Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What solar fuel technologies can learn from each other

Abstract

Solar fuel technologies use sunlight to synthesize value-added molecules that can be used as renewable fuels or chemical feedstock. They share the common principle of converting and storing solar and other renewable energy in chemical bonds, but differ in the harvesting mechanisms, catalytic processes and systems used. These distinctions lead to different advantages, challenges, maturity and deployability prospects. In this Perspective, we provide a cross-disciplinary view of five major solar fuel platforms — photocatalysis, photovoltaic-driven electrolysis (PV + EC), photoelectrochemical, photothermal and plasmonic catalysis — to identify transferable insights and design principles. The wide span of solar-to-hydrogen efficiency (typically 0.1–15%) and levelized cost of hydrogen (US$2–30 kg−1 H2) depending on the system reflect both mechanistic limitations and system-level constraints that keep performance below theoretical limits. Common bottlenecks emerge, including spectral mismatch, charge-management and heat-management losses, stability in harsh operating environments and dependence on critical materials. At the same time, shared design principles — such as defect and facet engineering, multi-absorber architectures, plasmonic and photothermal enhancement, interface stabilization and catalyst–reactor co-design — offer transferable strategies capable of improving performance across platforms. Together, these insights provide a transversal unifying vision on how advances in one solar fuel technology can accelerate progress in others and inform pathways towards scalable, efficient and economically viable solar fuel production.

Key points

  • Solar fuel platforms operate under distinct principles — photonic, electrochemical, thermal or hybrid — but face convergent challenges in efficiency, stability and reactor design, making comparative evaluation both feasible and necessary.

  • Levelized cost of hydrogen estimates range widely, from <$5 kg−1 H2 for optimized photovoltaic-driven electrolysis (PV + EC) to >$20 kg1 H2 for early-stage plasmonic systems. Efficiency, capital expenditure (CAPEX) and operating expenditure (OPEX) balance and material costs are primary cost drivers.

  • Solar-to-hydrogen efficiencies span from ~0.1% to 30%; however, overall viability is more tightly linked to durability, system simplicity and integration potential than to efficiency alone.

  • Cross-platform developments can accelerate innovation. Photoelectrochemical (PEC) systems benefit from PV-derived absorbers and scalable encapsulation methods; PV + EC and photocatalytic systems can adopt the spatial catalyst separation of PEC to enhance selectivity and modularity; and advances in thermal integration, local heating and spectrum shaping in plasmonic and photothermal systems could benefit low-temperature PEC and photocatalytic configurations.

  • Scalable progress relies on platform-specific strengths with photocatalysis and PEC emphasizing material simplicity and integration; PV + EC leveraging commercial maturity; and plasmonic and photothermal systems offering spectral and thermal control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principles of solar fuel technologies.
Fig. 2: Catalyst core structure and design.
Fig. 3: Interface of the catalytic system.
Fig. 4: Effect of the environment on the catalytic system.
Fig. 5: State of the art, theoretical solar-to-fuel limitations and scale-up demonstrations of solar fuel technologies.
Fig. 6: Complementary mechanisms and shared challenges in solar fuel technologies.

Similar content being viewed by others

References

  1. Perez, M. & Perez, R. Update 2022 — a fundamental look at supply side energy reserves for the planet. Sol. Energy Adv. 2, 100014 (2022).

    Article  Google Scholar 

  2. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, 356 (2016).

    Article  Google Scholar 

  3. Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Article  Google Scholar 

  4. Lv, J. et al. Solar utilization beyond photosynthesis. Nat. Rev. Chem. 7, 91–105 (2023).

    Article  Google Scholar 

  5. National Renewable Energy Laboratory. Life Cycle Green House Emissions From Photovoltaics (NREL, 2012).

  6. Frischknecht, R. Environmental Life Cycle Assessment of Electricity from PV Systems — 2021 data update (IEA, 2022).

  7. Segev, G. et al. The 2022 solar fuels roadmap. J. Phys. D Appl. Phys. 55, 323003 (2022).

    Article  CAS  Google Scholar 

  8. Kim, J. H., Hansora, D., Sharma, P., Jang, J. W. & Lee, J. S. Toward practical solar hydrogen production — an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  Google Scholar 

  9. Song, H., Luo, S., Huang, H., Deng, B. & Ye, J. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022).

    Article  CAS  Google Scholar 

  10. Comer, B. M. et al. Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019).

    Article  CAS  Google Scholar 

  11. Ardo, S. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    Article  CAS  Google Scholar 

  12. Götz, M. et al. Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016).

    Article  Google Scholar 

  13. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  Google Scholar 

  14. Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    Article  Google Scholar 

  15. Yaghoubi, S. et al. Photocatalysts for solar energy conversion: recent advances and environmental applications. Renew. Sustain. Energy Rev. 200, 114538 (2024).

    Article  CAS  Google Scholar 

  16. Luo, S., Ren, X., Lin, H., Song, H. & Ye, J. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem. Sci. 12, 5701–5719 (2021).

    Article  CAS  Google Scholar 

  17. Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the E → Z isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article  Google Scholar 

  18. Chen, R., Ni, C., Zhu, J., Fan, F. & Li, C. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles. Nat. Protoc. 19, 2250–2282 (2024).

