Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–8 of 8 results
Advanced filters: Author: C. Vollgraff-Heidweiller Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Colour code on a superconducting qubit quantum processor is demonstrated, reporting above-breakeven performance and logical error scaling with increased code size by a factor of 1.56 moving from distance-3 to distance-5 code.

    • N. Lacroix
    • A. Bourassa
    • K. J. Satzinger
    ResearchOpen Access
    Nature
    Volume: 645, P: 614-619
  • In a quantum simulation of a (2+1)D lattice gauge theory using a superconducting quantum processor, the dynamics of strings reveal the transition from deconfined to confined excitations as the effective electric field is increased.

    • T. A. Cochran
    • B. Jobst
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 642, P: 315-320
  • It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.

    • T. E. O’Brien
    • G. Anselmetti
    • N. C. Rubin
    ResearchOpen Access
    Nature Physics
    Volume: 19, P: 1787-1792
  • An experimental investigation of the dynamics of the spin ½ Floquet XXZ model finds bound states as predicted, and also robustness to noise and non-integrability when theoretical descriptions start to fail.

    • A. Morvan
    • T. I. Andersen
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 612, P: 240-245
  • A hybrid analogue–digital quantum simulator is used to demonstrate beyond-classical performance in benchmarking experiments and to study thermalization phenomena in an XY quantum magnet, including the breakdown of Kibble–Zurek scaling predictions and signatures of the Kosterlitz–Thouless phase transition.

    • T. I. Andersen
    • N. Astrakhantsev
    • X. Mi
    ResearchOpen Access
    Nature
    Volume: 638, P: 79-85
  • By implementing random circuit sampling, experimental and theoretical results establish the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.

    • A. Morvan
    • B. Villalonga
    • S. Boixo
    ResearchOpen Access
    Nature
    Volume: 634, P: 328-333