Scholar 

  53. Prieto, C. et al. Use of molten salts tanks for seasonal thermal energy storage for high penetration of renewable energies in the grid. J. Energy Storage 86, 111203 (2024).

    Article  Google Scholar 

  54. Batel, S. Research on the social acceptance of renewable energy technologies: past, present and future. Energy Res. Soc. Sci. 68, 101544 (2020).

    Article  Google Scholar 

  55. Soria, R., Portugal-Pereira, J., Szklo, A., Milani, R. & Schaeffer, R. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: a strategy for CSP deployment in Brazil. Energy Policy 86, 57–72 (2015).

    Article  Google Scholar 

  56. Curran, M. A. Life cycle assessment: a review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2, 273–277 (2013).

    Article  Google Scholar 

  57. Corona, B., La Rúa, C. D. & San Miguel, G. Socio-economic and environmental effects of concentrated solar power in Spain: a multiregional input output analysis. Sol. Energy Mater. Sol. Cell 156, 112–121 (2016).

    Article  CAS  Google Scholar 

  58. Corona, B., Ruiz, D. & San Miguel, G. Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies 9, 413 (2016).

    Article  Google Scholar 

  59. Abdalla, A. N., Jing, W., Nazir, M. S., Jiang, M. & Tao, H. Socio-economic impacts of solar energy technologies for sustainable green energy: a review. Env. Dev. Sustain. 25, 13695–13732 (2023).

    Article  Google Scholar 

  60. Guillén-Lambea, S. & Carvalho, M. A critical review of the greenhouse gas emissions associated with parabolic trough concentrating solar power plants. J. Clean. Prod. 289, 125774 (2021).

    Article  Google Scholar 

  61. Burkhardt, J. J., Heath, G. A. & Turchi, C. S. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ. Sci. Technol. 45, 2457–2464 (2011).

    Article  CAS  Google Scholar 

  62. Fthenakis, V. & Kim, H. C. Life-cycle uses of water in U.S. electricity generation. Renew. Sustain. Energy Rev. 14, 2039–2048 (2010).

    Article  Google Scholar 

  63. Klein, S. J. & Rubin, E. S. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy 63, 935–950 (2013).

    Article  CAS  Google Scholar 

  64. Yang, Q. et al. Water saving potential for large-scale photovoltaic power generation in China: based on life cycle assessment. Renew. Sustain. Energy Rev. 167, 112681 (2022).

    Article  Google Scholar 

  65. Wu, X. D. & Chen, G. Q. Energy and water nexus in power generation: the surprisingly high amount of industrial water use induced by solar power infrastructure in China. Appl. Energy 195, 125–136 (2017).

    Article  Google Scholar 

  66. Corona, B., Miguel, G. S. & Cerrajero, E. Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. Int. J. Life Cycle Assess. 19, 1264–1275 (2014).

    Article  CAS  Google Scholar 

  67. German Academy of Sciences Leopoldina. Concentrating solar power. Its potential contribution to a sustainable energy future. EASAC Policy Report 16 (German Academy of Sciences Leopoldina, 2011).

  68. Mahlangu, N. & Thopil, G. A. Life cycle analysis of external costs of a parabolic trough concentrated solar power plant. J. Clean. Prod. 195, 32–43 (2018).

    Article  Google Scholar 

  69. Yang, Y. et al. Life cycle assessment of typical tower solar thermal power station in China. Energy 309, 133154 (2024).

    Article  CAS  Google Scholar 

  70. Wüstenhagen, R., Wolsink, M. & Bürer, M. J. Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35, 2683–2691 (2007).

    Article  Google Scholar 

  71. Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  72. Moore, S. & Hackett, E. J. The construction of technology and place: concentrating solar power conflicts in the United States. Energy Res. Soc. Sci. 11, 67–78 (2016).

    Article  Google Scholar 

  73. Gerke, P. Once an engineering marvel, two-thirds of this concentrated solar power plant will shut down after a California utility pulled two of its PPAs. Renewable Energy World https://www.renewableenergyworld.com/solar/once-an-engineering-marvel-two-thirds-of-this-concentrated-solar-power-plant-will-shut-down-after-a-california-utility-pulled-two-of-its-ppas/ (2025).

