Table 2 Performance comparison of different classifier.

From: Resistance gene identification from Larimichthys crocea with machine learning techniques

Classifier

Attributes

SN

SP

Mcc

Accuracy (%)

ROC Area

Random forest

13440

0.831

0.687

0.523

75.878

0.850

LibD3C

13440

0.820

0.700

0.524

76.0045

0.846

J48

13440

0.688

0.683

0.371

68.5491

0.678

Bayes Network

13440

0.810

0.597

0.417

70.3646

0.761

Naive Bayes

13440

0.882

0.264

0.185

57.2768

0.690

KNN-IB1

13440

0.639

0.765

0.408

70.2158

0.706

AdaBoostM1

13440

0.782

0.605

0.393

69.3601

0.763

Bagging

13440

0.786

0.696

0.483

74.0699

0.822

GBDT

13440

0.718

0.705

0.456

72.7902

0.818

Random tree

13440

0.673

0.672

0.346

67.2842

0.673

RandomSubSpace

13440

0.819

0.662

0.486

74.0179

0.826

SMO

13440

0.677

0.749

0.427

71.2798

0.713

LibSVM

13440

0.947

0.307

0.331

62.7232

0.627