    Article  CAS  Google Scholar 

  19. Yuan, C. et al. Light-induced CoOX surface reconstruction in hollow heterostructure for durable photocatalytic seawater splitting. Nat. Commun. 16, 6607 (2025).

    Article  CAS  Google Scholar 

  20. Manning, C. G. Technology readiness levels. NASA https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels (2023).

  21. Naldoni, A., Shalaev, V. M. & Brongersma, M. L. Applying plasmonics to a sustainable future. Science 356, 908–909 (2017).

    Article  CAS  Google Scholar 

  22. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  Google Scholar 

  23. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  Google Scholar 

  24. Zoller, S. et al. A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2. Joule 6, 1606–1616 (2022).

    Article  CAS  Google Scholar 

  25. Cheng, W. H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    Article  CAS  Google Scholar 

  26. Holmes-Gentle, I., Tembhurne, S., Suter, C. & Haussener, S. Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 8, 586–596 (2023).

    Article  CAS  Google Scholar 

  27. Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    Article  CAS  Google Scholar 

  28. Zhao, D. et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6, 388–397 (2021).

    Article  CAS  Google Scholar 

  29. Li, A. et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem. Int. Ed. 58, 14549–14555 (2019).

    Article  CAS  Google Scholar 

  30. Rahimi, F. A., Dey, S., Verma, P. & Maji, T. K. Photocatalytic CO2 reduction based on a Re(I)-integrated conjugated microporous polymer: role of a sacrificial electron donor in product selectivity and efficiency. ACS Catal. 13, 5969–5978 (2023).

    Article  CAS  Google Scholar 

  31. Cheng, N. et al. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 5, 6815–6819 (2013).

    Article  CAS  Google Scholar 

  32. Zhou, X. et al. Photocatalytic dehydrogenative C–C coupling of acetonitrile to succinonitrile. Nat. Commun. 13, 4379 (2022).

    Article  CAS  Google Scholar 

  33. Kang, L. et al. Light-driven propane dehydrogenation by a single-atom catalyst under near-ambient conditions. Nat. Chem. 17, 890–896 (2025).

    Article  CAS  Google Scholar 

  34. Sun, R. et al. Regulation of Pd single-atom coordination for enhanced photocatalytic oxidation of toluene to benzaldehyde. Nat. Synth. 4, 965–975 (2025).

    Article  CAS  Google Scholar 

  35. Gisbertz, S., Reischauer, S. & Pieber, B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat. Catal. 3, 611–620 (2020).

    Article  CAS  Google Scholar 

  36. Li, J., Chang, J., Li, M. & Han, Q. Visible-light-driven C−N bond formation by a hexanickel cluster substituted polyoxometalate-based photocatalyst. Inorg. Chem. 60, 10022–10029 (2021).

    Article  CAS  Google Scholar 

  37. Kong, D. et al. Recent advances in visible light-driven water oxidation and reduction in suspension systems. Mater. Today 21, 897–924 (2018).

    Article  CAS  Google Scholar 

  38. Wang, W. N. et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012).

    Article  CAS  Google Scholar 

  39. Ola, O. & Mercedes Maroto-Valer, M. Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts. J. Catal. 309, 300–308 (2014).

    Article  CAS  Google Scholar 

  40. Tang, L., Wang, Z. L., Wan, H. L., He, Y. H. & Guan, Z. Visible-light-induced Beckmann rearrangement by organic photoredox catalysis. Org. Lett. 22, 6182–6186 (2020).

    Article  CAS  Google Scholar 

  41. Schneider, V., Polonskyi, O., Strunskus, T., Elbahri, M. & Faupel, F. Light-induced conductance switching in photomechanically active carbon nanotube-polymer composites. Sci. Rep. 7, 2–10 (2017).

    Article  Google Scholar 

  42. Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

    Article  CAS  Google Scholar 

  43. Kübler, J. A., Pfund, B. & Wenger, O. S. Zinc(II) complexes with triplet charge-transfer excited states enabling energy-transfer catalysis, photoinduced electron transfer, and upconversion. JACS Au 2, 2367–2380 (2022).

    Article  Google Scholar 

  44. Dai, L. et al. Diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis. Nat. Commun. 14, 4813 (2023).

    Article  CAS  Google Scholar 

  45. Liu, G., Wang, L., Yang, H. G., Cheng, H. M. & Lu, G. Q. Titania-based photocatalysts — crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010).

    Article  Google Scholar 

  46. Kudo, A. Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 36, 32–38 (2011).

    Article  CAS  Google Scholar 

  47. Yong, X. & Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000).

    Article  Google Scholar 

  48. Chen, S. et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J. Mater. Chem. A 8, 2286–2322 (2020).

    Article  CAS  Google Scholar 

  49. Chen, Y. et al. Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution. Nat. Commun. 14, 6165 (2023).

    Article  CAS  Google Scholar 

  50. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  51. Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  CAS  Google Scholar 

  52. Lin, L. et al. Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst. Nat. Commun. 15, 397 (2024).

    Article  CAS  Google Scholar 

  53. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  54. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  55. Yuan, L. et al. Plasmonic photocatalysis with chemically and spatially specific antenna-dual reactor complexes. ACS Nano 16, 17365–17375 (2022).

