Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–2 of 2 results
Advanced filters: Author: Chris Rackauckas Clear advanced filters
  • Data-driven surrogate models are used in computational physics and engineering to greatly speed up evaluations of the properties of partial differential equations, but they come with a heavy computational cost associated with training. Pestourie et al. combine a low-fidelity physics model with a generative deep neural network and demonstrate improved accuracy–cost trade-offs compared with standard deep neural networks and high-fidelity numerical solvers.

    • Raphaël Pestourie
    • Youssef Mroueh
    • Steven G. Johnson
    Research
    Nature Machine Intelligence
    Volume: 5, P: 1458-1465
  • Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.

    • Chaopeng Shen
    • Alison P. Appling
    • Kathryn Lawson
    Reviews
    Nature Reviews Earth & Environment
    Volume: 4, P: 552-567