Figure 1: Dark-field microscopy reveals intracellular markers for rotation tracking.
From: Mapping cell surface adhesion by rotation tracking and adhesion footprinting

Images of the same cell at 60x magnification by: (a) phase-contrast imaging, (b) dark-field microscopy, with arrows indicating intracellular granules, (c) Cy5 fluorescence imaging of DiD-labeled membranes. (d) Snapshots of a representative rolling cell with time stamps (~0.08 s interval) on a P-selectin coated surface at 25x magnification with flow direction pointing to the right. The rolling cell is under a constant shear stress of 1.2 Pa. Two bright spots inside the cell serve as visual reference markers to track the cell rotation. Initially, the two visible spots are at the bottom surface of the cell. As the cell rolls in the direction of the arrow, the spots rotate to the top surface and back to the bottom again. Two yellow boxes mark ~1 rotation cycle of the cell with the spots returning to the same position.