    Article  CAS  Google Scholar 

  56. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    Article  Google Scholar 

  57. Guo, Y., Xu, Z., Curto, A. G., Zeng, Y. J. & Van Thourhout, D. Plasmonic semiconductors: materials, tunability and applications. Prog. Mater. Sci. 138, 101158 (2023).

    Article  CAS  Google Scholar 

  58. Singh, S. et al. Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets. Nat. Commun. 14, 2551 (2023).

    Article  CAS  Google Scholar 

  59. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    Article  CAS  Google Scholar 

  60. Kim, M., Lin, M., Son, J., Xu, H. & Nam, J. M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1–21 (2017).

    Article  Google Scholar 

  61. Zhuo, X., Vila-Liarte, D., Wang, S., Jimenez de Aberasturi, D. & Liz-Marzán, L. M. Coated chiral plasmonic nanorods with enhanced structural stability. Chem. Mater. 35, 5689–5698 (2023).

    Article  CAS  Google Scholar 

  62. Coviello, V., Forrer, D. & Amendola, V. Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem 23, e202200136 (2022).

    Article  CAS  Google Scholar 

  63. Krekeler, T. et al. Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 9, 2100323 (2021).

    Article  CAS  Google Scholar 

  64. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  65. Sharma, G. et al. Pt-doped Ru nanoparticles loaded on ‘black gold’ plasmonic nanoreactors as air stable reduction catalysts. Nat. Commun. 15, 713 (2024).

    Article  CAS  Google Scholar 

  66. Cao, M., Shao, S., Ji, W. & Fan, X. Enhanced plasmonic photocatalytic performance of C doped TiN nanocrystals through ultrathin carbon layers. J. Environ. Manage. 345, 118826 (2023).

    Article  CAS  Google Scholar 

  67. da Silva, A. G. M., Rodrigues, T. S., Wang, J. & Camargo, P. H. C. Plasmonic catalysis with designer nanoparticles. Chem. Commun. 58, 2055–2074 (2022).

    Article  Google Scholar 

  68. Wang, D. et al. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019).

    Article  CAS  Google Scholar 

  69. Setoura, K., Tamura, M., Oshikiri, T. & Iida, T. Switching nanoscale temperature fields with high-order plasmonic modes in transition metal nanorods. RSC Adv. 13, 34489–34496 (2023).

    Article  CAS  Google Scholar 

  70. Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    Article  CAS  Google Scholar 

  71. Wells, M. P. et al. Temperature stability of thin film refractory plasmonic materials. Opt. Express 26, 15726 (2018).

    Article  CAS  Google Scholar 

  72. Shi, L. et al. SiC-C composite as a highly stable and easily regenerable photothermal material for practical water evaporation. ACS Sustain. Chem. Eng. 6, 8192–8200 (2018).

    Article  CAS  Google Scholar 

  73. Cui, X. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023).

    Article  CAS  Google Scholar 

  74. Xu, C. et al. Fibrous aerogels for solar vapor generation. Front. Chem. 10, 1–19 (2022).

    Google Scholar 

  75. Farid, M. U., Kharraz, J. A., Wang, P. & An, A. K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. J. Clean. Prod. 271, 122684 (2020).

    Article  CAS  Google Scholar 

  76. Das, S. et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49, 2937–3004 (2020).

    Article  CAS  Google Scholar 

  77. Xiong, P. et al. Synthesis of core@shell catalysts guided by Tammann temperature. Nat. Commun. 15, 420 (2024).

    Article  CAS  Google Scholar 

  78. Song, C., Wang, Z., Yin, Z., Xiao, D. & Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2, 52–83 (2022).

    CAS  Google Scholar 

  79. Zi, Y., Hu, Y., Pu, J., Wang, M. & Huang, W. Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small 19, 2208274 (2023).

    Article  CAS  Google Scholar 

  80. Vilanova, A., Dias, P., Lopes, T. & Mendes, A. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges. Chem. Soc. Rev. 53, 2388–2434 (2024).

    Article  CAS  Google Scholar 

  81. Taseska, T. et al. Analysis of the scale of global human needs and opportunities for sustainable catalytic technologies. Top. Catal. 66, 338–374 (2023).

    Article  CAS  Google Scholar 

  82. Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article  CAS  Google Scholar 

  83. Lim, H. et al. High performance III–V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nat. Commun. 10, 3388 (2019).

    Article  Google Scholar 

  84. Chem, J. M. Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. A 5, 4233–4253 (2017).

    Article  Google Scholar 

  85. Qian, K. et al. Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842–9845 (2014).

    Article  CAS  Google Scholar 

  86. Ghobadi, T. G. U., Ghobadi, A., Ozbay, E. & Karadas, F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem 2, 161–182 (2018).

    Article  CAS  Google Scholar 

  87. Peerakiatkhajohn, P. et al. A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. J. Mater. Chem. A 3, 20127–20133 (2015).

    Article  CAS  Google Scholar 

  88. Ueno, K., Mor, Y. & Osh, T. Plasmon-enhanced water splitting utilizing the heterojunction synergistic effect between SrTiO3 and rutile-TiO2. Chem. Lett. 44, 618–620 (2015).

    Article  Google Scholar 

  89. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  90. Tang, S., Qiu, W., Xiao, S., Tong, Y. & Yang, S. Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ. Sci. 13, 660–684 (2020).