  74. Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Article  Google Scholar 

  75. Milani, R., Caiado Couto, L., Soria, R., Szklo, A. & Lucena, A. F. Promoting social development in developing countries through solar thermal power plants. J. Clean. Prod. 246, 119072 (2020).

    Article  Google Scholar 

  76. Mehos, M. et al. Concentrating Solar Power Best Practices Study. Report No. NREL/TP-5500-75763 (National Renewable Energy Laboratory, 2020).

  77. Labordena, M., Patt, A., Bazilian, M., Howells, M. & Lilliestam, J. Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa. Energy Policy 102, 52–72 (2017).

    Article  Google Scholar 

  78. Sooriyaarachchi, T. M., Tsai, I.-T., El Khatib, S., Farid, A. M. & Mezher, T. Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains. Renew. Sustain. Energy Rev. 52, 653–668 (2015).

    Article  Google Scholar 

  79. Karim, M. et al. The effect of concentrated solar power plants on the socio-economic and livelihood assets of the local community and environment. AIP Conf. Proc. 2303, 150010 (2020).

    Article  Google Scholar 

  80. Jacobson, M. Z. et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, 108–121 (2017).

    Article  Google Scholar 

  81. Millstein, D., Wiser, R., Bolinger, M. & Barbose, G. The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy https://doi.org/10.1038/nenergy.2017.134 (2017).

  82. Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565 (2013).

    Article  CAS  Google Scholar 

  83. Rahman, A., Farrok, O. & Haque, M. M. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 161, 112279 (2022).

    Article  Google Scholar 

  84. Corona, B., López, A. & Miguel, G. S. Socio-economic effects of a HYSOL CSP plant located in different countries: an input output analysis. Procedia Comput. Sci. 83, 1150–1156 (2016).

    Article  Google Scholar 

  85. Ye, H. et al. A demonstration concentrating solar power plant in China: carbon neutrality, energy renewability and policy perspectives. J. Environ. Manag. 328, 117003 (2023).

    Article  CAS  Google Scholar 

  86. Herrera, I. et al. Sustainability assessment of a hybrid CSP/biomass. results of a prototype plant in Tunisia. Sustain. Energy Technol. Assess. 42, 100862 (2020).

    Google Scholar 

  87. Burkhardt, J. J., Heath, G. & Cohen, E. Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation. J. Ind. Ecol. https://doi.org/10.1111/j.1530-9290.2012.00474.x (2012).

  88. Asdrubali, F., Baldinelli, G., D’Alessandro, F. & Scrucca, F. Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew. Sustain. Energy Rev. 42, 1113–1122 (2015).

    Article  Google Scholar 

  89. Qi, X., Yao, X., Guo, P., Han, Y. & Liu, L. Applying life cycle assessment to investigate the environmental impacts of a PV–CSP hybrid system. Renew. Energy 227, 120575 (2024).

    Article  CAS  Google Scholar 

  90. Desideri, U., Zepparelli, F., Morettini, V. & Garroni, E. Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations. Appl. Energy 102, 765–784 (2013).

    Article  Google Scholar 

  91. Gobio-Thomas, L. B., Darwish, M. & Stojceska, V. Environmental impacts of solar thermal power plants used in industrial supply chains. Therm. Sci. Eng. Prog. 38, 101670 (2023).

    Article  Google Scholar 

  92. Palmero-González, M. A., Batuecas, E., Marugán-Cruz, C. & Santana, D. Life cycle assessment studies of concentrated solar power technology: a literature review. Sustain. Energy Technol. Assess. 75, 104257 (2025).

    Google Scholar 

  93. Norwood, Z. & Kammen, D. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water. Environ. Res. Lett. 7, 44016 (2012).

    Article  CAS  Google Scholar 

  94. Hernández-Moro, J. & Martínez-Duart, J. M. Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution. Renew. Sustain. Energy Rev. 20, 119–132 (2013).

    Article  Google Scholar 

  95. Lechón, Y., La Rúa, C. D. & Sáez, R. Life cycle environmental impacts of electricity production by solarthermal power plants in Spain. J. Sol. Energy Eng. https://doi.org/10.1115/1.2888754 (2008).

  96. Gasa, G., Lopez-Roman, A., Prieto, C. & Cabeza, L. F. Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with and without thermal energy storage (TES). Sustainability 13, 3672 (2021).

    Article  CAS  Google Scholar 

  97. Gutsch, M. & Leker, J. Global warming potential of lithium-ion battery energy storage systems: a review. J. Energy Storage 52, 105030 (2022).

