Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 148 results
Advanced filters: Author: Anthony S. P. Hung Clear advanced filters
  • TCR-engineered T cells have shown limited efficacy in part due to the absence of co-stimulation leading to limited accumulation in solid tumors. The authors here show engineering the CD8β coreceptor with an intracellular CD28 domain enhances cytokine production, persistence, and tumor control in vivo independent of tumor-associated co-stimulatory ligand encounter.

    • Shihong Zhang
    • Tzu-Hao Tang
    • Aude G. Chapuis
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-21
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Slope inspection is crucial for preventing landslide hazards. In this work, authors develop a LiDAR-based quadrotor with assisted obstacle avoidance, achieving efficient slope inspection under dense vegetation.

    • Wenyi Liu
    • Yunfan Ren
    • Fu Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Survey data collected across ten low-income and middle-income countries (LMICs) in Asia, Africa and South America compared with surveys from Russia and the United States reveal heterogeneity in vaccine confidence in LMICs, with healthcare providers being trusted sources of information, as well as greater levels of vaccine acceptance in these countries than in Russia and the United States.

    • Julio S. Solís Arce
    • Shana S. Warren
    • Saad B. Omer
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1385-1394
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Paul Pharoah and colleagues report the results of a large genome-wide association study of ovarian cancer. They identify new susceptibility loci for different epithelial ovarian cancer histotypes and use integrated analyses of genes and regulatory features at each locus to predict candidate susceptibility genes, including OBFC1.

    • Catherine M Phelan
    • Karoline B Kuchenbaecker
    • Paul D P Pharoah
    Research
    Nature Genetics
    Volume: 49, P: 680-691
  • Similarities in cancers can be studied to interrogate their etiology. Here, the authors use genome-wide association study summary statistics from six cancer types based on 296,215 cases and 301,319 controls of European ancestry, showing that solid tumours arising from different tissues share a degree of common germline genetic basis.

    • Xia Jiang
    • Hilary K. Finucane
    • Sara Lindström
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-23
  • In a post-hoc analysis of circulating tumor DNA (ctDNA) features from patients with metastatic prostate cancer treated with [177Lu]Lu–PSMA-617 or cabazitaxel in the randomized phase 2 TheraP trial, low ctDNA levels at baseline were predictive of clinical benefit from [177Lu]Lu–PSMA-617, and PTEN or ATM alterations were identified as potential biomarkers of response.

    • Edmond M. Kwan
    • Sarah W. S. Ng
    • Alison Y. Zhang
    Research
    Nature Medicine
    Volume: 31, P: 2722-2736
  • Oncolytic viruses (OVs) represent a treatment option for patients with cancer. Here the authors propose a tumour-agnostic dual-virus strategy for cancer therapy by generating a vesicular stomatitis virus encoding a truncated version of HER2, combined with a vaccinia virus as a delivery platform for a HER2-targeted T-cell engager.

    • Zaid Taha
    • Mathieu Joseph François Crupi
    • Jean-Simon Diallo
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-20
  • Here, the authors present cryoEM structures of AftB, a key mycobacterial enzyme that adds terminal arabinose residues to the cell wall. In concert with functional assays and MD simulations, mechanistic insights are presented.

    • Yaqi Liu
    • Chelsea M. Brown
    • Filippo Mancia
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • Stapled α-helical peptides are promising for targeting challenging targets such as transcription factors, but achieving sufficient cell permeability while avoiding off-target cleavage is difficult. Here, the authors present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects based on comprehensive investigations of their properties.

    • Arun Chandramohan
    • Hubert Josien
    • Anthony W. Partridge
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Nasopharyngeal cancer is frequently characterized by Epstein-Barr virus infection. Here, using genomic analyses, the authors find that the tumours harbour mutations in genes involved in the NF-κB signalling pathway or overexpress a viral oncoprotein, latent membrane protein 1.

    • Yvonne Y Li
    • Grace T. Y. Chung
    • Kwok-Wai Lo
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-10
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Combination of epidemiology, preclinical models and ultradeep DNA profiling of clinical cohorts unpicks the inflammatory mechanism by which air pollution promotes lung cancer

    • William Hill
    • Emilia L. Lim
    • Charles Swanton
    Research
    Nature
    Volume: 616, P: 159-167