    Article  CAS  Google Scholar 

  91. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  92. National Renewable Energy Laboratory. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency (2025).

  93. Pham, D. P., Lee, S. & Yi, J. Photovoltaic partner selection for high-efficiency photovoltaic-electrolytic water splitting systems: brief review and perspective. Silicon 14, 753–760 (2022).

    Article  CAS  Google Scholar 

  94. Wang, T., Cao, X. & Jiao, L. PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carb. Neutrality 1, 21 (2022).

    Article  Google Scholar 

  95. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  Google Scholar 

  96. Leonzio, G., Hankin, A. & Shah, N. CO2 electrochemical reduction: a state-of-the-art review with economic and environmental analyses. Chem. Eng. Res. Des. 208, 934–955 (2024).

    Article  CAS  Google Scholar 

  97. Carmo, M. & Fritz, D. L. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  98. Cheng, W. H. et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett. 5, 470–476 (2020).

    Article  CAS  Google Scholar 

  99. Gao, J. et al. Solar reduction of carbon dioxide on copper-tin electrocatalysts with energy conversion efficiency near 20%. Nat. Commun. 13, 5898 (2022).

    Article  CAS  Google Scholar 

  100. Ma, G. et al. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy 115, 108679 (2023).

    Article  CAS  Google Scholar 

  101. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  CAS  Google Scholar 

  102. Fang, Y. et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. 59, 13021–13027 (2020).

    Article  CAS  Google Scholar 

  103. Vequizo, J. J. M. et al. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017).

    Article  CAS  Google Scholar 

  104. Lian, Z. et al. Photogenerated hole traps in metal-organic-framework photocatalysts for visible-light-driven hydrogen evolution. Commun. Chem. 5, 93 (2022).

    Article  CAS  Google Scholar 

  105. Zhang, L. et al. Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions. Nat. Energy 7, 1042–1051 (2022).

    Article  CAS  Google Scholar 

  106. Wang, J. et al. Regulating the metallic Cu–Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Adv. Funct. Mater. 33, 2213901 (2023).

    Article  CAS  Google Scholar 

  107. Zhang, Y. et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 8, 361–371 (2023).

    Article  CAS  Google Scholar 

  108. Teitsworth, T. S. et al. Water splitting with silicon p–i–n superlattices suspended in solution. Nature 614, 270–274 (2023).

    Article  CAS  Google Scholar 

  109. Li, Z. et al. Engineered disorder in CO2 photocatalysis. Nat. Commun. 13, 7205 (2022).

    Article  CAS  Google Scholar 

  110. Xu, R. et al. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 145, 8261–8270 (2023).

    Article  CAS  Google Scholar 

  111. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  112. Zhu, Y., Xue, Y., Wang, Z. & Chao, D. Robust noble metal-free photoconversion of CO2 to CO with a molecule/MOF hybrid catalyst for straightforward two-chamber organic carbonylation. ACS Catal. 15, 3546–3557 (2025).

    Article  CAS  Google Scholar 

  113. Xia, Y. S. et al. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 13, 2964 (2022).

    Article  CAS  Google Scholar 

  114. Zhang, Y. et al. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023).

    Article  CAS  Google Scholar 

  115. Fan, Y. et al. Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: the roles of intrinsic electric filed and vacancy defects. Sci. Bull. 65, 27–34 (2020).

    Article  CAS  Google Scholar 

  116. Fu, C. F. et al. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 18, 6312–6317 (2018).

    Article  CAS  Google Scholar 

  117. Xia, C. et al. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B 98, 1–8 (2018).

    Article  Google Scholar 

  118. Tu, J., Wu, W., Lei, X. & Li, P. The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega 7, 37061–37069 (2022).

    Article  CAS  Google Scholar 

  119. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020).

    Article  CAS  Google Scholar 

  120. Kang, Y. et al. Effect of crystal facets in plasmonic catalysis. Nat. Commun. 15, 3923 (2024).

    Article  CAS  Google Scholar 

  121. Dhiman, M. et al. Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem. Sci. 10, 6594–6603 (2019).

    Article  CAS  Google Scholar 

  122. Verma, R. et al. Nickel-laden dendritic plasmonic colloidosomes of black gold: forced plasmon mediated photocatalytic CO2 hydrogenation. ACS Nano 17, 4526–4538 (2023).

    Article  CAS  Google Scholar 

  123. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 364, 69–72 (2019).

    Article  Google Scholar 

  124. Sivan, Y., Baraban, J., Un, I. W. & Dubi, Y. Comment on ‘Quantifying hot carrier and thermal contributions in plasmonic photocatalysis’. Science 364, 1–3 (2019).

    Article  Google Scholar 

  125. Zhan, C. et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019).

    Article  Google Scholar 

  126. Dubi, Y. & Sivan, Y. ‘Hot’ electrons in metallic nanostructures — non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).

    Article  Google Scholar 

  127. Herran, M. et al. Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023).

    Article  CAS  Google Scholar 

  128. Liu, S. et al. Quantifying the distinct role of plasmon enhancement mechanisms in prototypical antenna-reactor photocatalysts. Nat. Commun. 16, 2245 (2025).

    Article  CAS  Google Scholar 

  129. Verma, R., Sharma, G. & Polshettiwar, V. The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis. Nat. Commun. 15, 7974 (2024).