    Article  Google Scholar 

  98. Batuecas, E., Mayo, C., Díaz, R. & Pérez, F. J. Life cycle assessment of heat transfer fluids in parabolic trough concentrating solar power technology. Sol. Energy Mater. Sol. Cell 171, 91–97 (2017).

    Article  CAS  Google Scholar 

  99. San Miguel, G. & Corona, B. Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: analysis of environmental performance using LCA. Renew. Energy 66, 580–587 (2014).

    Article  Google Scholar 

  100. Yousef, B. A. et al. On the contribution of concentrated solar power (CSP) to the sustainable development goals (SDGs): a bibliometric analysis. Energy Strategy Rev. 52, 101356 (2024).

    Article  Google Scholar 

  101. Kee, Z., Wang, Y., Pye, J. & Rahbari, A. Small-scale concentrated solar power system with thermal energy storage: system-level modelling and techno-economic optimisation. Energy Convers. Manag. 294, 117551 (2023).

    Article  CAS  Google Scholar 

  102. Musi, R. et al. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity. AIP Conf. Proc. 1850, 160018 (2017).

    Article  Google Scholar 

  103. National Research Council. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use (National Academies Press, 2010).

  104. Heller, L., Többen, D., Hirsch, T. & Buck, R. The cost-saving potential of next-generation particle technology CSP with steam cycles. Sol. Energy 263, 111954 (2023).

    Article  Google Scholar 

  105. Imran Khan, M., Asfand, F. & Al-Ghamdi, S. G. Progress in technology advancements for next generation concentrated solar power using solid particle receivers. Sustain. Energy Technol. Assess. 54, 102813 (2022).

    Google Scholar 

  106. China Solar Thermal Alliance. Blue book of China’s concentrating Solar Power Industry 2024 (China Solar Thermal Alliance, 2024).

  107. Asselineau, C.-A. et al. Techno-economic assessment of a numbering-up approach for a 100 MWe third generation sodium-salt CSP system. Sol. Energy 263, 111935 (2023).

    Article  CAS  Google Scholar 

  108. Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Empirically observed learning rates for concentrating solar power and their responses to regime change. Nat. Energy https://doi.org/10.1038/nenergy.2017.94 (2017).

  109. Servert, J., Cerrajero, E., López, D. & Rodríguez, A. Cost evolution of components and services in the STE sector: a two-factor learning curve. AIP Conf. Proc. 2033, 020007 (2018).

    Article  Google Scholar 

  110. Hahn Menacho, A. J., Rodrigues, J. & Behrens, P. A triple bottom line assessment of concentrated solar power generation in China and Europe 2020–2050. Renew. Sustain. Energy Rev. 167, 112677 (2022).

    Article  Google Scholar 

  111. Pfahl, A. et al. Progress in heliostat development. Sol. Energy 152, 3–37 (2017).

    Article  Google Scholar 

  112. Hernández Moris, C., Cerda Guevara, M. T., Salmon, A. & Lorca, A. Comparison between concentrated solar power and gas-based generation in terms of economic and flexibility-related aspects in Chile. Energies 14, 1063 (2021).

    Article  Google Scholar 

  113. Köberle, A. C., Gernaat, D. E. & van Vuuren, D. P. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy 89, 739–756 (2015).

    Article  Google Scholar 

  114. Pfahl, A. et al. Heliostat innovation in detail to reach challenging cost target. AIP Conf. Proc. 2445, 120018 (2022).

    Article  Google Scholar 

  115. Buck, R. & Sment, J. Techno-economic analysis of multi-tower solar particle power plants. Sol. Energy 254, 112–122 (2023).

    Article  Google Scholar 

  116. Carballo, J. A., Bonilla, J., Berenguel, M., Fernández, J. & García, G. Solar tower power mockup for the assessment of advanced control techniques. Renew. Energy 149, 682–690 (2020).

    Article  Google Scholar 

  117. Turchi, C. et al. CSP Gen3: Liquid-Phase Pathway to SunShot. Report No. NREL/TP-5700-79323 (National Renewable Energy Laboratory, 2021).

  118. Fredriksson, J., Eickhoff, M., Giese, L. & Herzog, M. A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application. Sol. Energy 215, 266–310 (2021).

