Figure 2

STED-FCS simulation of compartmentalised diffusion.
(a) In STED-FCS, the apparent diffusion coefficient Dapp is determined for different sizes of the observation spot (given by the diameter d), as formed by varying the STED laser power (red: STED light, green: effective observation or fluorescence area). (b) In silico STED-FCS experiments: Simulations show characteristic dependencies of Dapp on the diameter d of the observation area, assuming a model for compartmentalised diffusion as depicted in Fig. 1a with Dfree = 0.8µm2/s. As d is increased, Dapp decreases. Characteristic compartment size of length L, free diffusion coefficient Dfree and hopping probability Phop define the diffusion model. These simulations (using Dfree = 0.8µm2/s and Phop and L as given) show that only strong confinement (small Phop) renders clear patterns of compartmentalised diffusion whereas weaker confinement (for example, Phop = 0.5) closely resembles free diffusion.