    Article  CAS  Google Scholar 

  130. Cai, M. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021).

    Article  CAS  Google Scholar 

  131. Chen, G. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 30, 1–8 (2018).

    Google Scholar 

  132. Xu, Y. F. et al. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 11, 5149 (2020).

    Article  CAS  Google Scholar 

  133. Rossell, M. D. et al. Direct evidence of surface reduction in monoclinic BiVO4. Chem. Mater. 27, 3593–3600 (2015).

    Article  CAS  Google Scholar 

  134. Yu, G., Gao, J., Hummelen, J. C., Wudi, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  135. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  136. Cho, H. H. et al. A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nat. Catal. 4, 431–438 (2021).

    Article  CAS  Google Scholar 

  137. Daboczi, M. et al. Enhanced solar water oxidation and unassisted water splitting using graphite-protected bulk heterojunction organic photoactive layers. Nat. Energy 10, 581–591 (2025).

    Article  CAS  Google Scholar 

  138. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  Google Scholar 

  139. Rossi, K. & Buonsanti, R. Shaping copper nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction. Acc. Chem. Res. 55, 629–637 (2022).

    Article  CAS  Google Scholar 

  140. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  Google Scholar 

  141. Wilsey, M. K., Cox, C. P., Forsythe, R. C., Mccarney, L. R. & Müller, A. M. Selective CO2 reduction towards a single upgraded product: a minireview on multi-elemental copper-free electrocatalysts. Catal. Sci. Technol. 11, 416–424 (2021).

    Article  CAS  Google Scholar 

  142. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis — calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    Article  CAS  Google Scholar 

  143. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  144. Chen, H. et al. Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. 544, 148965 (2021).

    Article  CAS  Google Scholar 

  145. Wu, H. et al. Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. Nat. Energy 9, 422–433 (2024).

    Article  CAS  Google Scholar 

  146. Jeon, H. S. et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 19879–19887 (2019).

    Article  CAS  Google Scholar 

  147. Lei, Q. et al. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 13, 4857 (2022).

    Article  CAS  Google Scholar 

  148. Okatenko, V. et al. Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction. J. Am. Chem. Soc. 145, 5370–5383 (2023).

    Article  CAS  Google Scholar 

  149. Golovanova, V. et al. Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2-based catalyst. Appl. Catal. B Environ. 291, 120038 (2021).

    Article  CAS  Google Scholar 

  150. Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020).

    Article  CAS  Google Scholar 

  151. Shoji, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 3, 148–153 (2020).

    Article  CAS  Google Scholar 

  152. Hu, C. et al. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon. Nat. Commun. 14, 221 (2023).

    Article  CAS  Google Scholar 

  153. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  CAS  Google Scholar 

  154. Lou, M. et al. Direct H2S decomposition by plasmonic photocatalysis: efficient remediation plus sustainable hydrogen production. ACS Energy Lett. 7, 3666–3674 (2022).

    Article  CAS  Google Scholar 

  155. Qi, J. et al. Dynamic control of elementary step energetics via pulsed illumination enhances photocatalysis on metal nanoparticles. ACS Energy Lett. 5, 3518–3525 (2020).

    Article  CAS  Google Scholar 

  156. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  CAS  Google Scholar 

  157. Yu, S., Wilson, A. J., Heo, J. & Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 18, 2189–2194 (2018).

    Article  CAS  Google Scholar 

  158. Zhang, W., Wang, L., Wang, K., Khan, M. U. & Wang, M. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 13, 1–5 (2017).

    Google Scholar 

  159. Baldi, A. & Askes, S. H. C. Pulsed photothermal heterogeneous catalysis. ACS Catal. 13, 3419–3432 (2023).

    Article  CAS  Google Scholar 

  160. Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

    Article  CAS  Google Scholar 

  161. Xiang, F. et al. Light-induced quantum reconfiguration of oxyhydroxides for photoanodes with 4.24% efficiency and stability beyond 250 hours. Adv. Mater. 36, 2405478 (2024).

    Article  CAS  Google Scholar 

  162. Wang, J. et al. Light-induced dynamic activation of copper/silicon interface for highly selective carbon dioxide reduction. Angew. Chem. Int. Ed. 63, e202403333 (2024).

    Article  CAS  Google Scholar 

  163. Bergmann, A. & Roldan Cuenya, B. Operando insights into nanoparticle transformations during catalysis. ACS Catal. 9, 10020–10043 (2019).

    Article  CAS  Google Scholar 

  164. Möller, T. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 59, 17974–17983 (2020).

    Article  Google Scholar 

  165. Wang, W., Duan, J., Liu, Y. & Zhai, T. Structural reconstruction of catalysts in electroreduction reaction: identifying, understanding, and manipulating. Adv. Mater. 34, 2110699 (2022).

    Article  CAS  Google Scholar 

  166. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article  CAS  Google Scholar 

  167. Zhan, C. et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).

    Article  CAS  Google Scholar 

  168. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  169. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  CAS  Google Scholar 

  170. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  Google Scholar 

  171. Nam, D. H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    Article  CAS  Google Scholar 

  172. Liang, Y. et al. Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nat. Commun. 13, 3356 (2022).

    Article  CAS  Google Scholar 

  173. Kaminsky, C. J., Weng, S., Wright, J. & Surendranath, Y. Adsorbed cobalt porphyrins act like metal surfaces in electrocatalysis. Nat. Catal. 5, 430–442 (2022).