    Article  Google Scholar 

  119. Manikandan, G. K., Iniyan, S. & Goic, R. Enhancing the optical and thermal efficiency of a parabolic trough collector — a review. Appl. Energy 235, 1524–1540 (2019).

    Article  CAS  Google Scholar 

  120. Turchi, C., Kurup, P., Akar, S. & Flores, F. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants. Report no. NREL/TP-5500-64429 (National Renewable Energy Laboratory, 2015.

  121. Vignarooban, K., Xu, X., Arvay, A., Hsu, K. & Kannan, A. M. Heat transfer fluids for concentrating solar power systems — a review. Appl. Energy 146, 383–396 (2015).

    Article  CAS  Google Scholar 

  122. Ruegamer, T. et al. Molten salt for parabolic trough applications: system simulation and scale effects. Energy Procedia 49, 1523–1532 (2014).

    Article  CAS  Google Scholar 

  123. Giaconia, A., Iaquaniello, G., Metwally, A. A., Caputo, G. & Balog, I. Experimental demonstration and analysis of a CSP plant with molten salt heat transfer fluid in parabolic troughs. Sol. Energy 211, 622–632 (2020).

    Article  Google Scholar 

  124. Herruzo, J. C., Imponenti, L., Valverde, J., Shininger, R. & Price, H. A coupled fluid-thermo-mechanical evaluation of various freeze recovery strategies for molten salt parabolic trough collectors. Sol. Energy 267, 112250 (2024).

    Article  Google Scholar 

  125. Sattler, J. C. et al. Review of heliostat calibration and tracking control methods. Sol. Energy 207, 110–132 (2020).

    Article  Google Scholar 

  126. Rizvi, A. A., Danish, S. N., El-Leathy, A., Al-Ansary, H. & Yang, D. A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems. Sol. Energy 218, 296–311 (2021).

    Article  Google Scholar 

  127. Armijo, K., Muller, M., Tsvankin, D. & Madden, D. Review and gap analysis of heliostat components & controls. J. Sol. Energy Eng. https://doi.org/10.1115/1.4065976 (2024).

  128. Blackmon, J. B. in Concentrating Solar Power Technology 2nd edn (eds Lovegrove, K. & Stein, W.) 585–631 (Woodhead Publishing, 2021).

  129. Zhu, G. et al. HelioCon: a roadmap for advanced heliostat technologies for concentrating solar power. Sol. Energy 264, 111917 (2023).

    Article  Google Scholar 

  130. Zhu, G. et al. Roadmap to Advance Heliostat Technologies for Concentrating Solar-thermal Power. Report No. NREL/TP-5700-83041 (National Renewable Energy Laboratory, 2022).

  131. Kurup, P., Akar, S., Glynn, S., Augustine, C. & Davenport, P. Cost Update: Commercial and Advanced Heliostat Collectors. Report No. NREL/TP-7A40-80482 (National Renewable Energy Laboratory, 2022).

  132. Murphy, C. et al. The Potential Role of Concentrating Solar Power Within the Context of DOE’s 2030 Solar Cost Targets. Report No. NREL/TP-6A20-71912 (National Renewable Energy Laboratory, 2019).

  133. Milidonis, K., Eliades, A., Grigoriev, V. & Blanco, M. J. Unmanned aerial vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: a review. Sol. Energy 254, 182–194 (2023).

    Article  Google Scholar 

  134. Milidonis, K. et al. Review of application of AI techniques to solar tower systems. Sol. Energy 224, 500–515 (2021).

    Article  Google Scholar 

  135. Weissert, J., Zhou, Y., You, D. & Metghalchi, H. Current advancement of heliostats. J. Energy Resour. Technol. https://doi.org/10.1115/1.4054738 (2022).

  136. Mehos, M. et al. Concentrating Solar Power Gen3 Demonstration Roadmap. Report No. NREL/TP-5500-67464 (National Renewable Energy Laboratory, 2017).

  137. Price, H. et al. Advances in parabolic trough solar power technology. J. Sol. Energy Eng. 124, 109–125 (2002).

    Article  Google Scholar 

  138. Giglio, A., Lanzini, A., Leone, P., Rodríguez García, M. M. & Zarza Moya, E. Direct steam generation in parabolic-trough collectors: a review about the technology and a thermo-economic analysis of a hybrid system. Renew. Sustain. Energy Rev. 74, 453–473 (2017).

