Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–4 of 4 results
Advanced filters: Author: Anusri Pampari Clear advanced filters
  • The existing ENCODE registry of candidate human and mouse cis-regulatory elements is expanded with the addition of new ENCODE data, integrating new functional data as well as new cell and tissue types.

    • Jill E. Moore
    • Henry E. Pratt
    • Zhiping Weng
    ResearchOpen Access
    Nature
    P: 1-10
  • High-throughput experimental platforms have revolutionized the ability to profile biochemical and functional properties of biological sequences such as DNA, RNA and proteins. By collating several data modalities with customizable tracks rendered using intuitive visualizations, genome browsers enable an interactive and interpretable exploration of diverse types of genome profiling experiments and derived annotations. However, existing genome browser tracks are not well suited for intuitive visualization of high-resolution DNA sequence features such as transcription factor motifs. Typically, motif instances in regulatory DNA sequences are visualized as BED-based annotation tracks, which highlight the genomic coordinates of the motif instances but do not expose their specific sequences. Instead, a genome sequence track needs to be cross-referenced with the BED track to identify sequences of motif hits. Even so, quantitative information about the motif instances such as affinity or conservation as well as differences in base resolution from the consensus motif are not immediately apparent. This makes interpretation slow and challenging. This problem is compounded when analyzing several cellular states and/or molecular readouts (such as ATAC-seq and ChIP–seq) simultaneously, as coordinates of enriched regions (peaks) and the set of active transcription factor motifs vary across cell states.

    • Surag Nair
    • Arjun Barrett
    • Anshul Kundaje
    Comments & Opinion
    Nature Genetics
    Volume: 54, P: 1581-1583
  • The Impact of Genomic Variation on Function Consortium is combining single-cell mapping, genomic perturbations and predictive modelling to investigate relationships between human genomic variation, genome function and phenotypes and will provide an open resource to the community.

    • Jesse M. Engreitz
    • Heather A. Lawson
    • Ella K. Samer
    Reviews
    Nature
    Volume: 633, P: 47-57