    Article  CAS  Google Scholar 

  174. Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    Article  CAS  Google Scholar 

  175. Zhou, H. et al. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering. J. Am. Chem. Soc. 142, 2738–2743 (2020).

    Article  CAS  Google Scholar 

  176. Li, Y. et al. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting. Nat. Catal. 7, 77–88 (2024).

    Article  CAS  Google Scholar 

  177. Yu, S. & Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019).

    Article  Google Scholar 

  178. Corson, E. R. et al. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).

    Article  CAS  Google Scholar 

  179. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    Article  CAS  Google Scholar 

  180. Guo, S., Li, X., Li, J. & Wei, B. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12, 1343 (2021).

    Article  CAS  Google Scholar 

  181. Andrei, V. et al. Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems. Nat. Mater. 21, 864–868 (2022).

    Article  CAS  Google Scholar 

  182. Ros, C. et al. Turning earth abundant kesterite-based solar cells into efficient protected water-splitting photocathodes. ACS Appl. Mater. Interfaces 10, 13425–13433 (2018).

    Article  CAS  Google Scholar 

  183. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  184. Yang, K., Kas, R. & Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    Article  CAS  Google Scholar 

  185. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  186. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  187. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  CAS  Google Scholar 

  188. Nesbitt, N. T. & Smith, W. A. Water and solute activities regulate CO2 reduction in gas-diffusion electrodes. J. Phys. Chem. C 125, 13085–13095 (2021).

    Article  CAS  Google Scholar 

  189. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  Google Scholar 

  190. Pelayo García de Arquer, F. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  191. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  192. Shin, S. J. et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 13, 5482 (2022).

    Article  CAS  Google Scholar 

  193. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  194. Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).

    Article  CAS  Google Scholar 

  195. Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2022).

    Article  Google Scholar 

  196. Garcia, A. C., Touzalin, T., Nieuwland, C., Perini, N. & Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem. 131, 13133–13137 (2019).

    Article  Google Scholar 

  197. Luo, M. & Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5, 615–623 (2022).

    Article  CAS  Google Scholar 

  198. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  Google Scholar 

  199. Li, Y., Pei, Z., Luan, D. & Lou, X.-W. D. Superhydrophobic and conductive wire membrane for enhanced CO2 electroreduction to multicarbon products. Angew. Chem. Int. Ed. 62, e202302128 (2023).

    Article  CAS  Google Scholar 

  200. Fu, Q. et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%. Nano Energy 53, 232–239 (2018).

    Article  CAS  Google Scholar 

  201. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  202. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    Article  CAS  Google Scholar 

  203. Nandy, S., Savant, S. A. & Haussener, S. Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing. Chem. Sci. 12, 9866–9884 (2021).

    Article  CAS  Google Scholar 

  204. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article  CAS  Google Scholar 

  205. Boutin, E. et al. Photo-electrochemical conversion of CO2 under concentrated sunlight enables combination of high reaction rate and efficiency. Adv. Energy Mater. 12, 2200585 (2022).

    Article  CAS  Google Scholar 

  206. Khan, B. et al. Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency. Nat. Commun. 15, 6990 (2024).

    Article  CAS  Google Scholar 

  207. Zhang, Y., Yam, C. & Schatz, G. C. Fundamental limitations to plasmonic hot-carrier solar cells. J. Phys. Chem. Lett. 7, 1852–1858 (2016).

    Article  CAS  Google Scholar 

  208. Ratchford, D. C., Dunkelberger, A. D., Vurgaftman, I., Owrutsky, J. C. & Pehrsson, P. E. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. 17, 6047–6055 (2017).

    Article  CAS  Google Scholar 

  209. Chae, H. U. et al. High quantum efficiency hot electron electrochemistry. Nano Lett. 19, 6227–6234 (2019).

    Article  CAS  Google Scholar 

  210. Govorov, A. O., Zhang, H. & Gun’Ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117, 16616–16631 (2013).

    Article  CAS  Google Scholar 

  211. Ye, W., Long, R., Huang, H. & Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 5, 1008–1021 (2017).

    Article  CAS  Google Scholar 

  212. Li, S. et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33, 2000086 (2021).

    Article  CAS  Google Scholar 

  213. Mascaretti, L. & Naldoni, A. Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. 128, 041101 (2020).

    Article  CAS  Google Scholar 

  214. Zhang, C., Zhang, Y. & Xie, W. Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion. J. Energy Chem. 63, 40–53 (2021).

    Article  CAS  Google Scholar 

  215. Huang, H. et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 8, 1702472 (2018).

    Article  Google Scholar 

  216. Ng, C., Yap, L. W., Roberts, A., Cheng, W. & Gómez, D. E. Black gold: broadband, high absorption of visible light for photochemical systems. Adv. Funct. Mater. 27, 1604080 (2017).

    Article  Google Scholar 

  217. Xi, S., Wang, L., Xie, H. & Yu, W. Solar-thermal energy conversion and storage of super black carbon reinforced melamine foam aerogel for shape-stable phase change composites. Int. J. Hydrog. Energy 47, 12024–12035 (2022).