    Article  Google Scholar 

  139. Bonk, A. et al. Effect of gas management on corrosion resistance in molten solar salt up to 620 °C: corrosion of SS316-types and SS347. Corros. Sci. 227, 111700 (2024).

    Article  CAS  Google Scholar 

  140. Steinbrecher, J., Hanke, A., Braun, M., Bauer, T. & Bonk, A. Stabilization of solar salt at 650 °C — thermodynamics and practical implications for thermal energy storage systems. Sol. Energy Mater. Sol. Cell 258, 112411 (2023).

    Article  CAS  Google Scholar 

  141. Maia, C. B. et al. A comprehensive review of solar tower CSP systems using TES and molten salts. Int. J. Ambient. Energy 44, 1733–1747 (2023).

    Article  Google Scholar 

  142. Osorio, J. et al. Failure Analysis for Molten Salt Thermal Energy Storage Tanks for in-service CSP Plants. Report No. NREL/TP-5700-89036 (National Renewable Energy Laboratory, 2024).

  143. Khan, M. I., Asfand, F. & Al-Ghamdi, S. G. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J. Energy Storage 55, 105860 (2022).

    Article  Google Scholar 

  144. Starke, A. R. et al. Assessing the performance of novel molten salt mixtures on CSP applications. Appl. Energy 359, 122689 (2024).

    Article  Google Scholar 

  145. Boretti, A. & Castelletto, S. High-temperature molten-salt thermal energy storage and advanced-ultra-supercritical power cycles. J. Energy Storage 42, 103143 (2021).

    Article  Google Scholar 

  146. Augustine, C., Kesseli, D. & Turchi, C. Technoeconomic cost analysis of NREL concentrating Solar Power Gen3 liquid pathway. AIP Conf. Proc. 2445, 03991 (2022).

    Google Scholar 

  147. Guccione, S. & Guedez, R. Techno-economic optimization of molten salt based CSP plants through integration of supercritical CO2 cycles and hybridization with PV and electric heaters. Energy 283, 128528 (2023).

    Article  CAS  Google Scholar 

  148. Kondaiah, P. & Pitchumani, R. Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power. Renew. Energy 205, 956–991 (2023).

    Article  CAS  Google Scholar 

  149. Turchi, C. S., Vidal, J. & Bauer, M. Molten salt power towers operating at 600–650 °C: salt selection and cost benefits. Sol. Energy 164, 38–46 (2018).

    Article  CAS  Google Scholar 

  150. Fontalvo, A. et al. System-level comparison of sodium and salt systems in support of the Gen3 liquids pathway. AIP Conf. Proc. 2445, 030007 (2022).

    Article  CAS  Google Scholar 

  151. Coventry, J., Andraka, C., Pye, J., Blanco, M. & Fisher, J. A review of sodium receiver technologies for central receiver solar power plants. Sol. Energy 122, 749–762 (2015).

    Article  CAS  Google Scholar 

  152. Liu, M. et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 53, 1411–1432 (2016).

    Article  CAS  Google Scholar 

  153. Ho, C. K. A review of high-temperature particle receivers for concentrating solar power. Appl. Therm. Eng. 109, 958–969 (2016).

    Article  Google Scholar 

  154. Punchi Wedikkara, C., Martinek, J., Ma, Z. & Morris, A. Thermal analysis of a solid particle light-trapping planar cavity receiver using computational fluid dynamics. Appl. Therm. Eng. 273, 126427 (2025).

    Article  Google Scholar 

  155. Le Gal, A. et al. Experimental results for a MW-scale fluidized particle-in-tube solar receiver in its first test campaign. Sol. Energy 262, 111907 (2023).

    Article  Google Scholar 

  156. Montes, M. J., Guedez, R., Linares, J. I. & Reyes-Belmonte, M. A. Advances in solar thermal power plants based on pressurised central receivers and supercritical power cycles. Energy Convers. Manag. 293, 117454 (2023).

    Article  CAS  Google Scholar 

  157. Sedighi, M. et al. High-temperature, point-focus, pressurised gas-phase solar receivers: a comprehensive review. Energy Convers. Manag. 185, 678–717 (2019).

    Article  CAS  Google Scholar 

  158. Gautam, A. & Saini, R. P. A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. J. Energy Storage 27, 101046 (2020).

