Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–13 of 13 results
Advanced filters: Author: Amir Karamlou Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • By emulating a 2D hard-core Bose–Hubbard lattice using a controllable 4 × 4 array of superconducting qubits, volume-law entanglement scaling as well as area-law scaling at different locations in the energy spectrum are observed.

    • Amir H. Karamlou
    • Ilan T. Rosen
    • William D. Oliver
    ResearchOpen Access
    Nature
    Volume: 629, P: 561-566
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Arrays of superconducting transmon qubits can be used to study the Bose–Hubbard model. Synthetic electromagnetic fields have now been added to this analogue quantum simulation platform.

    • Ilan T. Rosen
    • Sarah Muschinske
    • William D. Oliver
    Research
    Nature Physics
    Volume: 20, P: 1881-1887
  • The complexity of many-body quantum states makes their evolution difficult to simulate with classical computers. Experiments on a 2D nine-qubit device demonstrate that the key properties of quantum lattices can be accessed by measuring out-of-time-ordered correlators.

    • Jochen Braumüller
    • Amir H. Karamlou
    • William D. Oliver
    Research
    Nature Physics
    Volume: 18, P: 172-178
  • The presence of various noises in the qubit environment is a major limitation on qubit coherence time. Here, the authors demonstrate the use a closed-loop feedback to stabilize frequency noise in a flux-tunable superconducting qubit and suggest this as a scalable approach applicable to other types of noise.

    • Antti Vepsäläinen
    • Roni Winik
    • William D. Oliver
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • Ionizing radiation from environmental radioactivity and cosmic rays increases the density of broken Cooper pairs in superconducting qubits, reducing their coherence times, but can be partially mitigated by lead shielding.

    • Antti P. Vepsäläinen
    • Amir H. Karamlou
    • William D. Oliver
    Research
    Nature
    Volume: 584, P: 551-556
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926