    Article  CAS  Google Scholar 

  218. Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010).

    Article  CAS  Google Scholar 

  219. Romero, M. & Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234 (2012).

    Article  CAS  Google Scholar 

  220. Marxer, D., Furler, P., Takacs, M. & Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 10, 1142–1149 (2017).

    Article  CAS  Google Scholar 

  221. Vos de, A. & Pauwels, H. On the thermodynamic limit of photovoltaic energy conversion. Appl. Phys. 25, 119–125 (1981).

    Article  Google Scholar 

  222. King, R. R. et al. Solar cell generations over 40% efficiency. Prog. Photovolt. Res. Appl. 20, 801–815 (2012).

    Article  CAS  Google Scholar 

  223. Wang, P. et al. Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology. J. Semicond. 41, 062701 (2020).

    Article  CAS  Google Scholar 

  224. Oni, A. M., Mohsin, A. S. M., Rahman, M. & Hossain, M. B. B. A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Rep. 11, 3345–3366 (2024).

    Article  Google Scholar 

  225. Burrin, D., Roy, S., Roskilly, A. P. & Smallbone, A. A combined heat and green hydrogen (CHH) generator integrated with a heat network. Energy Convers. Manag. 246, 114686 (2021).

    Article  CAS  Google Scholar 

  226. María Villarreal Vives, A., Wang, R., Roy, S. & Smallbone, A. Techno-economic analysis of large-scale green hydrogen production and storage. Appl. Energy 346, 121333 (2023).

    Article  Google Scholar 

  227. Johnson, E. F. & Haussener, S. Thermal-integration in photoelectrochemistry for fuel and heat co-generation. Sustain. Energy Fuels 8, 4199–4212 (2024).

    Article  CAS  Google Scholar 

  228. Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 893, 889–893 (2022).

    Article  Google Scholar 

  229. Mohan, A. et al. Hybrid photo-and thermal catalyst system for continuous CO2 reduction. ACS Appl. Mater. Interfaces 12, 33613–33620 (2020).

    Article  CAS  Google Scholar 

  230. Andrei, V. et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).

    Article  CAS  Google Scholar 

  231. Hansora, D. et al. All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production. Nat. Energy. 9, 272–284 (2024).

    Article  CAS  Google Scholar 

  232. Solhyd project team. The Solhyd project is launched! Solhyd https://solhyd.eu/en/solhyd_blog_en/the-solhyd-project-launched (2021).

  233. Solhyd. Solhyd, Nippon Gases, Ether Energy and SunBuild to build world’s first solar hydrogen park, setting a new standard in hydrogen technology. Solhyd https://solhyd.eu/en/solhyd_blog_en/solhyd-nippon-gases-ether-energy-and-sunbuild-to-build-worlds-first-solar-hydrogen-park-setting-a-new-standard-in-hydrogen-technology (2025).

  234. Naimovičius, L., Bharmoria, P. & Moth-Poulsen, K. Triplet–triplet annihilation mediated photon upconversion solar energy systems. Mater. Chem. Front. 7, 2297 (2023).

    Article  Google Scholar 

  235. Li, X. et al. Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells. Nano Energy 114, 108619 (2023).

    Article  CAS  Google Scholar 

  236. Meinardi, F., Bruni, F. & Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2, 17072 (2017).

    Article  CAS  Google Scholar 

  237. Belsa, B. et al. Materials challenges on the path to gigatonne CO2 electrolysis. Nat. Rev. Mater. 9, 535–549 (2024).

    Article  CAS  Google Scholar 

  238. Fu, H. C. et al. Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis. Nano Energy 70, 104478 (2020).

    Article  CAS  Google Scholar 

  239. Dihan, M. R. et al. Photocatalytic and photoelectrochemical H2 generation for sustainable future: performance improvement, techno-economic analysis, and life cycle assessment for shaping the reality. Fuel 392, 134356 (2025).

    Article  CAS  Google Scholar 

  240. Koshy, D. M. et al. Bridging thermal catalysis and electrocatalysis: catalyzing CO2 conversion with carbon-based materials. Angew. Chem. Int. Ed 60, 17472–17480 (2021).

    Article  CAS  Google Scholar 

  241. Pornrungroj, C. et al. Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat. Water 1, 952–960 (2023).

    Article  CAS  Google Scholar 

  242. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  Google Scholar 

  243. Xiao, Z. et al. A comprehensive review on photo-thermal co-catalytic reduction of CO2 to value-added chemicals. Fuel 362, 130906 (2024).

    Article  CAS  Google Scholar 

  244. Wu, S., Wu, S. & Sun, Y. Light-driven dry reforming of methane on metal catalysts. Sol. RRL 5, 2000507 (2021).

    Article  CAS  Google Scholar 

  245. Haley, J., Leach, C., Jordan, B., Dehoff, R. & Paquit, V. In-situ digital image correlation and thermal monitoring in directed energy deposition additive manufacturing. Opt. Express 29, 9927–9941 (2021).

    Article  Google Scholar 

  246. Sastre, F. et al. Sunlight-fueled, low-temperature Ru-catalyzed conversion of CO2 and H2 to CH4 with a high photon-to-methane efficiency. ACS Omega 4, 7369–7377 (2019).