    Article  Google Scholar 

  159. Zhang, Y., Li, Q. & Qiu, Y. Optical-thermal-stress analysis of a multiscale solar receiver for ultra-high-temperature concentrating solar power. J. Clean. Prod. 433, 139791 (2023).

    Article  CAS  Google Scholar 

  160. Zhang, Y., Qiu, Y., Li, Q. & Henry, A. Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power. Appl. Energy 307, 118228 (2022).

    Article  CAS  Google Scholar 

  161. Abdelsalam, T. Ultra-High Temperature Concentrated Solar Thermal Energy (University of Edinburgh, 2023).

  162. Abdelsalam, T. I., Tian, Z. & Robinson, A. Directly irradiated liquid metal film in an ultra-high temperature solar cavity receiver. Part 2: coupled CFD and radiation analysis. Sol. Energy 264, 112004 (2023).

    Article  Google Scholar 

  163. McKean, B. The amazing role of high-temperature nickel alloys and stainless steels for concentrated solar power. Nickel Magazine 33, 10–11 (2018).

    Google Scholar 

  164. Silva-Pérez, M. A. in Advances in Concentrating Solar Thermal Research and Technology (eds Blanco, M. J. & Santigosa L. R.) 383–402 (Woodhead Publishing, 2017).

  165. Ehsan, M. M. et al. Potential prospects of supercritical CO2 power cycles for commercialisation: applicability, research status, and advancement. Renew. Sustain. Energy Rev. 172, 113044 (2023).

    Article  CAS  Google Scholar 

  166. Ahn, Y. et al. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 47, 647–661 (2015).

    Article  Google Scholar 

  167. Yin, J.-M., Zheng, Q.-Y., Peng, Z.-R. & Zhang, X.-R. Review of supercritical CO2 power cycles integrated with CSP. Int. J. Energy Res. 44, 1337–1369 (2020).

    Article  CAS  Google Scholar 

  168. He, Y.-L. et al. Perspective of concentrating solar power. Energy 198, 117373 (2020).

    Article  CAS  Google Scholar 

  169. Supercritical transformational electric power pilot plant. Southwest Research Institute https://www.swri.org/markets/energy-environment/power-generation-utilities/advanced-power-systems/supercritical-transformational-electric-power-pilot-plant (2025).

  170. Oberkirsch, L., Grobbel, J., Maldonado Quinto, D., Schwarzbözl, P. & Hoffschmidt, B. Controlling a solar receiver with multiple thermochemical reactors for hydrogen production by an LSTM neural network based cascade controller. Sol. Energy 243, 483–493 (2022).

    Article  CAS  Google Scholar 

  171. Ferdaus, M. M., Dam, T., Anavatti, S. & Das, S. Digital technologies for a net-zero energy future: a comprehensive review. Renew. Sustain. Energy Rev. 202, 114681 (2024).

    Article  Google Scholar 

  172. Gul, E., Baldinelli, G., Wang, J., Bartocci, P. & Shamim, T. Artificial intelligence based forecasting and optimization model for concentrated solar power system with thermal energy storage. Appl. Energy 382, 125210 (2025).

    Article  Google Scholar 

  173. Pargmann, M., Leibauer, M., Nettelroth, V., Maldonado Quinto, D. & Pitz-Paal, R. Enhancing heliostat calibration on low data by fusing robotic rigid body kinematics with neural networks. Sol. Energy 264, 111962 (2023).

    Article  Google Scholar 

  174. Pargmann, M., Maldonado Quinto, D., Schwarzbözl, P. & Pitz-Paal, R. High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks. Sol. Energy 218, 48–56 (2021).

    Article  Google Scholar 

  175. El Rajab, M., Yang, L. & Shami, A. Zero-touch networks: towards next-generation network automation. Comput. Netw. 243, 110294 (2024).

    Article  Google Scholar 

  176. Masoomi, B., Sahebi, I. G., Gholian-Jouybari, F., Mejia-Argueta, C. & Hajiaghaei-Keshteli, M. The role of internet of things adoption on the sustainability performance of the renewable energy supply chain: a conceptual framework. Renew. Sustain. Energy Rev. 202, 114610 (2024).

    Article  Google Scholar 

  177. Machado, D. O., Andrade, G. A., Normey-Rico, J. E. & Bordons, C. Optimal operation of concentrating solar collector fields using exergy-based hierarchical control. Energy 239, 122462 (2022).

    Article  Google Scholar 

  178. Verma, J., Sandys, L., Matthews, A. & Goel, S. Readiness of artificial intelligence technology for managing energy demands from renewable sources. Eng. Appl. Artif. Intell. 135, 108831 (2024).

    Article  Google Scholar 

  179. Chehri, A., Fofana, I. & Yang, X. Security risk modeling in smart grid critical infrastructures in the era of big data and artificial intelligence. Sustainability 13, 3196 (2021).

    Article  Google Scholar 

  180. Wang, J. et al. Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method. Energy 208, 118403 (2020).

    Article  Google Scholar 

  181. Nouri, B. et al. Probabilistic solar nowcasting based on all-sky imagers. Sol. Energy 253, 285–307 (2023).

    Article  Google Scholar 

  182. Luo, Y., Du, X., Yang, L., Xu, C. & Amjad, M. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage. Front. Energy 11, 461–471 (2017).

    Article  Google Scholar 

  183. Khan, M. I. et al. The economics of concentrating solar power (CSP): assessing cost competitiveness and deployment potential. Renew. Sustain. Energy Rev. 200, 114551 (2024).

    Article  Google Scholar 

  184. Miron, D., Navon, A., Levron, Y., Belikov, J. & Rotschild, C. The cost-competitiveness of concentrated solar power with thermal energy storage in power systems with high solar penetration levels. J. Energy Storage 72, 108464 (2023).

    Article  Google Scholar 

  185. Li, L. et al. Optical analysis of a multi-aperture solar central receiver system for high-temperature concentrating solar applications. Opt. Express 28, 37654–37668 (2020).

    Article  Google Scholar 

  186. Kiefer, C. P. & Del Río, P. Analysing the barriers and drivers to concentrating solar power in the European Union. Policy implications. J. Clean. Prod. 251, 119400 (2020).

    Article  Google Scholar 

  187. Tsvankin, D. & Muller, M. Pathways to IEC standards for heliostat design qualification and site acceptance in central receiver CSP applications. SolarPACES Conf. Proc. https://doi.org/10.52825/solarpaces.v1i.652 (2023).

  188. Sallaberry, F. et al. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants. AIP Conf. Proc. 1850, 150004 (2017).

    Article  Google Scholar 

  189. Timperley, J. Why fossil fuel subsidies are so hard to kill. Nature 598, 403–405 (2021).

    Article  CAS  Google Scholar 

  190. Sharpe, S. & Lenton, T. M. Upward-scaling tipping cascades to meet climate goals: plausible grounds for hope. Clim. Policy 21, 421–433 (2021).

    Article  Google Scholar 

  191. Spain. Royal decree (RD) 661/2007 on the feed-in tariffs for electricity from renewable energy sources (Special Regime). iea https://www.iea.org/policies/4555-feed-in-tariffs-for-electricity-from-renewable-energy-sources-special-regime?country=Spain&page=4&qs=spain (2007).

  192. Lilliestam, J., Ollier, L., Labordena, M., Pfenninger, S. & Thonig, R. The near- to mid-term outlook for concentrating solar power: mostly cloudy, chance of sun. Energy Source Part. B 16, 23–41 (2021).

    Article  Google Scholar 

  193. Gauché, P. et al. System value and progress of CSP. Sol. Energy 152, 106–139 (2017).

    Article  Google Scholar 

  194. Guédez, R., Spelling, J., Laumert, B. & Fransson, T. Optimization of thermal energy storage integration strategies for peak power production by concentrating solar power plants. Energy Procedia 49, 1642–1651 (2014).

    Article  Google Scholar 

  195. Imran Khan, M., Asfand, F. & Al-Ghamdi, S. G. Progress in research and technological advancements of commercial concentrated solar thermal power plants. Sol. Energy 249, 183–226 (2023).

    Article  Google Scholar 

  196. Caldés, N. & Lechón, Y. Socio-economic and environmental assessment of concentrating solar power systems. In Concentrating Solar Power Technology. Principles, Developments and Applications (eds Lovegrove, K. & Stein, W.) 127–162 (Elsevier Science and Technology, 2021).

