Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 81 results
Advanced filters: Author: Bernhard F. Gibbs Clear advanced filters
  • Evolution selects for the fittest but must operate within the realm of the physically possible. Here, the authors present a theoretical framework that allows them to explore how ten abiotic constraints can shape the operation, regulation, and adaptation of metabolism in E. coli.

    • Amir Akbari
    • James T. Yurkovich
    • Bernhard O. Palsson
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-19
  • Atomic-scale spinodal decomposition enabled diffusion was observed within ordered nanoprecipitates that have structural imperfections, resulting from dynamic interaction of Gibbs energy, activation energy of atomic jumps and phase ordering in multicomponent alloys.

    • Angelina Orthacker
    • Georg Haberfehlner
    • Gerald Kothleitner
    Research
    Nature Materials
    Volume: 17, P: 1101-1107
  • The direct regioselective oxidation of internal alkenes to ketones poses an important synthetic challenge. Now, directed evolution of a cytochrome P450 enzyme affords a ketone synthase that can efficiently oxidize internal arylalkenes directly to ketones with high chemo- and regioselectivity.

    • Sebastian Gergel
    • Jordi Soler
    • Stephan C. Hammer
    ResearchOpen Access
    Nature Catalysis
    Volume: 6, P: 606-617
  • Analysis of gravitational waves from merging binary neutron stars was accelerated using machine learning, enabling full low-latency parameter estimation and enhancing the potential for multi-messenger observations.

    • Maximilian Dax
    • Stephen R. Green
    • Bernhard Schölkopf
    ResearchOpen Access
    Nature
    Volume: 639, P: 49-53
  • Groundwater discharge is a mechanism that transports chemicals from inland systems to the ocean, but it has been considered of secondary influence compared to rivers. Here the authors assess the global significance of groundwater discharge, finding that it has a unique and important contribution to ocean chemistry and Earth-system models.

    • Kimberley K. Mayfield
    • Anton Eisenhauer
    • Adina Paytan
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • Metabolic engineering is often hampered by non-linear kinetics and allosteric regulatory mechanisms. Here, the authors construct a quantitative model for the pentose degradation Weimberg pathway in Caulobacter crescentus and demonstrate its biotechnological applications in cell-free system and standard metabolic engineering.

    • Lu Shen
    • Martha Kohlhaas
    • Bettina Siebers
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.

    • David Heckmann
    • Colton J. Lloyd
    • Bernhard O. Palsson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • To refold client proteins, HSP90 chaperone undergoes large structural rearrangements. Here the authors use NMR and molecular simulation and reveal structure and dynamics of a key functionally relevant metastable state of human HSP90α N-terminal domain.

    • Faustine Henot
    • Elisa Rioual
    • Jerome Boisbouvier
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Iodic acid (HIO3) forms aerosols very efficiently, but its gas-phase formation mechanism is not well understood. Atmospheric simulation chamber experiments, quantum chemical calculations and kinetic modelling have now revealed that HIO3 forms as an early iodine oxidation product from hypoiodite. The mechanism explains field measurements and suggests a catalytic role for iodine in particle formation.

    • Henning Finkenzeller
    • Siddharth Iyer
    • Rainer Volkamer
    ResearchOpen Access
    Nature Chemistry
    Volume: 15, P: 129-135
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Mastomys natalensis is a rodent species native to West Africa that is the primary reservoir host for Lassa virus. Here, the authors investigate whether the invasive rodent Rattus rattus decreases M. natalensis density and could therefore indirectly decrease zoonotic transmission of Lassa virus to humans.

    • Evan A. Eskew
    • Brian H. Bird
    • Scott L. Nuismer
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Modelling of metabolic networks has facilitated genome-scale analysis of microbial metabolism for both basic and applied uses. Here, Palsson and colleagues describe the ever-growing 'phylogeny' of constraint-based reconstruction and analysis (COBRA) approaches used for modelling numerous aspects of microbial life.

    • Nathan E. Lewis
    • Harish Nagarajan
    • Bernhard O. Palsson
    Reviews
    Nature Reviews Microbiology
    Volume: 10, P: 291-305
  • High-pressure synthesis is used to stabilize superconducting (Ba,K)SbO3, whose properties provide a fresh perspective on the origin of superconductivity in these types of materials.

    • Minu Kim
    • Graham M. McNally
    • Hidenori Takagi
    ResearchOpen Access
    Nature Materials
    Volume: 21, P: 627-633
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341