Figure 1

(a) SEM images of MEMS tweezers. One of the sharp tips (right tip) of the tweezers was actuated using comb-drive actuators and sensed with integrated differential capacitive sensor. (b) Capturing a DNA bundle between the tips of the tweezers caused an increase in fR and a decrease in Amax. (c) Setup of the proposed method. ((c)i) Tips of the tweezers entered the side opening of a microfluidic device consisted of a PDMS slab placed on a cover slip. Tweezers were mechanically driven and sensed by a lock-in-amplifier. A pressure pump controlled the flow in the channel of the microfluidic device enabling multi-solution testing. A LabVIEW program was used to run the experiments controlling all equipment. ((c)ii) Top view illustration of the white-dashed rectangle in ((c)i) is shown. Only the tips of the tweezers entered the channel via the side opening. ((c)iii) Side view illustration of the white-dashed line (A-A’) in ((c)ii). The PDMS rim was used for the positioning process. ((c)iv) Top view image (by Keyence VHS-500) of the tweezers tips inserted into channel (filled with red ink) via the side opening. The corresponding area is illustrated with yellow-dashed rectangle in ((c)ii).