  197. Martín, H., de La Hoz, J., Velasco, G., Castilla, M. & García de Vicuña, J. L. Promotion of concentrating solar thermal power (CSP) in Spain: performance analysis of the period 1998–2013. Renew. Sustain. Energy Rev. 50, 1052–1068 (2015).

    Article  Google Scholar 

  198. Ho, C. K. Advances in central receivers for concentrating solar applications. Sol. Energy 152, 38–56 (2017).

    Article  CAS  Google Scholar 

  199. Schöniger, F., Thonig, R., Resch, G. & Lilliestam, J. Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage. Energy Source Part. B 16, 55–74 (2021).

    Article  Google Scholar 

  200. Machado, J. T. M. Shining a light on solar chemicals and fuels: findings from a SWOT-led (Strengths, Weaknesses, Opportunities, and Threats) literature review and workshop. Renew. Sustain. Energy Rev. 216, 115607 (2025).

    Article  Google Scholar 

  201. Pitz-Paal, R. Concentrating solar power: still small but learning fast. Nat. Energy 2, 17095 (2017).

    Article  Google Scholar 

  202. Pitz-Paal, R. et al. Decarbonizing the German industrial thermal energy use with solar, hydrogen, and other options–recommendations for the world. Sol. Compass 3-4, 100029 (2022).

    Article  Google Scholar 

  203. Gasa, G., Prieto, C., Lopez-Roman, A. & Cabeza, L. F. Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with different storage capacity in molten salts. J. Energy Storage 53, 105219 (2022).

    Article  Google Scholar 

  204. Ahmad, A. et al. Parabolic trough solar collectors: a sustainable and efficient energy source. Mater. Sci. Energy Technol. 7, 99–106 (2024).

    Google Scholar 

  205. Krishna, Y., Faizal, M., Saidur, R., Ng, K. C. & Aslfattahi, N. State-of-the-art heat transfer fluids for parabolic trough collector. Int. J. Heat. Mass. Transf. 152, 119541 (2020).

    Article  CAS  Google Scholar 

  206. Grirate, H., Zari, N., Elmchaouri, A., Molina, S. & Couturier, R. Life time analysis of thermal oil used as heat transfer fluid in CSP power plant. AIP Conf. Proc. 1734, 040005 (2016).

    Article  Google Scholar 

  207. Boretti, A., Castelletto, S. & Al-Zubaidy, S. Concentrating solar power tower technology: present status and outlook. Nonlinear Eng. https://doi.org/10.1515/nleng-2017-0171 (2019).

  208. Dunn, R. I., Hearps, P. J. & Wright, M. N. Molten-salt power towers: newly commercial concentrating solar storage. Proc. IEEE 100, 504–515 (2012).

    Article  CAS  Google Scholar 

  209. Alexopoulos, S. & Hoffschmidt, B. Advances in solar tower technology. Wiley Interdiscip. Rev.: Energy Environ. 6, e217 (2017).

    Google Scholar 

  210. Yerudkar, A. N. et al. Economically feasible solutions in concentrating solar power technology specifically for heliostats – a review. Renew. Sustain. Energy Rev. 189, 113825 (2024).

    Article  Google Scholar 

  211. Buck, R. & Schwarzbözl, P. in Comprehensive Energy Systems Vol. 4, 682–732 (Elsevier, 2018).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jana Stengler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Giampolo Manzolini, Mark Mehos and Yu Qiu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Conventional steam power cycle

A heat engine loop in which water is boiled and expanded into high-pressure steam, which then passes through a turbine to produce mechanical work. The steam is then condensed and pumped back to the boiler to enable continuous operation.

Direct normal irradiance

(DNI). The flux of solar radiation per unit area received by a surface kept perpendicular to the sun’s rays, excluding the diffuse component from the sky.

Supercritical CO2

Carbon dioxide compressed above its critical point (31.1 °C, 7.38 MPa), where it forms a single dense fluid phase with liquid-like density and gas-like viscosity, making it an efficient working fluid for advanced power cycles.

Thermal energy storage

(TES). A system that absorbs heat (or cold) when it is available and releases it later, thereby decoupling energy supply from demand in time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stengler, J., Bülow, M. & Pitz-Paal, R. Concentrating solar technologies for low-carbon energy. Nat. Rev. Clean Technol. 1, 719–733 (2025). https://doi.org/10.1038/s44359-025-00096-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-025-00096-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing