Table 2 Performance comparison of different classifier.
From: Resistance gene identification from Larimichthys crocea with machine learning techniques
Classifier | Attributes | SN | SP | Mcc | Accuracy (%) | ROC Area |
|---|---|---|---|---|---|---|
Random forest | 13440 | 0.831 | 0.687 | 0.523 | 75.878 | 0.850 |
LibD3C | 13440 | 0.820 | 0.700 | 0.524 | 76.0045 | 0.846 |
J48 | 13440 | 0.688 | 0.683 | 0.371 | 68.5491 | 0.678 |
Bayes Network | 13440 | 0.810 | 0.597 | 0.417 | 70.3646 | 0.761 |
Naive Bayes | 13440 | 0.882 | 0.264 | 0.185 | 57.2768 | 0.690 |
KNN-IB1 | 13440 | 0.639 | 0.765 | 0.408 | 70.2158 | 0.706 |
AdaBoostM1 | 13440 | 0.782 | 0.605 | 0.393 | 69.3601 | 0.763 |
Bagging | 13440 | 0.786 | 0.696 | 0.483 | 74.0699 | 0.822 |
GBDT | 13440 | 0.718 | 0.705 | 0.456 | 72.7902 | 0.818 |
Random tree | 13440 | 0.673 | 0.672 | 0.346 | 67.2842 | 0.673 |
RandomSubSpace | 13440 | 0.819 | 0.662 | 0.486 | 74.0179 | 0.826 |
SMO | 13440 | 0.677 | 0.749 | 0.427 | 71.2798 | 0.713 |
LibSVM | 13440 | 0.947 | 0.307 | 0.331 | 62.7232 | 0.627 |