    Article  CAS  Google Scholar 

  247. Cortés, E. et al. Challenges in plasmonic catalysis. ACS Nano 14, 16202–16219 (2020).

    Article  Google Scholar 

  248. Elias, R. C., Yan, B. & Linic, S. Probing spatial energy flow in plasmonic catalysts from charge excitation to heating: nonhomogeneous energy distribution as a fundamental feature of plasmonic chemistry. J. Am. Chem. Soc. 146, 29656–29663 (2024).

    Article  CAS  Google Scholar 

  249. Qi, Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 13, 484 (2022).

    Article  CAS  Google Scholar 

  250. Cobb, S. J. et al. A photoelectrochemical-thermoelectric device for semi-artificial CO2 fixation employing full solar spectrum utilization. Device 2, 100505 (2024).

    Article  Google Scholar 

  251. Zhou, S. et al. Nanoengineered kesterite photocathodes: enhancing photoelectrochemical performance for water splitting and beyond. ACS Nano 19, 17041–17061 (2025).

    Article  CAS  Google Scholar 

  252. Ni, J. et al. Deciphering electrolyte selection for electrochemical reduction of carbon dioxide and nitrogen to high-value-added chemicals. Adv. Funct. Mater. 33, 2212483 (2023).

    Article  CAS  Google Scholar 

  253. Pornrungroj, C. et al. Bifunctional perovskite-BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles. Adv. Funct. Mater. 31, 1–9 (2021).

    Google Scholar 

  254. Ampelli, C. et al. An artificial leaf device built with earth-abundant materials for combined H2 production and storage as formate with efficiency > 10%. Energy Environ. Sci. 16, 1644–1661 (2023).

    Article  CAS  Google Scholar 

  255. Sivula, K. Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655–15674 (2015).

    Article  Google Scholar 

  256. Arinze, E. S., Qiu, B., Nyirjesy, G. & Thon, S. M. Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photon. 3, 158–173 (2016).

    Article  CAS  Google Scholar 

  257. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  Google Scholar 

  258. Kang, Y. et al. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 65, 1163–1169 (2020).

    Article  CAS  Google Scholar 

  259. Tembhurne, S., Nandjou, F. & Haussener, S. A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy 4, 399–407 (2019).

    Article  CAS  Google Scholar 

  260. Pornrungroj, C., Andrei, V. & Reisner, E. Thermoelectric−photoelectrochemical water splitting under concentrated solar irradiation. J. Am. Chem. Soc. 145, 13709–13714 (2023).

    Article  CAS  Google Scholar 

  261. Schneidewind, J. How much technological progress is needed to make solar hydrogen cost-competitive? Adv. Energy Mater. 12, 2200342 (2022).

    Article  CAS  Google Scholar 

  262. Ding, X., Liu, W., Zhao, J., Wang, L. & Zou, Z. Photothermal CO2 catalysis toward the synthesis of solar fuel: from material and reactor engineering to techno-economic analysis. Adv. Mater. 37, 1–15 (2025).

    Google Scholar 

  263. Kurup, P., Glynn, S. & Akar, S. Manufacturing cost analysis of advanced parabolic trough collector. AIP Conf. Proc. 2445, 020006 (2022).

    Article  Google Scholar 

  264. Hong, J. et al. Photothermal chemistry based on solar energy: from synergistic effects to practical applications. Adv. Sci. 9, e2103926 (2022).

    Article  Google Scholar 

  265. Chen, P., Zhang, Y., Zhou, Y. & Dong, F. Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges. Nano Mater. Sci. 3, 344–367 (2021).

    Article  CAS  Google Scholar 

  266. Fu, Y., Wang, Y., Huang, J., Lu, K. & Liu, M. Solar fuel production through concentrating light irradiation. Green Energy Environ. 9, 1550–1580 (2024).

    Article  CAS  Google Scholar 

  267. He, J. & Janáky, C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020).

    Article  CAS  Google Scholar 

  268. Galushchinskiy, A., González-Gómez, R., McCarthy, K., Farràs, P. & Savateev, A. Progress in development of photocatalytic processes for synthesis of fuels and organic compounds under outdoor solar light. Energy Fuels 36, 4625–4639 (2022).

    Article  CAS  Google Scholar 

  269. Syzygy Plasmonics. Illuminating the future of chemical manufacturing. Syzygy Plasmonics https://syzygyplasmonics.squarespace.com (2025).

  270. Luterbacher, C. A solar hydrogen system that co-generates heat and oxygen. EPFL https://actu.epfl.ch/news/a-solar-hydrogen-system-that-co-generates-heat-and (2023).

  271. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ICFO thanks CEX2024-001490-S and PID2022-138127NA-I00 (MCIN/AEI/10.13039/501100011033), Fundació Cellex, Fundació Mir-Puig, BIST Ignite (7th edition), Generalitat de Catalunya through CERCA (SGR 2021 01455); Fundación Ramón Areces (CIVP21S13318); the European Union: NASCENT (101077243) and ICONIC (101115204). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, discussion and editing. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to F. Pelayo García de Arquer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Peng Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, V., Mittal, D. & García de Arquer, F.P. What solar fuel technologies can learn from each other. Nat. Rev. Clean Technol. (2026). https://doi.org/10.1038/s44359-025-00130-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44359-025-00130-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing